| /* |
| * linux/drivers/ide/ide-dma.c Version 4.10 June 9, 2000 |
| * |
| * Copyright (c) 1999-2000 Andre Hedrick <andre@linux-ide.org> |
| * May be copied or modified under the terms of the GNU General Public License |
| */ |
| |
| /* |
| * Special Thanks to Mark for his Six years of work. |
| * |
| * Copyright (c) 1995-1998 Mark Lord |
| * May be copied or modified under the terms of the GNU General Public License |
| */ |
| |
| /* |
| * This module provides support for the bus-master IDE DMA functions |
| * of various PCI chipsets, including the Intel PIIX (i82371FB for |
| * the 430 FX chipset), the PIIX3 (i82371SB for the 430 HX/VX and |
| * 440 chipsets), and the PIIX4 (i82371AB for the 430 TX chipset) |
| * ("PIIX" stands for "PCI ISA IDE Xcellerator"). |
| * |
| * Pretty much the same code works for other IDE PCI bus-mastering chipsets. |
| * |
| * DMA is supported for all IDE devices (disk drives, cdroms, tapes, floppies). |
| * |
| * By default, DMA support is prepared for use, but is currently enabled only |
| * for drives which already have DMA enabled (UltraDMA or mode 2 multi/single), |
| * or which are recognized as "good" (see table below). Drives with only mode0 |
| * or mode1 (multi/single) DMA should also work with this chipset/driver |
| * (eg. MC2112A) but are not enabled by default. |
| * |
| * Use "hdparm -i" to view modes supported by a given drive. |
| * |
| * The hdparm-3.5 (or later) utility can be used for manually enabling/disabling |
| * DMA support, but must be (re-)compiled against this kernel version or later. |
| * |
| * To enable DMA, use "hdparm -d1 /dev/hd?" on a per-drive basis after booting. |
| * If problems arise, ide.c will disable DMA operation after a few retries. |
| * This error recovery mechanism works and has been extremely well exercised. |
| * |
| * IDE drives, depending on their vintage, may support several different modes |
| * of DMA operation. The boot-time modes are indicated with a "*" in |
| * the "hdparm -i" listing, and can be changed with *knowledgeable* use of |
| * the "hdparm -X" feature. There is seldom a need to do this, as drives |
| * normally power-up with their "best" PIO/DMA modes enabled. |
| * |
| * Testing has been done with a rather extensive number of drives, |
| * with Quantum & Western Digital models generally outperforming the pack, |
| * and Fujitsu & Conner (and some Seagate which are really Conner) drives |
| * showing more lackluster throughput. |
| * |
| * Keep an eye on /var/adm/messages for "DMA disabled" messages. |
| * |
| * Some people have reported trouble with Intel Zappa motherboards. |
| * This can be fixed by upgrading the AMI BIOS to version 1.00.04.BS0, |
| * available from ftp://ftp.intel.com/pub/bios/10004bs0.exe |
| * (thanks to Glen Morrell <glen@spin.Stanford.edu> for researching this). |
| * |
| * Thanks to "Christopher J. Reimer" <reimer@doe.carleton.ca> for |
| * fixing the problem with the BIOS on some Acer motherboards. |
| * |
| * Thanks to "Benoit Poulot-Cazajous" <poulot@chorus.fr> for testing |
| * "TX" chipset compatibility and for providing patches for the "TX" chipset. |
| * |
| * Thanks to Christian Brunner <chb@muc.de> for taking a good first crack |
| * at generic DMA -- his patches were referred to when preparing this code. |
| * |
| * Most importantly, thanks to Robert Bringman <rob@mars.trion.com> |
| * for supplying a Promise UDMA board & WD UDMA drive for this work! |
| * |
| * And, yes, Intel Zappa boards really *do* use both PIIX IDE ports. |
| * |
| * ATA-66/100 and recovery functions, I forgot the rest...... |
| * |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/timer.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/ide.h> |
| #include <linux/delay.h> |
| #include <linux/scatterlist.h> |
| |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| |
| static const struct drive_list_entry drive_whitelist [] = { |
| |
| { "Micropolis 2112A" , "ALL" }, |
| { "CONNER CTMA 4000" , "ALL" }, |
| { "CONNER CTT8000-A" , "ALL" }, |
| { "ST34342A" , "ALL" }, |
| { NULL , NULL } |
| }; |
| |
| static const struct drive_list_entry drive_blacklist [] = { |
| |
| { "WDC AC11000H" , "ALL" }, |
| { "WDC AC22100H" , "ALL" }, |
| { "WDC AC32500H" , "ALL" }, |
| { "WDC AC33100H" , "ALL" }, |
| { "WDC AC31600H" , "ALL" }, |
| { "WDC AC32100H" , "24.09P07" }, |
| { "WDC AC23200L" , "21.10N21" }, |
| { "Compaq CRD-8241B" , "ALL" }, |
| { "CRD-8400B" , "ALL" }, |
| { "CRD-8480B", "ALL" }, |
| { "CRD-8482B", "ALL" }, |
| { "CRD-84" , "ALL" }, |
| { "SanDisk SDP3B" , "ALL" }, |
| { "SanDisk SDP3B-64" , "ALL" }, |
| { "SANYO CD-ROM CRD" , "ALL" }, |
| { "HITACHI CDR-8" , "ALL" }, |
| { "HITACHI CDR-8335" , "ALL" }, |
| { "HITACHI CDR-8435" , "ALL" }, |
| { "Toshiba CD-ROM XM-6202B" , "ALL" }, |
| { "CD-532E-A" , "ALL" }, |
| { "E-IDE CD-ROM CR-840", "ALL" }, |
| { "CD-ROM Drive/F5A", "ALL" }, |
| { "WPI CDD-820", "ALL" }, |
| { "SAMSUNG CD-ROM SC-148C", "ALL" }, |
| { "SAMSUNG CD-ROM SC", "ALL" }, |
| { "SanDisk SDP3B-64" , "ALL" }, |
| { "ATAPI CD-ROM DRIVE 40X MAXIMUM", "ALL" }, |
| { "_NEC DV5800A", "ALL" }, |
| { NULL , NULL } |
| |
| }; |
| |
| /** |
| * ide_in_drive_list - look for drive in black/white list |
| * @id: drive identifier |
| * @drive_table: list to inspect |
| * |
| * Look for a drive in the blacklist and the whitelist tables |
| * Returns 1 if the drive is found in the table. |
| */ |
| |
| int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table) |
| { |
| for ( ; drive_table->id_model ; drive_table++) |
| if ((!strcmp(drive_table->id_model, id->model)) && |
| ((strstr(drive_table->id_firmware, id->fw_rev)) || |
| (!strcmp(drive_table->id_firmware, "ALL")))) |
| return 1; |
| return 0; |
| } |
| |
| EXPORT_SYMBOL_GPL(ide_in_drive_list); |
| |
| /** |
| * ide_dma_intr - IDE DMA interrupt handler |
| * @drive: the drive the interrupt is for |
| * |
| * Handle an interrupt completing a read/write DMA transfer on an |
| * IDE device |
| */ |
| |
| ide_startstop_t ide_dma_intr (ide_drive_t *drive) |
| { |
| u8 stat = 0, dma_stat = 0; |
| |
| dma_stat = HWIF(drive)->ide_dma_end(drive); |
| stat = HWIF(drive)->INB(IDE_STATUS_REG); /* get drive status */ |
| if (OK_STAT(stat,DRIVE_READY,drive->bad_wstat|DRQ_STAT)) { |
| if (!dma_stat) { |
| struct request *rq = HWGROUP(drive)->rq; |
| |
| if (rq->rq_disk) { |
| ide_driver_t *drv; |
| |
| drv = *(ide_driver_t **)rq->rq_disk->private_data;; |
| drv->end_request(drive, 1, rq->nr_sectors); |
| } else |
| ide_end_request(drive, 1, rq->nr_sectors); |
| return ide_stopped; |
| } |
| printk(KERN_ERR "%s: dma_intr: bad DMA status (dma_stat=%x)\n", |
| drive->name, dma_stat); |
| } |
| return ide_error(drive, "dma_intr", stat); |
| } |
| |
| EXPORT_SYMBOL_GPL(ide_dma_intr); |
| |
| #ifdef CONFIG_BLK_DEV_IDEDMA_PCI |
| /** |
| * ide_build_sglist - map IDE scatter gather for DMA I/O |
| * @drive: the drive to build the DMA table for |
| * @rq: the request holding the sg list |
| * |
| * Perform the PCI mapping magic necessary to access the source or |
| * target buffers of a request via PCI DMA. The lower layers of the |
| * kernel provide the necessary cache management so that we can |
| * operate in a portable fashion |
| */ |
| |
| int ide_build_sglist(ide_drive_t *drive, struct request *rq) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| struct scatterlist *sg = hwif->sg_table; |
| |
| if ((rq->flags & REQ_DRIVE_TASKFILE) && rq->nr_sectors > 256) |
| BUG(); |
| |
| ide_map_sg(drive, rq); |
| |
| if (rq_data_dir(rq) == READ) |
| hwif->sg_dma_direction = PCI_DMA_FROMDEVICE; |
| else |
| hwif->sg_dma_direction = PCI_DMA_TODEVICE; |
| |
| return pci_map_sg(hwif->pci_dev, sg, hwif->sg_nents, hwif->sg_dma_direction); |
| } |
| |
| EXPORT_SYMBOL_GPL(ide_build_sglist); |
| |
| /** |
| * ide_build_dmatable - build IDE DMA table |
| * |
| * ide_build_dmatable() prepares a dma request. We map the command |
| * to get the pci bus addresses of the buffers and then build up |
| * the PRD table that the IDE layer wants to be fed. The code |
| * knows about the 64K wrap bug in the CS5530. |
| * |
| * Returns the number of built PRD entries if all went okay, |
| * returns 0 otherwise. |
| * |
| * May also be invoked from trm290.c |
| */ |
| |
| int ide_build_dmatable (ide_drive_t *drive, struct request *rq) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| unsigned int *table = hwif->dmatable_cpu; |
| unsigned int is_trm290 = (hwif->chipset == ide_trm290) ? 1 : 0; |
| unsigned int count = 0; |
| int i; |
| struct scatterlist *sg; |
| |
| hwif->sg_nents = i = ide_build_sglist(drive, rq); |
| |
| if (!i) |
| return 0; |
| |
| sg = hwif->sg_table; |
| while (i) { |
| u32 cur_addr; |
| u32 cur_len; |
| |
| cur_addr = sg_dma_address(sg); |
| cur_len = sg_dma_len(sg); |
| |
| /* |
| * Fill in the dma table, without crossing any 64kB boundaries. |
| * Most hardware requires 16-bit alignment of all blocks, |
| * but the trm290 requires 32-bit alignment. |
| */ |
| |
| while (cur_len) { |
| if (count++ >= PRD_ENTRIES) { |
| printk(KERN_ERR "%s: DMA table too small\n", drive->name); |
| goto use_pio_instead; |
| } else { |
| u32 xcount, bcount = 0x10000 - (cur_addr & 0xffff); |
| |
| if (bcount > cur_len) |
| bcount = cur_len; |
| *table++ = cpu_to_le32(cur_addr); |
| xcount = bcount & 0xffff; |
| if (is_trm290) |
| xcount = ((xcount >> 2) - 1) << 16; |
| if (xcount == 0x0000) { |
| /* |
| * Most chipsets correctly interpret a length of 0x0000 as 64KB, |
| * but at least one (e.g. CS5530) misinterprets it as zero (!). |
| * So here we break the 64KB entry into two 32KB entries instead. |
| */ |
| if (count++ >= PRD_ENTRIES) { |
| printk(KERN_ERR "%s: DMA table too small\n", drive->name); |
| goto use_pio_instead; |
| } |
| *table++ = cpu_to_le32(0x8000); |
| *table++ = cpu_to_le32(cur_addr + 0x8000); |
| xcount = 0x8000; |
| } |
| *table++ = cpu_to_le32(xcount); |
| cur_addr += bcount; |
| cur_len -= bcount; |
| } |
| } |
| |
| sg++; |
| i--; |
| } |
| |
| if (count) { |
| if (!is_trm290) |
| *--table |= cpu_to_le32(0x80000000); |
| return count; |
| } |
| printk(KERN_ERR "%s: empty DMA table?\n", drive->name); |
| use_pio_instead: |
| pci_unmap_sg(hwif->pci_dev, |
| hwif->sg_table, |
| hwif->sg_nents, |
| hwif->sg_dma_direction); |
| return 0; /* revert to PIO for this request */ |
| } |
| |
| EXPORT_SYMBOL_GPL(ide_build_dmatable); |
| |
| /** |
| * ide_destroy_dmatable - clean up DMA mapping |
| * @drive: The drive to unmap |
| * |
| * Teardown mappings after DMA has completed. This must be called |
| * after the completion of each use of ide_build_dmatable and before |
| * the next use of ide_build_dmatable. Failure to do so will cause |
| * an oops as only one mapping can be live for each target at a given |
| * time. |
| */ |
| |
| void ide_destroy_dmatable (ide_drive_t *drive) |
| { |
| struct pci_dev *dev = HWIF(drive)->pci_dev; |
| struct scatterlist *sg = HWIF(drive)->sg_table; |
| int nents = HWIF(drive)->sg_nents; |
| |
| pci_unmap_sg(dev, sg, nents, HWIF(drive)->sg_dma_direction); |
| } |
| |
| EXPORT_SYMBOL_GPL(ide_destroy_dmatable); |
| |
| /** |
| * config_drive_for_dma - attempt to activate IDE DMA |
| * @drive: the drive to place in DMA mode |
| * |
| * If the drive supports at least mode 2 DMA or UDMA of any kind |
| * then attempt to place it into DMA mode. Drives that are known to |
| * support DMA but predate the DMA properties or that are known |
| * to have DMA handling bugs are also set up appropriately based |
| * on the good/bad drive lists. |
| */ |
| |
| static int config_drive_for_dma (ide_drive_t *drive) |
| { |
| struct hd_driveid *id = drive->id; |
| ide_hwif_t *hwif = HWIF(drive); |
| |
| if ((id->capability & 1) && hwif->autodma) { |
| /* |
| * Enable DMA on any drive that has |
| * UltraDMA (mode 0/1/2/3/4/5/6) enabled |
| */ |
| if ((id->field_valid & 4) && ((id->dma_ultra >> 8) & 0x7f)) |
| return hwif->ide_dma_on(drive); |
| /* |
| * Enable DMA on any drive that has mode2 DMA |
| * (multi or single) enabled |
| */ |
| if (id->field_valid & 2) /* regular DMA */ |
| if ((id->dma_mword & 0x404) == 0x404 || |
| (id->dma_1word & 0x404) == 0x404) |
| return hwif->ide_dma_on(drive); |
| |
| /* Consult the list of known "good" drives */ |
| if (__ide_dma_good_drive(drive)) |
| return hwif->ide_dma_on(drive); |
| } |
| // if (hwif->tuneproc != NULL) hwif->tuneproc(drive, 255); |
| return hwif->ide_dma_off_quietly(drive); |
| } |
| |
| /** |
| * dma_timer_expiry - handle a DMA timeout |
| * @drive: Drive that timed out |
| * |
| * An IDE DMA transfer timed out. In the event of an error we ask |
| * the driver to resolve the problem, if a DMA transfer is still |
| * in progress we continue to wait (arguably we need to add a |
| * secondary 'I don't care what the drive thinks' timeout here) |
| * Finally if we have an interrupt we let it complete the I/O. |
| * But only one time - we clear expiry and if it's still not |
| * completed after WAIT_CMD, we error and retry in PIO. |
| * This can occur if an interrupt is lost or due to hang or bugs. |
| */ |
| |
| static int dma_timer_expiry (ide_drive_t *drive) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| u8 dma_stat = hwif->INB(hwif->dma_status); |
| |
| printk(KERN_WARNING "%s: dma_timer_expiry: dma status == 0x%02x\n", |
| drive->name, dma_stat); |
| |
| if ((dma_stat & 0x18) == 0x18) /* BUSY Stupid Early Timer !! */ |
| return WAIT_CMD; |
| |
| HWGROUP(drive)->expiry = NULL; /* one free ride for now */ |
| |
| /* 1 dmaing, 2 error, 4 intr */ |
| if (dma_stat & 2) /* ERROR */ |
| return -1; |
| |
| if (dma_stat & 1) /* DMAing */ |
| return WAIT_CMD; |
| |
| if (dma_stat & 4) /* Got an Interrupt */ |
| return WAIT_CMD; |
| |
| return 0; /* Status is unknown -- reset the bus */ |
| } |
| |
| /** |
| * __ide_dma_host_off - Generic DMA kill |
| * @drive: drive to control |
| * |
| * Perform the generic IDE controller DMA off operation. This |
| * works for most IDE bus mastering controllers |
| */ |
| |
| int __ide_dma_host_off (ide_drive_t *drive) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| u8 unit = (drive->select.b.unit & 0x01); |
| u8 dma_stat = hwif->INB(hwif->dma_status); |
| |
| hwif->OUTB((dma_stat & ~(1<<(5+unit))), hwif->dma_status); |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(__ide_dma_host_off); |
| |
| /** |
| * __ide_dma_host_off_quietly - Generic DMA kill |
| * @drive: drive to control |
| * |
| * Turn off the current DMA on this IDE controller. |
| */ |
| |
| int __ide_dma_off_quietly (ide_drive_t *drive) |
| { |
| drive->using_dma = 0; |
| ide_toggle_bounce(drive, 0); |
| |
| if (HWIF(drive)->ide_dma_host_off(drive)) |
| return 1; |
| |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(__ide_dma_off_quietly); |
| #endif /* CONFIG_BLK_DEV_IDEDMA_PCI */ |
| |
| /** |
| * __ide_dma_off - disable DMA on a device |
| * @drive: drive to disable DMA on |
| * |
| * Disable IDE DMA for a device on this IDE controller. |
| * Inform the user that DMA has been disabled. |
| */ |
| |
| int __ide_dma_off (ide_drive_t *drive) |
| { |
| printk(KERN_INFO "%s: DMA disabled\n", drive->name); |
| return HWIF(drive)->ide_dma_off_quietly(drive); |
| } |
| |
| EXPORT_SYMBOL(__ide_dma_off); |
| |
| #ifdef CONFIG_BLK_DEV_IDEDMA_PCI |
| /** |
| * __ide_dma_host_on - Enable DMA on a host |
| * @drive: drive to enable for DMA |
| * |
| * Enable DMA on an IDE controller following generic bus mastering |
| * IDE controller behaviour |
| */ |
| |
| int __ide_dma_host_on (ide_drive_t *drive) |
| { |
| if (drive->using_dma) { |
| ide_hwif_t *hwif = HWIF(drive); |
| u8 unit = (drive->select.b.unit & 0x01); |
| u8 dma_stat = hwif->INB(hwif->dma_status); |
| |
| hwif->OUTB((dma_stat|(1<<(5+unit))), hwif->dma_status); |
| return 0; |
| } |
| return 1; |
| } |
| |
| EXPORT_SYMBOL(__ide_dma_host_on); |
| |
| /** |
| * __ide_dma_on - Enable DMA on a device |
| * @drive: drive to enable DMA on |
| * |
| * Enable IDE DMA for a device on this IDE controller. |
| */ |
| |
| int __ide_dma_on (ide_drive_t *drive) |
| { |
| /* consult the list of known "bad" drives */ |
| if (__ide_dma_bad_drive(drive)) |
| return 1; |
| |
| drive->using_dma = 1; |
| ide_toggle_bounce(drive, 1); |
| |
| if (HWIF(drive)->ide_dma_host_on(drive)) |
| return 1; |
| |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(__ide_dma_on); |
| |
| /** |
| * __ide_dma_check - check DMA setup |
| * @drive: drive to check |
| * |
| * Don't use - due for extermination |
| */ |
| |
| int __ide_dma_check (ide_drive_t *drive) |
| { |
| return config_drive_for_dma(drive); |
| } |
| |
| EXPORT_SYMBOL(__ide_dma_check); |
| |
| /** |
| * ide_dma_setup - begin a DMA phase |
| * @drive: target device |
| * |
| * Build an IDE DMA PRD (IDE speak for scatter gather table) |
| * and then set up the DMA transfer registers for a device |
| * that follows generic IDE PCI DMA behaviour. Controllers can |
| * override this function if they need to |
| * |
| * Returns 0 on success. If a PIO fallback is required then 1 |
| * is returned. |
| */ |
| |
| int ide_dma_setup(ide_drive_t *drive) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| struct request *rq = HWGROUP(drive)->rq; |
| unsigned int reading; |
| u8 dma_stat; |
| |
| if (rq_data_dir(rq)) |
| reading = 0; |
| else |
| reading = 1 << 3; |
| |
| /* fall back to pio! */ |
| if (!ide_build_dmatable(drive, rq)) { |
| ide_map_sg(drive, rq); |
| return 1; |
| } |
| |
| /* PRD table */ |
| hwif->OUTL(hwif->dmatable_dma, hwif->dma_prdtable); |
| |
| /* specify r/w */ |
| hwif->OUTB(reading, hwif->dma_command); |
| |
| /* read dma_status for INTR & ERROR flags */ |
| dma_stat = hwif->INB(hwif->dma_status); |
| |
| /* clear INTR & ERROR flags */ |
| hwif->OUTB(dma_stat|6, hwif->dma_status); |
| drive->waiting_for_dma = 1; |
| return 0; |
| } |
| |
| EXPORT_SYMBOL_GPL(ide_dma_setup); |
| |
| static void ide_dma_exec_cmd(ide_drive_t *drive, u8 command) |
| { |
| /* issue cmd to drive */ |
| ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, dma_timer_expiry); |
| } |
| |
| void ide_dma_start(ide_drive_t *drive) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| u8 dma_cmd = hwif->INB(hwif->dma_command); |
| |
| /* Note that this is done *after* the cmd has |
| * been issued to the drive, as per the BM-IDE spec. |
| * The Promise Ultra33 doesn't work correctly when |
| * we do this part before issuing the drive cmd. |
| */ |
| /* start DMA */ |
| hwif->OUTB(dma_cmd|1, hwif->dma_command); |
| hwif->dma = 1; |
| wmb(); |
| } |
| |
| EXPORT_SYMBOL_GPL(ide_dma_start); |
| |
| /* returns 1 on error, 0 otherwise */ |
| int __ide_dma_end (ide_drive_t *drive) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| u8 dma_stat = 0, dma_cmd = 0; |
| |
| drive->waiting_for_dma = 0; |
| /* get dma_command mode */ |
| dma_cmd = hwif->INB(hwif->dma_command); |
| /* stop DMA */ |
| hwif->OUTB(dma_cmd&~1, hwif->dma_command); |
| /* get DMA status */ |
| dma_stat = hwif->INB(hwif->dma_status); |
| /* clear the INTR & ERROR bits */ |
| hwif->OUTB(dma_stat|6, hwif->dma_status); |
| /* purge DMA mappings */ |
| ide_destroy_dmatable(drive); |
| /* verify good DMA status */ |
| hwif->dma = 0; |
| wmb(); |
| return (dma_stat & 7) != 4 ? (0x10 | dma_stat) : 0; |
| } |
| |
| EXPORT_SYMBOL(__ide_dma_end); |
| |
| /* returns 1 if dma irq issued, 0 otherwise */ |
| static int __ide_dma_test_irq(ide_drive_t *drive) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| u8 dma_stat = hwif->INB(hwif->dma_status); |
| |
| #if 0 /* do not set unless you know what you are doing */ |
| if (dma_stat & 4) { |
| u8 stat = hwif->INB(IDE_STATUS_REG); |
| hwif->OUTB(hwif->dma_status, dma_stat & 0xE4); |
| } |
| #endif |
| /* return 1 if INTR asserted */ |
| if ((dma_stat & 4) == 4) |
| return 1; |
| if (!drive->waiting_for_dma) |
| printk(KERN_WARNING "%s: (%s) called while not waiting\n", |
| drive->name, __FUNCTION__); |
| return 0; |
| } |
| #endif /* CONFIG_BLK_DEV_IDEDMA_PCI */ |
| |
| int __ide_dma_bad_drive (ide_drive_t *drive) |
| { |
| struct hd_driveid *id = drive->id; |
| |
| int blacklist = ide_in_drive_list(id, drive_blacklist); |
| if (blacklist) { |
| printk(KERN_WARNING "%s: Disabling (U)DMA for %s (blacklisted)\n", |
| drive->name, id->model); |
| return blacklist; |
| } |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(__ide_dma_bad_drive); |
| |
| int __ide_dma_good_drive (ide_drive_t *drive) |
| { |
| struct hd_driveid *id = drive->id; |
| return ide_in_drive_list(id, drive_whitelist); |
| } |
| |
| EXPORT_SYMBOL(__ide_dma_good_drive); |
| |
| int ide_use_dma(ide_drive_t *drive) |
| { |
| struct hd_driveid *id = drive->id; |
| ide_hwif_t *hwif = drive->hwif; |
| |
| /* consult the list of known "bad" drives */ |
| if (__ide_dma_bad_drive(drive)) |
| return 0; |
| |
| /* capable of UltraDMA modes */ |
| if (id->field_valid & 4) { |
| if (hwif->ultra_mask & id->dma_ultra) |
| return 1; |
| } |
| |
| /* capable of regular DMA modes */ |
| if (id->field_valid & 2) { |
| if (hwif->mwdma_mask & id->dma_mword) |
| return 1; |
| if (hwif->swdma_mask & id->dma_1word) |
| return 1; |
| } |
| |
| /* consult the list of known "good" drives */ |
| if (__ide_dma_good_drive(drive) && id->eide_dma_time < 150) |
| return 1; |
| |
| return 0; |
| } |
| |
| EXPORT_SYMBOL_GPL(ide_use_dma); |
| |
| void ide_dma_verbose(ide_drive_t *drive) |
| { |
| struct hd_driveid *id = drive->id; |
| ide_hwif_t *hwif = HWIF(drive); |
| |
| if (id->field_valid & 4) { |
| if ((id->dma_ultra >> 8) && (id->dma_mword >> 8)) |
| goto bug_dma_off; |
| if (id->dma_ultra & ((id->dma_ultra >> 8) & hwif->ultra_mask)) { |
| if (((id->dma_ultra >> 11) & 0x1F) && |
| eighty_ninty_three(drive)) { |
| if ((id->dma_ultra >> 15) & 1) { |
| printk(", UDMA(mode 7)"); |
| } else if ((id->dma_ultra >> 14) & 1) { |
| printk(", UDMA(133)"); |
| } else if ((id->dma_ultra >> 13) & 1) { |
| printk(", UDMA(100)"); |
| } else if ((id->dma_ultra >> 12) & 1) { |
| printk(", UDMA(66)"); |
| } else if ((id->dma_ultra >> 11) & 1) { |
| printk(", UDMA(44)"); |
| } else |
| goto mode_two; |
| } else { |
| mode_two: |
| if ((id->dma_ultra >> 10) & 1) { |
| printk(", UDMA(33)"); |
| } else if ((id->dma_ultra >> 9) & 1) { |
| printk(", UDMA(25)"); |
| } else if ((id->dma_ultra >> 8) & 1) { |
| printk(", UDMA(16)"); |
| } |
| } |
| } else { |
| printk(", (U)DMA"); /* Can be BIOS-enabled! */ |
| } |
| } else if (id->field_valid & 2) { |
| if ((id->dma_mword >> 8) && (id->dma_1word >> 8)) |
| goto bug_dma_off; |
| printk(", DMA"); |
| } else if (id->field_valid & 1) { |
| printk(", BUG"); |
| } |
| return; |
| bug_dma_off: |
| printk(", BUG DMA OFF"); |
| hwif->ide_dma_off_quietly(drive); |
| return; |
| } |
| |
| EXPORT_SYMBOL(ide_dma_verbose); |
| |
| #ifdef CONFIG_BLK_DEV_IDEDMA_PCI |
| int __ide_dma_lostirq (ide_drive_t *drive) |
| { |
| printk("%s: DMA interrupt recovery\n", drive->name); |
| return 1; |
| } |
| |
| EXPORT_SYMBOL(__ide_dma_lostirq); |
| |
| int __ide_dma_timeout (ide_drive_t *drive) |
| { |
| printk(KERN_ERR "%s: timeout waiting for DMA\n", drive->name); |
| if (HWIF(drive)->ide_dma_test_irq(drive)) |
| return 0; |
| |
| return HWIF(drive)->ide_dma_end(drive); |
| } |
| |
| EXPORT_SYMBOL(__ide_dma_timeout); |
| |
| /* |
| * Needed for allowing full modular support of ide-driver |
| */ |
| static int ide_release_dma_engine(ide_hwif_t *hwif) |
| { |
| if (hwif->dmatable_cpu) { |
| pci_free_consistent(hwif->pci_dev, |
| PRD_ENTRIES * PRD_BYTES, |
| hwif->dmatable_cpu, |
| hwif->dmatable_dma); |
| hwif->dmatable_cpu = NULL; |
| } |
| return 1; |
| } |
| |
| static int ide_release_iomio_dma(ide_hwif_t *hwif) |
| { |
| if ((hwif->dma_extra) && (hwif->channel == 0)) |
| release_region((hwif->dma_base + 16), hwif->dma_extra); |
| release_region(hwif->dma_base, 8); |
| if (hwif->dma_base2) |
| release_region(hwif->dma_base, 8); |
| return 1; |
| } |
| |
| /* |
| * Needed for allowing full modular support of ide-driver |
| */ |
| int ide_release_dma (ide_hwif_t *hwif) |
| { |
| if (hwif->mmio == 2) |
| return 1; |
| if (hwif->chipset == ide_etrax100) |
| return 1; |
| |
| ide_release_dma_engine(hwif); |
| return ide_release_iomio_dma(hwif); |
| } |
| |
| static int ide_allocate_dma_engine(ide_hwif_t *hwif) |
| { |
| hwif->dmatable_cpu = pci_alloc_consistent(hwif->pci_dev, |
| PRD_ENTRIES * PRD_BYTES, |
| &hwif->dmatable_dma); |
| |
| if (hwif->dmatable_cpu) |
| return 0; |
| |
| printk(KERN_ERR "%s: -- Error, unable to allocate%s DMA table(s).\n", |
| hwif->cds->name, !hwif->dmatable_cpu ? " CPU" : ""); |
| |
| ide_release_dma_engine(hwif); |
| return 1; |
| } |
| |
| static int ide_mapped_mmio_dma(ide_hwif_t *hwif, unsigned long base, unsigned int ports) |
| { |
| printk(KERN_INFO " %s: MMIO-DMA ", hwif->name); |
| |
| hwif->dma_base = base; |
| if (hwif->cds->extra && hwif->channel == 0) |
| hwif->dma_extra = hwif->cds->extra; |
| |
| if(hwif->mate) |
| hwif->dma_master = (hwif->channel) ? hwif->mate->dma_base : base; |
| else |
| hwif->dma_master = base; |
| return 0; |
| } |
| |
| static int ide_iomio_dma(ide_hwif_t *hwif, unsigned long base, unsigned int ports) |
| { |
| printk(KERN_INFO " %s: BM-DMA at 0x%04lx-0x%04lx", |
| hwif->name, base, base + ports - 1); |
| if (!request_region(base, ports, hwif->name)) { |
| printk(" -- Error, ports in use.\n"); |
| return 1; |
| } |
| hwif->dma_base = base; |
| if ((hwif->cds->extra) && (hwif->channel == 0)) { |
| request_region(base+16, hwif->cds->extra, hwif->cds->name); |
| hwif->dma_extra = hwif->cds->extra; |
| } |
| |
| if(hwif->mate) |
| hwif->dma_master = (hwif->channel) ? hwif->mate->dma_base : base; |
| else |
| hwif->dma_master = base; |
| if (hwif->dma_base2) { |
| if (!request_region(hwif->dma_base2, ports, hwif->name)) |
| { |
| printk(" -- Error, secondary ports in use.\n"); |
| release_region(base, ports); |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static int ide_dma_iobase(ide_hwif_t *hwif, unsigned long base, unsigned int ports) |
| { |
| if (hwif->mmio == 2) |
| return ide_mapped_mmio_dma(hwif, base,ports); |
| BUG_ON(hwif->mmio == 1); |
| return ide_iomio_dma(hwif, base, ports); |
| } |
| |
| /* |
| * This can be called for a dynamically installed interface. Don't __init it |
| */ |
| void ide_setup_dma (ide_hwif_t *hwif, unsigned long dma_base, unsigned int num_ports) |
| { |
| if (ide_dma_iobase(hwif, dma_base, num_ports)) |
| return; |
| |
| if (ide_allocate_dma_engine(hwif)) { |
| ide_release_dma(hwif); |
| return; |
| } |
| |
| if (!(hwif->dma_command)) |
| hwif->dma_command = hwif->dma_base; |
| if (!(hwif->dma_vendor1)) |
| hwif->dma_vendor1 = (hwif->dma_base + 1); |
| if (!(hwif->dma_status)) |
| hwif->dma_status = (hwif->dma_base + 2); |
| if (!(hwif->dma_vendor3)) |
| hwif->dma_vendor3 = (hwif->dma_base + 3); |
| if (!(hwif->dma_prdtable)) |
| hwif->dma_prdtable = (hwif->dma_base + 4); |
| |
| if (!hwif->ide_dma_off_quietly) |
| hwif->ide_dma_off_quietly = &__ide_dma_off_quietly; |
| if (!hwif->ide_dma_host_off) |
| hwif->ide_dma_host_off = &__ide_dma_host_off; |
| if (!hwif->ide_dma_on) |
| hwif->ide_dma_on = &__ide_dma_on; |
| if (!hwif->ide_dma_host_on) |
| hwif->ide_dma_host_on = &__ide_dma_host_on; |
| if (!hwif->ide_dma_check) |
| hwif->ide_dma_check = &__ide_dma_check; |
| if (!hwif->dma_setup) |
| hwif->dma_setup = &ide_dma_setup; |
| if (!hwif->dma_exec_cmd) |
| hwif->dma_exec_cmd = &ide_dma_exec_cmd; |
| if (!hwif->dma_start) |
| hwif->dma_start = &ide_dma_start; |
| if (!hwif->ide_dma_end) |
| hwif->ide_dma_end = &__ide_dma_end; |
| if (!hwif->ide_dma_test_irq) |
| hwif->ide_dma_test_irq = &__ide_dma_test_irq; |
| if (!hwif->ide_dma_timeout) |
| hwif->ide_dma_timeout = &__ide_dma_timeout; |
| if (!hwif->ide_dma_lostirq) |
| hwif->ide_dma_lostirq = &__ide_dma_lostirq; |
| |
| if (hwif->chipset != ide_trm290) { |
| u8 dma_stat = hwif->INB(hwif->dma_status); |
| printk(", BIOS settings: %s:%s, %s:%s", |
| hwif->drives[0].name, (dma_stat & 0x20) ? "DMA" : "pio", |
| hwif->drives[1].name, (dma_stat & 0x40) ? "DMA" : "pio"); |
| } |
| printk("\n"); |
| |
| if (!(hwif->dma_master)) |
| BUG(); |
| } |
| |
| EXPORT_SYMBOL_GPL(ide_setup_dma); |
| #endif /* CONFIG_BLK_DEV_IDEDMA_PCI */ |