| /* |
| * Blackfin On-Chip Real Time Clock Driver |
| * Supports BF53[123]/BF53[467]/BF54[2489] |
| * |
| * Copyright 2004-2007 Analog Devices Inc. |
| * |
| * Enter bugs at http://blackfin.uclinux.org/ |
| * |
| * Licensed under the GPL-2 or later. |
| */ |
| |
| /* The biggest issue we deal with in this driver is that register writes are |
| * synced to the RTC frequency of 1Hz. So if you write to a register and |
| * attempt to write again before the first write has completed, the new write |
| * is simply discarded. This can easily be troublesome if userspace disables |
| * one event (say periodic) and then right after enables an event (say alarm). |
| * Since all events are maintained in the same interrupt mask register, if |
| * we wrote to it to disable the first event and then wrote to it again to |
| * enable the second event, that second event would not be enabled as the |
| * write would be discarded and things quickly fall apart. |
| * |
| * To keep this delay from significantly degrading performance (we, in theory, |
| * would have to sleep for up to 1 second everytime we wanted to write a |
| * register), we only check the write pending status before we start to issue |
| * a new write. We bank on the idea that it doesnt matter when the sync |
| * happens so long as we don't attempt another write before it does. The only |
| * time userspace would take this penalty is when they try and do multiple |
| * operations right after another ... but in this case, they need to take the |
| * sync penalty, so we should be OK. |
| * |
| * Also note that the RTC_ISTAT register does not suffer this penalty; its |
| * writes to clear status registers complete immediately. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/bcd.h> |
| #include <linux/rtc.h> |
| #include <linux/init.h> |
| #include <linux/platform_device.h> |
| #include <linux/seq_file.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| #include <linux/delay.h> |
| |
| #include <asm/blackfin.h> |
| |
| #define stamp(fmt, args...) pr_debug("%s:%i: " fmt "\n", __FUNCTION__, __LINE__, ## args) |
| #define stampit() stamp("here i am") |
| |
| struct bfin_rtc { |
| struct rtc_device *rtc_dev; |
| struct rtc_time rtc_alarm; |
| spinlock_t lock; |
| }; |
| |
| /* Bit values for the ISTAT / ICTL registers */ |
| #define RTC_ISTAT_WRITE_COMPLETE 0x8000 |
| #define RTC_ISTAT_WRITE_PENDING 0x4000 |
| #define RTC_ISTAT_ALARM_DAY 0x0040 |
| #define RTC_ISTAT_24HR 0x0020 |
| #define RTC_ISTAT_HOUR 0x0010 |
| #define RTC_ISTAT_MIN 0x0008 |
| #define RTC_ISTAT_SEC 0x0004 |
| #define RTC_ISTAT_ALARM 0x0002 |
| #define RTC_ISTAT_STOPWATCH 0x0001 |
| |
| /* Shift values for RTC_STAT register */ |
| #define DAY_BITS_OFF 17 |
| #define HOUR_BITS_OFF 12 |
| #define MIN_BITS_OFF 6 |
| #define SEC_BITS_OFF 0 |
| |
| /* Some helper functions to convert between the common RTC notion of time |
| * and the internal Blackfin notion that is stored in 32bits. |
| */ |
| static inline u32 rtc_time_to_bfin(unsigned long now) |
| { |
| u32 sec = (now % 60); |
| u32 min = (now % (60 * 60)) / 60; |
| u32 hour = (now % (60 * 60 * 24)) / (60 * 60); |
| u32 days = (now / (60 * 60 * 24)); |
| return (sec << SEC_BITS_OFF) + |
| (min << MIN_BITS_OFF) + |
| (hour << HOUR_BITS_OFF) + |
| (days << DAY_BITS_OFF); |
| } |
| static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin) |
| { |
| return (((rtc_bfin >> SEC_BITS_OFF) & 0x003F)) + |
| (((rtc_bfin >> MIN_BITS_OFF) & 0x003F) * 60) + |
| (((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) + |
| (((rtc_bfin >> DAY_BITS_OFF) & 0x7FFF) * 60 * 60 * 24); |
| } |
| static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm) |
| { |
| rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm); |
| } |
| |
| /* Wait for the previous write to a RTC register to complete. |
| * Unfortunately, we can't sleep here as that introduces a race condition when |
| * turning on interrupt events. Consider this: |
| * - process sets alarm |
| * - process enables alarm |
| * - process sleeps while waiting for rtc write to sync |
| * - interrupt fires while process is sleeping |
| * - interrupt acks the event by writing to ISTAT |
| * - interrupt sets the WRITE PENDING bit |
| * - interrupt handler finishes |
| * - process wakes up, sees WRITE PENDING bit set, goes to sleep |
| * - interrupt fires while process is sleeping |
| * If anyone can point out the obvious solution here, i'm listening :). This |
| * shouldn't be an issue on an SMP or preempt system as this function should |
| * only be called with the rtc lock held. |
| */ |
| static void rtc_bfin_sync_pending(void) |
| { |
| stampit(); |
| while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE)) { |
| if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)) |
| break; |
| } |
| bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE); |
| } |
| |
| static void rtc_bfin_reset(struct bfin_rtc *rtc) |
| { |
| /* Initialize the RTC. Enable pre-scaler to scale RTC clock |
| * to 1Hz and clear interrupt/status registers. */ |
| spin_lock_irq(&rtc->lock); |
| rtc_bfin_sync_pending(); |
| bfin_write_RTC_PREN(0x1); |
| bfin_write_RTC_ICTL(0); |
| bfin_write_RTC_SWCNT(0); |
| bfin_write_RTC_ALARM(0); |
| bfin_write_RTC_ISTAT(0xFFFF); |
| spin_unlock_irq(&rtc->lock); |
| } |
| |
| static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id) |
| { |
| struct platform_device *pdev = to_platform_device(dev_id); |
| struct bfin_rtc *rtc = platform_get_drvdata(pdev); |
| unsigned long events = 0; |
| u16 rtc_istat; |
| |
| stampit(); |
| |
| spin_lock_irq(&rtc->lock); |
| |
| rtc_istat = bfin_read_RTC_ISTAT(); |
| |
| if (rtc_istat & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)) { |
| bfin_write_RTC_ISTAT(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY); |
| events |= RTC_AF | RTC_IRQF; |
| } |
| |
| if (rtc_istat & RTC_ISTAT_STOPWATCH) { |
| bfin_write_RTC_ISTAT(RTC_ISTAT_STOPWATCH); |
| events |= RTC_PF | RTC_IRQF; |
| bfin_write_RTC_SWCNT(rtc->rtc_dev->irq_freq); |
| } |
| |
| if (rtc_istat & RTC_ISTAT_SEC) { |
| bfin_write_RTC_ISTAT(RTC_ISTAT_SEC); |
| events |= RTC_UF | RTC_IRQF; |
| } |
| |
| rtc_update_irq(rtc->rtc_dev, 1, events); |
| |
| spin_unlock_irq(&rtc->lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int bfin_rtc_open(struct device *dev) |
| { |
| struct bfin_rtc *rtc = dev_get_drvdata(dev); |
| int ret; |
| |
| stampit(); |
| |
| ret = request_irq(IRQ_RTC, bfin_rtc_interrupt, IRQF_DISABLED, "rtc-bfin", dev); |
| if (unlikely(ret)) { |
| dev_err(dev, "request RTC IRQ failed with %d\n", ret); |
| return ret; |
| } |
| |
| rtc_bfin_reset(rtc); |
| |
| return ret; |
| } |
| |
| static void bfin_rtc_release(struct device *dev) |
| { |
| struct bfin_rtc *rtc = dev_get_drvdata(dev); |
| stampit(); |
| rtc_bfin_reset(rtc); |
| free_irq(IRQ_RTC, dev); |
| } |
| |
| static int bfin_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) |
| { |
| struct bfin_rtc *rtc = dev_get_drvdata(dev); |
| |
| stampit(); |
| |
| switch (cmd) { |
| case RTC_PIE_ON: |
| stampit(); |
| spin_lock_irq(&rtc->lock); |
| rtc_bfin_sync_pending(); |
| bfin_write_RTC_ISTAT(RTC_ISTAT_STOPWATCH); |
| bfin_write_RTC_SWCNT(rtc->rtc_dev->irq_freq); |
| bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | RTC_ISTAT_STOPWATCH); |
| spin_unlock_irq(&rtc->lock); |
| return 0; |
| case RTC_PIE_OFF: |
| stampit(); |
| spin_lock_irq(&rtc->lock); |
| rtc_bfin_sync_pending(); |
| bfin_write_RTC_SWCNT(0); |
| bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & ~RTC_ISTAT_STOPWATCH); |
| spin_unlock_irq(&rtc->lock); |
| return 0; |
| |
| case RTC_UIE_ON: |
| stampit(); |
| spin_lock_irq(&rtc->lock); |
| rtc_bfin_sync_pending(); |
| bfin_write_RTC_ISTAT(RTC_ISTAT_SEC); |
| bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | RTC_ISTAT_SEC); |
| spin_unlock_irq(&rtc->lock); |
| return 0; |
| case RTC_UIE_OFF: |
| stampit(); |
| spin_lock_irq(&rtc->lock); |
| rtc_bfin_sync_pending(); |
| bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & ~RTC_ISTAT_SEC); |
| spin_unlock_irq(&rtc->lock); |
| return 0; |
| |
| case RTC_AIE_ON: { |
| unsigned long rtc_alarm; |
| u16 which_alarm; |
| int ret = 0; |
| |
| stampit(); |
| |
| spin_lock_irq(&rtc->lock); |
| |
| rtc_bfin_sync_pending(); |
| if (rtc->rtc_alarm.tm_yday == -1) { |
| struct rtc_time now; |
| rtc_bfin_to_tm(bfin_read_RTC_STAT(), &now); |
| now.tm_sec = rtc->rtc_alarm.tm_sec; |
| now.tm_min = rtc->rtc_alarm.tm_min; |
| now.tm_hour = rtc->rtc_alarm.tm_hour; |
| ret = rtc_tm_to_time(&now, &rtc_alarm); |
| which_alarm = RTC_ISTAT_ALARM; |
| } else { |
| ret = rtc_tm_to_time(&rtc->rtc_alarm, &rtc_alarm); |
| which_alarm = RTC_ISTAT_ALARM_DAY; |
| } |
| if (ret == 0) { |
| bfin_write_RTC_ISTAT(which_alarm); |
| bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm)); |
| bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | which_alarm); |
| } |
| |
| spin_unlock_irq(&rtc->lock); |
| |
| return ret; |
| } |
| case RTC_AIE_OFF: |
| stampit(); |
| spin_lock_irq(&rtc->lock); |
| rtc_bfin_sync_pending(); |
| bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & ~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)); |
| spin_unlock_irq(&rtc->lock); |
| return 0; |
| } |
| |
| return -ENOIOCTLCMD; |
| } |
| |
| static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct bfin_rtc *rtc = dev_get_drvdata(dev); |
| |
| stampit(); |
| |
| spin_lock_irq(&rtc->lock); |
| rtc_bfin_sync_pending(); |
| rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm); |
| spin_unlock_irq(&rtc->lock); |
| |
| return 0; |
| } |
| |
| static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct bfin_rtc *rtc = dev_get_drvdata(dev); |
| int ret; |
| unsigned long now; |
| |
| stampit(); |
| |
| spin_lock_irq(&rtc->lock); |
| |
| ret = rtc_tm_to_time(tm, &now); |
| if (ret == 0) { |
| rtc_bfin_sync_pending(); |
| bfin_write_RTC_STAT(rtc_time_to_bfin(now)); |
| } |
| |
| spin_unlock_irq(&rtc->lock); |
| |
| return ret; |
| } |
| |
| static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| { |
| struct bfin_rtc *rtc = dev_get_drvdata(dev); |
| stampit(); |
| memcpy(&alrm->time, &rtc->rtc_alarm, sizeof(struct rtc_time)); |
| alrm->pending = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)); |
| return 0; |
| } |
| |
| static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| { |
| struct bfin_rtc *rtc = dev_get_drvdata(dev); |
| stampit(); |
| memcpy(&rtc->rtc_alarm, &alrm->time, sizeof(struct rtc_time)); |
| return 0; |
| } |
| |
| static int bfin_rtc_proc(struct device *dev, struct seq_file *seq) |
| { |
| #define yesno(x) (x ? "yes" : "no") |
| u16 ictl = bfin_read_RTC_ICTL(); |
| stampit(); |
| seq_printf(seq, "alarm_IRQ\t: %s\n", yesno(ictl & RTC_ISTAT_ALARM)); |
| seq_printf(seq, "wkalarm_IRQ\t: %s\n", yesno(ictl & RTC_ISTAT_ALARM_DAY)); |
| seq_printf(seq, "seconds_IRQ\t: %s\n", yesno(ictl & RTC_ISTAT_SEC)); |
| seq_printf(seq, "periodic_IRQ\t: %s\n", yesno(ictl & RTC_ISTAT_STOPWATCH)); |
| #ifdef DEBUG |
| seq_printf(seq, "RTC_STAT\t: 0x%08X\n", bfin_read_RTC_STAT()); |
| seq_printf(seq, "RTC_ICTL\t: 0x%04X\n", bfin_read_RTC_ICTL()); |
| seq_printf(seq, "RTC_ISTAT\t: 0x%04X\n", bfin_read_RTC_ISTAT()); |
| seq_printf(seq, "RTC_SWCNT\t: 0x%04X\n", bfin_read_RTC_SWCNT()); |
| seq_printf(seq, "RTC_ALARM\t: 0x%08X\n", bfin_read_RTC_ALARM()); |
| seq_printf(seq, "RTC_PREN\t: 0x%04X\n", bfin_read_RTC_PREN()); |
| #endif |
| return 0; |
| } |
| |
| static int bfin_irq_set_freq(struct device *dev, int freq) |
| { |
| struct bfin_rtc *rtc = dev_get_drvdata(dev); |
| stampit(); |
| rtc->rtc_dev->irq_freq = freq; |
| return 0; |
| } |
| |
| static struct rtc_class_ops bfin_rtc_ops = { |
| .open = bfin_rtc_open, |
| .release = bfin_rtc_release, |
| .ioctl = bfin_rtc_ioctl, |
| .read_time = bfin_rtc_read_time, |
| .set_time = bfin_rtc_set_time, |
| .read_alarm = bfin_rtc_read_alarm, |
| .set_alarm = bfin_rtc_set_alarm, |
| .proc = bfin_rtc_proc, |
| .irq_set_freq = bfin_irq_set_freq, |
| }; |
| |
| static int __devinit bfin_rtc_probe(struct platform_device *pdev) |
| { |
| struct bfin_rtc *rtc; |
| int ret = 0; |
| |
| stampit(); |
| |
| rtc = kzalloc(sizeof(*rtc), GFP_KERNEL); |
| if (unlikely(!rtc)) |
| return -ENOMEM; |
| |
| spin_lock_init(&rtc->lock); |
| |
| rtc->rtc_dev = rtc_device_register(pdev->name, &pdev->dev, &bfin_rtc_ops, THIS_MODULE); |
| if (unlikely(IS_ERR(rtc))) { |
| ret = PTR_ERR(rtc->rtc_dev); |
| goto err; |
| } |
| rtc->rtc_dev->irq_freq = 0; |
| rtc->rtc_dev->max_user_freq = (2 << 16); /* stopwatch is an unsigned 16 bit reg */ |
| |
| platform_set_drvdata(pdev, rtc); |
| |
| return 0; |
| |
| err: |
| kfree(rtc); |
| return ret; |
| } |
| |
| static int __devexit bfin_rtc_remove(struct platform_device *pdev) |
| { |
| struct bfin_rtc *rtc = platform_get_drvdata(pdev); |
| |
| rtc_device_unregister(rtc->rtc_dev); |
| platform_set_drvdata(pdev, NULL); |
| kfree(rtc); |
| |
| return 0; |
| } |
| |
| static struct platform_driver bfin_rtc_driver = { |
| .driver = { |
| .name = "rtc-bfin", |
| .owner = THIS_MODULE, |
| }, |
| .probe = bfin_rtc_probe, |
| .remove = __devexit_p(bfin_rtc_remove), |
| }; |
| |
| static int __init bfin_rtc_init(void) |
| { |
| stampit(); |
| return platform_driver_register(&bfin_rtc_driver); |
| } |
| |
| static void __exit bfin_rtc_exit(void) |
| { |
| platform_driver_unregister(&bfin_rtc_driver); |
| } |
| |
| module_init(bfin_rtc_init); |
| module_exit(bfin_rtc_exit); |
| |
| MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver"); |
| MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>"); |
| MODULE_LICENSE("GPL"); |