| /* |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| * |
| * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <linux/hugetlb.h> |
| #include <linux/module.h> |
| |
| #include <asm/tlbflush.h> |
| #include <asm/kvm_ppc.h> |
| #include <asm/kvm_book3s.h> |
| #include <asm/mmu-hash64.h> |
| #include <asm/hvcall.h> |
| #include <asm/synch.h> |
| #include <asm/ppc-opcode.h> |
| |
| /* Translate address of a vmalloc'd thing to a linear map address */ |
| static void *real_vmalloc_addr(void *x) |
| { |
| unsigned long addr = (unsigned long) x; |
| pte_t *p; |
| |
| p = find_linux_pte(swapper_pg_dir, addr); |
| if (!p || !pte_present(*p)) |
| return NULL; |
| /* assume we don't have huge pages in vmalloc space... */ |
| addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK); |
| return __va(addr); |
| } |
| |
| /* |
| * Add this HPTE into the chain for the real page. |
| * Must be called with the chain locked; it unlocks the chain. |
| */ |
| void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev, |
| unsigned long *rmap, long pte_index, int realmode) |
| { |
| struct revmap_entry *head, *tail; |
| unsigned long i; |
| |
| if (*rmap & KVMPPC_RMAP_PRESENT) { |
| i = *rmap & KVMPPC_RMAP_INDEX; |
| head = &kvm->arch.revmap[i]; |
| if (realmode) |
| head = real_vmalloc_addr(head); |
| tail = &kvm->arch.revmap[head->back]; |
| if (realmode) |
| tail = real_vmalloc_addr(tail); |
| rev->forw = i; |
| rev->back = head->back; |
| tail->forw = pte_index; |
| head->back = pte_index; |
| } else { |
| rev->forw = rev->back = pte_index; |
| i = pte_index; |
| } |
| smp_wmb(); |
| *rmap = i | KVMPPC_RMAP_REFERENCED | KVMPPC_RMAP_PRESENT; /* unlock */ |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain); |
| |
| /* Remove this HPTE from the chain for a real page */ |
| static void remove_revmap_chain(struct kvm *kvm, long pte_index, |
| struct revmap_entry *rev, |
| unsigned long hpte_v, unsigned long hpte_r) |
| { |
| struct revmap_entry *next, *prev; |
| unsigned long gfn, ptel, head; |
| struct kvm_memory_slot *memslot; |
| unsigned long *rmap; |
| unsigned long rcbits; |
| |
| rcbits = hpte_r & (HPTE_R_R | HPTE_R_C); |
| ptel = rev->guest_rpte |= rcbits; |
| gfn = hpte_rpn(ptel, hpte_page_size(hpte_v, ptel)); |
| memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn); |
| if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) |
| return; |
| |
| rmap = real_vmalloc_addr(&memslot->rmap[gfn - memslot->base_gfn]); |
| lock_rmap(rmap); |
| |
| head = *rmap & KVMPPC_RMAP_INDEX; |
| next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]); |
| prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]); |
| next->back = rev->back; |
| prev->forw = rev->forw; |
| if (head == pte_index) { |
| head = rev->forw; |
| if (head == pte_index) |
| *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); |
| else |
| *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head; |
| } |
| *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT; |
| unlock_rmap(rmap); |
| } |
| |
| static pte_t lookup_linux_pte(struct kvm_vcpu *vcpu, unsigned long hva, |
| int writing, unsigned long *pte_sizep) |
| { |
| pte_t *ptep; |
| unsigned long ps = *pte_sizep; |
| unsigned int shift; |
| |
| ptep = find_linux_pte_or_hugepte(vcpu->arch.pgdir, hva, &shift); |
| if (!ptep) |
| return __pte(0); |
| if (shift) |
| *pte_sizep = 1ul << shift; |
| else |
| *pte_sizep = PAGE_SIZE; |
| if (ps > *pte_sizep) |
| return __pte(0); |
| if (!pte_present(*ptep)) |
| return __pte(0); |
| return kvmppc_read_update_linux_pte(ptep, writing); |
| } |
| |
| static inline void unlock_hpte(unsigned long *hpte, unsigned long hpte_v) |
| { |
| asm volatile(PPC_RELEASE_BARRIER "" : : : "memory"); |
| hpte[0] = hpte_v; |
| } |
| |
| long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags, |
| long pte_index, unsigned long pteh, unsigned long ptel) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| unsigned long i, pa, gpa, gfn, psize; |
| unsigned long slot_fn, hva; |
| unsigned long *hpte; |
| struct revmap_entry *rev; |
| unsigned long g_ptel = ptel; |
| struct kvm_memory_slot *memslot; |
| unsigned long *physp, pte_size; |
| unsigned long is_io; |
| unsigned long *rmap; |
| pte_t pte; |
| unsigned int writing; |
| unsigned long mmu_seq; |
| unsigned long rcbits; |
| bool realmode = vcpu->arch.vcore->vcore_state == VCORE_RUNNING; |
| |
| psize = hpte_page_size(pteh, ptel); |
| if (!psize) |
| return H_PARAMETER; |
| writing = hpte_is_writable(ptel); |
| pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID); |
| |
| /* used later to detect if we might have been invalidated */ |
| mmu_seq = kvm->mmu_notifier_seq; |
| smp_rmb(); |
| |
| /* Find the memslot (if any) for this address */ |
| gpa = (ptel & HPTE_R_RPN) & ~(psize - 1); |
| gfn = gpa >> PAGE_SHIFT; |
| memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn); |
| pa = 0; |
| is_io = ~0ul; |
| rmap = NULL; |
| if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) { |
| /* PPC970 can't do emulated MMIO */ |
| if (!cpu_has_feature(CPU_FTR_ARCH_206)) |
| return H_PARAMETER; |
| /* Emulated MMIO - mark this with key=31 */ |
| pteh |= HPTE_V_ABSENT; |
| ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO; |
| goto do_insert; |
| } |
| |
| /* Check if the requested page fits entirely in the memslot. */ |
| if (!slot_is_aligned(memslot, psize)) |
| return H_PARAMETER; |
| slot_fn = gfn - memslot->base_gfn; |
| rmap = &memslot->rmap[slot_fn]; |
| |
| if (!kvm->arch.using_mmu_notifiers) { |
| physp = kvm->arch.slot_phys[memslot->id]; |
| if (!physp) |
| return H_PARAMETER; |
| physp += slot_fn; |
| if (realmode) |
| physp = real_vmalloc_addr(physp); |
| pa = *physp; |
| if (!pa) |
| return H_TOO_HARD; |
| is_io = pa & (HPTE_R_I | HPTE_R_W); |
| pte_size = PAGE_SIZE << (pa & KVMPPC_PAGE_ORDER_MASK); |
| pa &= PAGE_MASK; |
| } else { |
| /* Translate to host virtual address */ |
| hva = gfn_to_hva_memslot(memslot, gfn); |
| |
| /* Look up the Linux PTE for the backing page */ |
| pte_size = psize; |
| pte = lookup_linux_pte(vcpu, hva, writing, &pte_size); |
| if (pte_present(pte)) { |
| if (writing && !pte_write(pte)) |
| /* make the actual HPTE be read-only */ |
| ptel = hpte_make_readonly(ptel); |
| is_io = hpte_cache_bits(pte_val(pte)); |
| pa = pte_pfn(pte) << PAGE_SHIFT; |
| } |
| } |
| if (pte_size < psize) |
| return H_PARAMETER; |
| if (pa && pte_size > psize) |
| pa |= gpa & (pte_size - 1); |
| |
| ptel &= ~(HPTE_R_PP0 - psize); |
| ptel |= pa; |
| |
| if (pa) |
| pteh |= HPTE_V_VALID; |
| else |
| pteh |= HPTE_V_ABSENT; |
| |
| /* Check WIMG */ |
| if (is_io != ~0ul && !hpte_cache_flags_ok(ptel, is_io)) { |
| if (is_io) |
| return H_PARAMETER; |
| /* |
| * Allow guest to map emulated device memory as |
| * uncacheable, but actually make it cacheable. |
| */ |
| ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G); |
| ptel |= HPTE_R_M; |
| } |
| |
| /* Find and lock the HPTEG slot to use */ |
| do_insert: |
| if (pte_index >= kvm->arch.hpt_npte) |
| return H_PARAMETER; |
| if (likely((flags & H_EXACT) == 0)) { |
| pte_index &= ~7UL; |
| hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4)); |
| for (i = 0; i < 8; ++i) { |
| if ((*hpte & HPTE_V_VALID) == 0 && |
| try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID | |
| HPTE_V_ABSENT)) |
| break; |
| hpte += 2; |
| } |
| if (i == 8) { |
| /* |
| * Since try_lock_hpte doesn't retry (not even stdcx. |
| * failures), it could be that there is a free slot |
| * but we transiently failed to lock it. Try again, |
| * actually locking each slot and checking it. |
| */ |
| hpte -= 16; |
| for (i = 0; i < 8; ++i) { |
| while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) |
| cpu_relax(); |
| if (!(*hpte & (HPTE_V_VALID | HPTE_V_ABSENT))) |
| break; |
| *hpte &= ~HPTE_V_HVLOCK; |
| hpte += 2; |
| } |
| if (i == 8) |
| return H_PTEG_FULL; |
| } |
| pte_index += i; |
| } else { |
| hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4)); |
| if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID | |
| HPTE_V_ABSENT)) { |
| /* Lock the slot and check again */ |
| while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) |
| cpu_relax(); |
| if (*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)) { |
| *hpte &= ~HPTE_V_HVLOCK; |
| return H_PTEG_FULL; |
| } |
| } |
| } |
| |
| /* Save away the guest's idea of the second HPTE dword */ |
| rev = &kvm->arch.revmap[pte_index]; |
| if (realmode) |
| rev = real_vmalloc_addr(rev); |
| if (rev) |
| rev->guest_rpte = g_ptel; |
| |
| /* Link HPTE into reverse-map chain */ |
| if (pteh & HPTE_V_VALID) { |
| if (realmode) |
| rmap = real_vmalloc_addr(rmap); |
| lock_rmap(rmap); |
| /* Check for pending invalidations under the rmap chain lock */ |
| if (kvm->arch.using_mmu_notifiers && |
| mmu_notifier_retry(vcpu, mmu_seq)) { |
| /* inval in progress, write a non-present HPTE */ |
| pteh |= HPTE_V_ABSENT; |
| pteh &= ~HPTE_V_VALID; |
| unlock_rmap(rmap); |
| } else { |
| kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index, |
| realmode); |
| /* Only set R/C in real HPTE if already set in *rmap */ |
| rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; |
| ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C); |
| } |
| } |
| |
| hpte[1] = ptel; |
| |
| /* Write the first HPTE dword, unlocking the HPTE and making it valid */ |
| eieio(); |
| hpte[0] = pteh; |
| asm volatile("ptesync" : : : "memory"); |
| |
| vcpu->arch.gpr[4] = pte_index; |
| return H_SUCCESS; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_h_enter); |
| |
| #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token)) |
| |
| static inline int try_lock_tlbie(unsigned int *lock) |
| { |
| unsigned int tmp, old; |
| unsigned int token = LOCK_TOKEN; |
| |
| asm volatile("1:lwarx %1,0,%2\n" |
| " cmpwi cr0,%1,0\n" |
| " bne 2f\n" |
| " stwcx. %3,0,%2\n" |
| " bne- 1b\n" |
| " isync\n" |
| "2:" |
| : "=&r" (tmp), "=&r" (old) |
| : "r" (lock), "r" (token) |
| : "cc", "memory"); |
| return old == 0; |
| } |
| |
| long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags, |
| unsigned long pte_index, unsigned long avpn, |
| unsigned long va) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| unsigned long *hpte; |
| unsigned long v, r, rb; |
| struct revmap_entry *rev; |
| |
| if (pte_index >= kvm->arch.hpt_npte) |
| return H_PARAMETER; |
| hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4)); |
| while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) |
| cpu_relax(); |
| if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 || |
| ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn) || |
| ((flags & H_ANDCOND) && (hpte[0] & avpn) != 0)) { |
| hpte[0] &= ~HPTE_V_HVLOCK; |
| return H_NOT_FOUND; |
| } |
| |
| rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]); |
| v = hpte[0] & ~HPTE_V_HVLOCK; |
| if (v & HPTE_V_VALID) { |
| hpte[0] &= ~HPTE_V_VALID; |
| rb = compute_tlbie_rb(v, hpte[1], pte_index); |
| if (!(flags & H_LOCAL) && atomic_read(&kvm->online_vcpus) > 1) { |
| while (!try_lock_tlbie(&kvm->arch.tlbie_lock)) |
| cpu_relax(); |
| asm volatile("ptesync" : : : "memory"); |
| asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync" |
| : : "r" (rb), "r" (kvm->arch.lpid)); |
| asm volatile("ptesync" : : : "memory"); |
| kvm->arch.tlbie_lock = 0; |
| } else { |
| asm volatile("ptesync" : : : "memory"); |
| asm volatile("tlbiel %0" : : "r" (rb)); |
| asm volatile("ptesync" : : : "memory"); |
| } |
| /* Read PTE low word after tlbie to get final R/C values */ |
| remove_revmap_chain(kvm, pte_index, rev, v, hpte[1]); |
| } |
| r = rev->guest_rpte; |
| unlock_hpte(hpte, 0); |
| |
| vcpu->arch.gpr[4] = v; |
| vcpu->arch.gpr[5] = r; |
| return H_SUCCESS; |
| } |
| |
| long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| unsigned long *args = &vcpu->arch.gpr[4]; |
| unsigned long *hp, *hptes[4], tlbrb[4]; |
| long int i, j, k, n, found, indexes[4]; |
| unsigned long flags, req, pte_index, rcbits; |
| long int local = 0; |
| long int ret = H_SUCCESS; |
| struct revmap_entry *rev, *revs[4]; |
| |
| if (atomic_read(&kvm->online_vcpus) == 1) |
| local = 1; |
| for (i = 0; i < 4 && ret == H_SUCCESS; ) { |
| n = 0; |
| for (; i < 4; ++i) { |
| j = i * 2; |
| pte_index = args[j]; |
| flags = pte_index >> 56; |
| pte_index &= ((1ul << 56) - 1); |
| req = flags >> 6; |
| flags &= 3; |
| if (req == 3) { /* no more requests */ |
| i = 4; |
| break; |
| } |
| if (req != 1 || flags == 3 || |
| pte_index >= kvm->arch.hpt_npte) { |
| /* parameter error */ |
| args[j] = ((0xa0 | flags) << 56) + pte_index; |
| ret = H_PARAMETER; |
| break; |
| } |
| hp = (unsigned long *) |
| (kvm->arch.hpt_virt + (pte_index << 4)); |
| /* to avoid deadlock, don't spin except for first */ |
| if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) { |
| if (n) |
| break; |
| while (!try_lock_hpte(hp, HPTE_V_HVLOCK)) |
| cpu_relax(); |
| } |
| found = 0; |
| if (hp[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) { |
| switch (flags & 3) { |
| case 0: /* absolute */ |
| found = 1; |
| break; |
| case 1: /* andcond */ |
| if (!(hp[0] & args[j + 1])) |
| found = 1; |
| break; |
| case 2: /* AVPN */ |
| if ((hp[0] & ~0x7fUL) == args[j + 1]) |
| found = 1; |
| break; |
| } |
| } |
| if (!found) { |
| hp[0] &= ~HPTE_V_HVLOCK; |
| args[j] = ((0x90 | flags) << 56) + pte_index; |
| continue; |
| } |
| |
| args[j] = ((0x80 | flags) << 56) + pte_index; |
| rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]); |
| |
| if (!(hp[0] & HPTE_V_VALID)) { |
| /* insert R and C bits from PTE */ |
| rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C); |
| args[j] |= rcbits << (56 - 5); |
| hp[0] = 0; |
| continue; |
| } |
| |
| hp[0] &= ~HPTE_V_VALID; /* leave it locked */ |
| tlbrb[n] = compute_tlbie_rb(hp[0], hp[1], pte_index); |
| indexes[n] = j; |
| hptes[n] = hp; |
| revs[n] = rev; |
| ++n; |
| } |
| |
| if (!n) |
| break; |
| |
| /* Now that we've collected a batch, do the tlbies */ |
| if (!local) { |
| while(!try_lock_tlbie(&kvm->arch.tlbie_lock)) |
| cpu_relax(); |
| asm volatile("ptesync" : : : "memory"); |
| for (k = 0; k < n; ++k) |
| asm volatile(PPC_TLBIE(%1,%0) : : |
| "r" (tlbrb[k]), |
| "r" (kvm->arch.lpid)); |
| asm volatile("eieio; tlbsync; ptesync" : : : "memory"); |
| kvm->arch.tlbie_lock = 0; |
| } else { |
| asm volatile("ptesync" : : : "memory"); |
| for (k = 0; k < n; ++k) |
| asm volatile("tlbiel %0" : : "r" (tlbrb[k])); |
| asm volatile("ptesync" : : : "memory"); |
| } |
| |
| /* Read PTE low words after tlbie to get final R/C values */ |
| for (k = 0; k < n; ++k) { |
| j = indexes[k]; |
| pte_index = args[j] & ((1ul << 56) - 1); |
| hp = hptes[k]; |
| rev = revs[k]; |
| remove_revmap_chain(kvm, pte_index, rev, hp[0], hp[1]); |
| rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C); |
| args[j] |= rcbits << (56 - 5); |
| hp[0] = 0; |
| } |
| } |
| |
| return ret; |
| } |
| |
| long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags, |
| unsigned long pte_index, unsigned long avpn, |
| unsigned long va) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| unsigned long *hpte; |
| struct revmap_entry *rev; |
| unsigned long v, r, rb, mask, bits; |
| |
| if (pte_index >= kvm->arch.hpt_npte) |
| return H_PARAMETER; |
| |
| hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4)); |
| while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) |
| cpu_relax(); |
| if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 || |
| ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn)) { |
| hpte[0] &= ~HPTE_V_HVLOCK; |
| return H_NOT_FOUND; |
| } |
| |
| if (atomic_read(&kvm->online_vcpus) == 1) |
| flags |= H_LOCAL; |
| v = hpte[0]; |
| bits = (flags << 55) & HPTE_R_PP0; |
| bits |= (flags << 48) & HPTE_R_KEY_HI; |
| bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO); |
| |
| /* Update guest view of 2nd HPTE dword */ |
| mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N | |
| HPTE_R_KEY_HI | HPTE_R_KEY_LO; |
| rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]); |
| if (rev) { |
| r = (rev->guest_rpte & ~mask) | bits; |
| rev->guest_rpte = r; |
| } |
| r = (hpte[1] & ~mask) | bits; |
| |
| /* Update HPTE */ |
| if (v & HPTE_V_VALID) { |
| rb = compute_tlbie_rb(v, r, pte_index); |
| hpte[0] = v & ~HPTE_V_VALID; |
| if (!(flags & H_LOCAL)) { |
| while(!try_lock_tlbie(&kvm->arch.tlbie_lock)) |
| cpu_relax(); |
| asm volatile("ptesync" : : : "memory"); |
| asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync" |
| : : "r" (rb), "r" (kvm->arch.lpid)); |
| asm volatile("ptesync" : : : "memory"); |
| kvm->arch.tlbie_lock = 0; |
| } else { |
| asm volatile("ptesync" : : : "memory"); |
| asm volatile("tlbiel %0" : : "r" (rb)); |
| asm volatile("ptesync" : : : "memory"); |
| } |
| } |
| hpte[1] = r; |
| eieio(); |
| hpte[0] = v & ~HPTE_V_HVLOCK; |
| asm volatile("ptesync" : : : "memory"); |
| return H_SUCCESS; |
| } |
| |
| long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags, |
| unsigned long pte_index) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| unsigned long *hpte, v, r; |
| int i, n = 1; |
| struct revmap_entry *rev = NULL; |
| |
| if (pte_index >= kvm->arch.hpt_npte) |
| return H_PARAMETER; |
| if (flags & H_READ_4) { |
| pte_index &= ~3; |
| n = 4; |
| } |
| rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]); |
| for (i = 0; i < n; ++i, ++pte_index) { |
| hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4)); |
| v = hpte[0] & ~HPTE_V_HVLOCK; |
| r = hpte[1]; |
| if (v & HPTE_V_ABSENT) { |
| v &= ~HPTE_V_ABSENT; |
| v |= HPTE_V_VALID; |
| } |
| if (v & HPTE_V_VALID) |
| r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C)); |
| vcpu->arch.gpr[4 + i * 2] = v; |
| vcpu->arch.gpr[5 + i * 2] = r; |
| } |
| return H_SUCCESS; |
| } |
| |
| void kvmppc_invalidate_hpte(struct kvm *kvm, unsigned long *hptep, |
| unsigned long pte_index) |
| { |
| unsigned long rb; |
| |
| hptep[0] &= ~HPTE_V_VALID; |
| rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index); |
| while (!try_lock_tlbie(&kvm->arch.tlbie_lock)) |
| cpu_relax(); |
| asm volatile("ptesync" : : : "memory"); |
| asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync" |
| : : "r" (rb), "r" (kvm->arch.lpid)); |
| asm volatile("ptesync" : : : "memory"); |
| kvm->arch.tlbie_lock = 0; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte); |
| |
| void kvmppc_clear_ref_hpte(struct kvm *kvm, unsigned long *hptep, |
| unsigned long pte_index) |
| { |
| unsigned long rb; |
| unsigned char rbyte; |
| |
| rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index); |
| rbyte = (hptep[1] & ~HPTE_R_R) >> 8; |
| /* modify only the second-last byte, which contains the ref bit */ |
| *((char *)hptep + 14) = rbyte; |
| while (!try_lock_tlbie(&kvm->arch.tlbie_lock)) |
| cpu_relax(); |
| asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync" |
| : : "r" (rb), "r" (kvm->arch.lpid)); |
| asm volatile("ptesync" : : : "memory"); |
| kvm->arch.tlbie_lock = 0; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte); |
| |
| static int slb_base_page_shift[4] = { |
| 24, /* 16M */ |
| 16, /* 64k */ |
| 34, /* 16G */ |
| 20, /* 1M, unsupported */ |
| }; |
| |
| long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v, |
| unsigned long valid) |
| { |
| unsigned int i; |
| unsigned int pshift; |
| unsigned long somask; |
| unsigned long vsid, hash; |
| unsigned long avpn; |
| unsigned long *hpte; |
| unsigned long mask, val; |
| unsigned long v, r; |
| |
| /* Get page shift, work out hash and AVPN etc. */ |
| mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY; |
| val = 0; |
| pshift = 12; |
| if (slb_v & SLB_VSID_L) { |
| mask |= HPTE_V_LARGE; |
| val |= HPTE_V_LARGE; |
| pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4]; |
| } |
| if (slb_v & SLB_VSID_B_1T) { |
| somask = (1UL << 40) - 1; |
| vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T; |
| vsid ^= vsid << 25; |
| } else { |
| somask = (1UL << 28) - 1; |
| vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT; |
| } |
| hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvm->arch.hpt_mask; |
| avpn = slb_v & ~(somask >> 16); /* also includes B */ |
| avpn |= (eaddr & somask) >> 16; |
| |
| if (pshift >= 24) |
| avpn &= ~((1UL << (pshift - 16)) - 1); |
| else |
| avpn &= ~0x7fUL; |
| val |= avpn; |
| |
| for (;;) { |
| hpte = (unsigned long *)(kvm->arch.hpt_virt + (hash << 7)); |
| |
| for (i = 0; i < 16; i += 2) { |
| /* Read the PTE racily */ |
| v = hpte[i] & ~HPTE_V_HVLOCK; |
| |
| /* Check valid/absent, hash, segment size and AVPN */ |
| if (!(v & valid) || (v & mask) != val) |
| continue; |
| |
| /* Lock the PTE and read it under the lock */ |
| while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK)) |
| cpu_relax(); |
| v = hpte[i] & ~HPTE_V_HVLOCK; |
| r = hpte[i+1]; |
| |
| /* |
| * Check the HPTE again, including large page size |
| * Since we don't currently allow any MPSS (mixed |
| * page-size segment) page sizes, it is sufficient |
| * to check against the actual page size. |
| */ |
| if ((v & valid) && (v & mask) == val && |
| hpte_page_size(v, r) == (1ul << pshift)) |
| /* Return with the HPTE still locked */ |
| return (hash << 3) + (i >> 1); |
| |
| /* Unlock and move on */ |
| hpte[i] = v; |
| } |
| |
| if (val & HPTE_V_SECONDARY) |
| break; |
| val |= HPTE_V_SECONDARY; |
| hash = hash ^ kvm->arch.hpt_mask; |
| } |
| return -1; |
| } |
| EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte); |
| |
| /* |
| * Called in real mode to check whether an HPTE not found fault |
| * is due to accessing a paged-out page or an emulated MMIO page, |
| * or if a protection fault is due to accessing a page that the |
| * guest wanted read/write access to but which we made read-only. |
| * Returns a possibly modified status (DSISR) value if not |
| * (i.e. pass the interrupt to the guest), |
| * -1 to pass the fault up to host kernel mode code, -2 to do that |
| * and also load the instruction word (for MMIO emulation), |
| * or 0 if we should make the guest retry the access. |
| */ |
| long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr, |
| unsigned long slb_v, unsigned int status, bool data) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| long int index; |
| unsigned long v, r, gr; |
| unsigned long *hpte; |
| unsigned long valid; |
| struct revmap_entry *rev; |
| unsigned long pp, key; |
| |
| /* For protection fault, expect to find a valid HPTE */ |
| valid = HPTE_V_VALID; |
| if (status & DSISR_NOHPTE) |
| valid |= HPTE_V_ABSENT; |
| |
| index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid); |
| if (index < 0) { |
| if (status & DSISR_NOHPTE) |
| return status; /* there really was no HPTE */ |
| return 0; /* for prot fault, HPTE disappeared */ |
| } |
| hpte = (unsigned long *)(kvm->arch.hpt_virt + (index << 4)); |
| v = hpte[0] & ~HPTE_V_HVLOCK; |
| r = hpte[1]; |
| rev = real_vmalloc_addr(&kvm->arch.revmap[index]); |
| gr = rev->guest_rpte; |
| |
| unlock_hpte(hpte, v); |
| |
| /* For not found, if the HPTE is valid by now, retry the instruction */ |
| if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID)) |
| return 0; |
| |
| /* Check access permissions to the page */ |
| pp = gr & (HPTE_R_PP0 | HPTE_R_PP); |
| key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; |
| status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */ |
| if (!data) { |
| if (gr & (HPTE_R_N | HPTE_R_G)) |
| return status | SRR1_ISI_N_OR_G; |
| if (!hpte_read_permission(pp, slb_v & key)) |
| return status | SRR1_ISI_PROT; |
| } else if (status & DSISR_ISSTORE) { |
| /* check write permission */ |
| if (!hpte_write_permission(pp, slb_v & key)) |
| return status | DSISR_PROTFAULT; |
| } else { |
| if (!hpte_read_permission(pp, slb_v & key)) |
| return status | DSISR_PROTFAULT; |
| } |
| |
| /* Check storage key, if applicable */ |
| if (data && (vcpu->arch.shregs.msr & MSR_DR)) { |
| unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr); |
| if (status & DSISR_ISSTORE) |
| perm >>= 1; |
| if (perm & 1) |
| return status | DSISR_KEYFAULT; |
| } |
| |
| /* Save HPTE info for virtual-mode handler */ |
| vcpu->arch.pgfault_addr = addr; |
| vcpu->arch.pgfault_index = index; |
| vcpu->arch.pgfault_hpte[0] = v; |
| vcpu->arch.pgfault_hpte[1] = r; |
| |
| /* Check the storage key to see if it is possibly emulated MMIO */ |
| if (data && (vcpu->arch.shregs.msr & MSR_IR) && |
| (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) == |
| (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) |
| return -2; /* MMIO emulation - load instr word */ |
| |
| return -1; /* send fault up to host kernel mode */ |
| } |