| /* |
| * fs/eventpoll.c ( Efficent event polling implementation ) |
| * Copyright (C) 2001,...,2006 Davide Libenzi |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * Davide Libenzi <davidel@xmailserver.org> |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/fs.h> |
| #include <linux/file.h> |
| #include <linux/signal.h> |
| #include <linux/errno.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/poll.h> |
| #include <linux/smp_lock.h> |
| #include <linux/string.h> |
| #include <linux/list.h> |
| #include <linux/hash.h> |
| #include <linux/spinlock.h> |
| #include <linux/syscalls.h> |
| #include <linux/rwsem.h> |
| #include <linux/rbtree.h> |
| #include <linux/wait.h> |
| #include <linux/eventpoll.h> |
| #include <linux/mount.h> |
| #include <linux/bitops.h> |
| #include <linux/mutex.h> |
| #include <asm/uaccess.h> |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/mman.h> |
| #include <asm/atomic.h> |
| #include <asm/semaphore.h> |
| |
| |
| /* |
| * LOCKING: |
| * There are three level of locking required by epoll : |
| * |
| * 1) epmutex (mutex) |
| * 2) ep->sem (rw_semaphore) |
| * 3) ep->lock (rw_lock) |
| * |
| * The acquire order is the one listed above, from 1 to 3. |
| * We need a spinlock (ep->lock) because we manipulate objects |
| * from inside the poll callback, that might be triggered from |
| * a wake_up() that in turn might be called from IRQ context. |
| * So we can't sleep inside the poll callback and hence we need |
| * a spinlock. During the event transfer loop (from kernel to |
| * user space) we could end up sleeping due a copy_to_user(), so |
| * we need a lock that will allow us to sleep. This lock is a |
| * read-write semaphore (ep->sem). It is acquired on read during |
| * the event transfer loop and in write during epoll_ctl(EPOLL_CTL_DEL) |
| * and during eventpoll_release_file(). Then we also need a global |
| * semaphore to serialize eventpoll_release_file() and ep_free(). |
| * This semaphore is acquired by ep_free() during the epoll file |
| * cleanup path and it is also acquired by eventpoll_release_file() |
| * if a file has been pushed inside an epoll set and it is then |
| * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL). |
| * It is possible to drop the "ep->sem" and to use the global |
| * semaphore "epmutex" (together with "ep->lock") to have it working, |
| * but having "ep->sem" will make the interface more scalable. |
| * Events that require holding "epmutex" are very rare, while for |
| * normal operations the epoll private "ep->sem" will guarantee |
| * a greater scalability. |
| */ |
| |
| |
| #define EVENTPOLLFS_MAGIC 0x03111965 /* My birthday should work for this :) */ |
| |
| #define DEBUG_EPOLL 0 |
| |
| #if DEBUG_EPOLL > 0 |
| #define DPRINTK(x) printk x |
| #define DNPRINTK(n, x) do { if ((n) <= DEBUG_EPOLL) printk x; } while (0) |
| #else /* #if DEBUG_EPOLL > 0 */ |
| #define DPRINTK(x) (void) 0 |
| #define DNPRINTK(n, x) (void) 0 |
| #endif /* #if DEBUG_EPOLL > 0 */ |
| |
| #define DEBUG_EPI 0 |
| |
| #if DEBUG_EPI != 0 |
| #define EPI_SLAB_DEBUG (SLAB_DEBUG_FREE | SLAB_RED_ZONE /* | SLAB_POISON */) |
| #else /* #if DEBUG_EPI != 0 */ |
| #define EPI_SLAB_DEBUG 0 |
| #endif /* #if DEBUG_EPI != 0 */ |
| |
| /* Epoll private bits inside the event mask */ |
| #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET) |
| |
| /* Maximum number of poll wake up nests we are allowing */ |
| #define EP_MAX_POLLWAKE_NESTS 4 |
| |
| /* Maximum msec timeout value storeable in a long int */ |
| #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ) |
| |
| |
| struct epoll_filefd { |
| struct file *file; |
| int fd; |
| }; |
| |
| /* |
| * Node that is linked into the "wake_task_list" member of the "struct poll_safewake". |
| * It is used to keep track on all tasks that are currently inside the wake_up() code |
| * to 1) short-circuit the one coming from the same task and same wait queue head |
| * ( loop ) 2) allow a maximum number of epoll descriptors inclusion nesting |
| * 3) let go the ones coming from other tasks. |
| */ |
| struct wake_task_node { |
| struct list_head llink; |
| struct task_struct *task; |
| wait_queue_head_t *wq; |
| }; |
| |
| /* |
| * This is used to implement the safe poll wake up avoiding to reenter |
| * the poll callback from inside wake_up(). |
| */ |
| struct poll_safewake { |
| struct list_head wake_task_list; |
| spinlock_t lock; |
| }; |
| |
| /* |
| * This structure is stored inside the "private_data" member of the file |
| * structure and rapresent the main data sructure for the eventpoll |
| * interface. |
| */ |
| struct eventpoll { |
| /* Protect the this structure access */ |
| rwlock_t lock; |
| |
| /* |
| * This semaphore is used to ensure that files are not removed |
| * while epoll is using them. This is read-held during the event |
| * collection loop and it is write-held during the file cleanup |
| * path, the epoll file exit code and the ctl operations. |
| */ |
| struct rw_semaphore sem; |
| |
| /* Wait queue used by sys_epoll_wait() */ |
| wait_queue_head_t wq; |
| |
| /* Wait queue used by file->poll() */ |
| wait_queue_head_t poll_wait; |
| |
| /* List of ready file descriptors */ |
| struct list_head rdllist; |
| |
| /* RB-Tree root used to store monitored fd structs */ |
| struct rb_root rbr; |
| }; |
| |
| /* Wait structure used by the poll hooks */ |
| struct eppoll_entry { |
| /* List header used to link this structure to the "struct epitem" */ |
| struct list_head llink; |
| |
| /* The "base" pointer is set to the container "struct epitem" */ |
| void *base; |
| |
| /* |
| * Wait queue item that will be linked to the target file wait |
| * queue head. |
| */ |
| wait_queue_t wait; |
| |
| /* The wait queue head that linked the "wait" wait queue item */ |
| wait_queue_head_t *whead; |
| }; |
| |
| /* |
| * Each file descriptor added to the eventpoll interface will |
| * have an entry of this type linked to the hash. |
| */ |
| struct epitem { |
| /* RB-Tree node used to link this structure to the eventpoll rb-tree */ |
| struct rb_node rbn; |
| |
| /* List header used to link this structure to the eventpoll ready list */ |
| struct list_head rdllink; |
| |
| /* The file descriptor information this item refers to */ |
| struct epoll_filefd ffd; |
| |
| /* Number of active wait queue attached to poll operations */ |
| int nwait; |
| |
| /* List containing poll wait queues */ |
| struct list_head pwqlist; |
| |
| /* The "container" of this item */ |
| struct eventpoll *ep; |
| |
| /* The structure that describe the interested events and the source fd */ |
| struct epoll_event event; |
| |
| /* |
| * Used to keep track of the usage count of the structure. This avoids |
| * that the structure will desappear from underneath our processing. |
| */ |
| atomic_t usecnt; |
| |
| /* List header used to link this item to the "struct file" items list */ |
| struct list_head fllink; |
| |
| /* List header used to link the item to the transfer list */ |
| struct list_head txlink; |
| |
| /* |
| * This is used during the collection/transfer of events to userspace |
| * to pin items empty events set. |
| */ |
| unsigned int revents; |
| }; |
| |
| /* Wrapper struct used by poll queueing */ |
| struct ep_pqueue { |
| poll_table pt; |
| struct epitem *epi; |
| }; |
| |
| |
| |
| static void ep_poll_safewake_init(struct poll_safewake *psw); |
| static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq); |
| static int ep_getfd(int *efd, struct inode **einode, struct file **efile, |
| struct eventpoll *ep); |
| static int ep_alloc(struct eventpoll **pep); |
| static void ep_free(struct eventpoll *ep); |
| static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd); |
| static void ep_use_epitem(struct epitem *epi); |
| static void ep_release_epitem(struct epitem *epi); |
| static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, |
| poll_table *pt); |
| static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi); |
| static int ep_insert(struct eventpoll *ep, struct epoll_event *event, |
| struct file *tfile, int fd); |
| static int ep_modify(struct eventpoll *ep, struct epitem *epi, |
| struct epoll_event *event); |
| static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi); |
| static int ep_unlink(struct eventpoll *ep, struct epitem *epi); |
| static int ep_remove(struct eventpoll *ep, struct epitem *epi); |
| static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key); |
| static int ep_eventpoll_close(struct inode *inode, struct file *file); |
| static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait); |
| static int ep_collect_ready_items(struct eventpoll *ep, |
| struct list_head *txlist, int maxevents); |
| static int ep_send_events(struct eventpoll *ep, struct list_head *txlist, |
| struct epoll_event __user *events); |
| static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist); |
| static int ep_events_transfer(struct eventpoll *ep, |
| struct epoll_event __user *events, |
| int maxevents); |
| static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, |
| int maxevents, long timeout); |
| static int eventpollfs_delete_dentry(struct dentry *dentry); |
| static struct inode *ep_eventpoll_inode(void); |
| static int eventpollfs_get_sb(struct file_system_type *fs_type, |
| int flags, const char *dev_name, |
| void *data, struct vfsmount *mnt); |
| |
| /* |
| * This semaphore is used to serialize ep_free() and eventpoll_release_file(). |
| */ |
| static struct mutex epmutex; |
| |
| /* Safe wake up implementation */ |
| static struct poll_safewake psw; |
| |
| /* Slab cache used to allocate "struct epitem" */ |
| static kmem_cache_t *epi_cache __read_mostly; |
| |
| /* Slab cache used to allocate "struct eppoll_entry" */ |
| static kmem_cache_t *pwq_cache __read_mostly; |
| |
| /* Virtual fs used to allocate inodes for eventpoll files */ |
| static struct vfsmount *eventpoll_mnt __read_mostly; |
| |
| /* File callbacks that implement the eventpoll file behaviour */ |
| static const struct file_operations eventpoll_fops = { |
| .release = ep_eventpoll_close, |
| .poll = ep_eventpoll_poll |
| }; |
| |
| /* |
| * This is used to register the virtual file system from where |
| * eventpoll inodes are allocated. |
| */ |
| static struct file_system_type eventpoll_fs_type = { |
| .name = "eventpollfs", |
| .get_sb = eventpollfs_get_sb, |
| .kill_sb = kill_anon_super, |
| }; |
| |
| /* Very basic directory entry operations for the eventpoll virtual file system */ |
| static struct dentry_operations eventpollfs_dentry_operations = { |
| .d_delete = eventpollfs_delete_dentry, |
| }; |
| |
| |
| |
| /* Fast test to see if the file is an evenpoll file */ |
| static inline int is_file_epoll(struct file *f) |
| { |
| return f->f_op == &eventpoll_fops; |
| } |
| |
| /* Setup the structure that is used as key for the rb-tree */ |
| static inline void ep_set_ffd(struct epoll_filefd *ffd, |
| struct file *file, int fd) |
| { |
| ffd->file = file; |
| ffd->fd = fd; |
| } |
| |
| /* Compare rb-tree keys */ |
| static inline int ep_cmp_ffd(struct epoll_filefd *p1, |
| struct epoll_filefd *p2) |
| { |
| return (p1->file > p2->file ? +1: |
| (p1->file < p2->file ? -1 : p1->fd - p2->fd)); |
| } |
| |
| /* Special initialization for the rb-tree node to detect linkage */ |
| static inline void ep_rb_initnode(struct rb_node *n) |
| { |
| rb_set_parent(n, n); |
| } |
| |
| /* Removes a node from the rb-tree and marks it for a fast is-linked check */ |
| static inline void ep_rb_erase(struct rb_node *n, struct rb_root *r) |
| { |
| rb_erase(n, r); |
| rb_set_parent(n, n); |
| } |
| |
| /* Fast check to verify that the item is linked to the main rb-tree */ |
| static inline int ep_rb_linked(struct rb_node *n) |
| { |
| return rb_parent(n) != n; |
| } |
| |
| /* |
| * Remove the item from the list and perform its initialization. |
| * This is useful for us because we can test if the item is linked |
| * using "ep_is_linked(p)". |
| */ |
| static inline void ep_list_del(struct list_head *p) |
| { |
| list_del(p); |
| INIT_LIST_HEAD(p); |
| } |
| |
| /* Tells us if the item is currently linked */ |
| static inline int ep_is_linked(struct list_head *p) |
| { |
| return !list_empty(p); |
| } |
| |
| /* Get the "struct epitem" from a wait queue pointer */ |
| static inline struct epitem * ep_item_from_wait(wait_queue_t *p) |
| { |
| return container_of(p, struct eppoll_entry, wait)->base; |
| } |
| |
| /* Get the "struct epitem" from an epoll queue wrapper */ |
| static inline struct epitem * ep_item_from_epqueue(poll_table *p) |
| { |
| return container_of(p, struct ep_pqueue, pt)->epi; |
| } |
| |
| /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ |
| static inline int ep_op_hash_event(int op) |
| { |
| return op != EPOLL_CTL_DEL; |
| } |
| |
| /* Initialize the poll safe wake up structure */ |
| static void ep_poll_safewake_init(struct poll_safewake *psw) |
| { |
| |
| INIT_LIST_HEAD(&psw->wake_task_list); |
| spin_lock_init(&psw->lock); |
| } |
| |
| |
| /* |
| * Perform a safe wake up of the poll wait list. The problem is that |
| * with the new callback'd wake up system, it is possible that the |
| * poll callback is reentered from inside the call to wake_up() done |
| * on the poll wait queue head. The rule is that we cannot reenter the |
| * wake up code from the same task more than EP_MAX_POLLWAKE_NESTS times, |
| * and we cannot reenter the same wait queue head at all. This will |
| * enable to have a hierarchy of epoll file descriptor of no more than |
| * EP_MAX_POLLWAKE_NESTS deep. We need the irq version of the spin lock |
| * because this one gets called by the poll callback, that in turn is called |
| * from inside a wake_up(), that might be called from irq context. |
| */ |
| static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq) |
| { |
| int wake_nests = 0; |
| unsigned long flags; |
| struct task_struct *this_task = current; |
| struct list_head *lsthead = &psw->wake_task_list, *lnk; |
| struct wake_task_node *tncur; |
| struct wake_task_node tnode; |
| |
| spin_lock_irqsave(&psw->lock, flags); |
| |
| /* Try to see if the current task is already inside this wakeup call */ |
| list_for_each(lnk, lsthead) { |
| tncur = list_entry(lnk, struct wake_task_node, llink); |
| |
| if (tncur->wq == wq || |
| (tncur->task == this_task && ++wake_nests > EP_MAX_POLLWAKE_NESTS)) { |
| /* |
| * Ops ... loop detected or maximum nest level reached. |
| * We abort this wake by breaking the cycle itself. |
| */ |
| spin_unlock_irqrestore(&psw->lock, flags); |
| return; |
| } |
| } |
| |
| /* Add the current task to the list */ |
| tnode.task = this_task; |
| tnode.wq = wq; |
| list_add(&tnode.llink, lsthead); |
| |
| spin_unlock_irqrestore(&psw->lock, flags); |
| |
| /* Do really wake up now */ |
| wake_up(wq); |
| |
| /* Remove the current task from the list */ |
| spin_lock_irqsave(&psw->lock, flags); |
| list_del(&tnode.llink); |
| spin_unlock_irqrestore(&psw->lock, flags); |
| } |
| |
| |
| /* |
| * This is called from eventpoll_release() to unlink files from the eventpoll |
| * interface. We need to have this facility to cleanup correctly files that are |
| * closed without being removed from the eventpoll interface. |
| */ |
| void eventpoll_release_file(struct file *file) |
| { |
| struct list_head *lsthead = &file->f_ep_links; |
| struct eventpoll *ep; |
| struct epitem *epi; |
| |
| /* |
| * We don't want to get "file->f_ep_lock" because it is not |
| * necessary. It is not necessary because we're in the "struct file" |
| * cleanup path, and this means that noone is using this file anymore. |
| * The only hit might come from ep_free() but by holding the semaphore |
| * will correctly serialize the operation. We do need to acquire |
| * "ep->sem" after "epmutex" because ep_remove() requires it when called |
| * from anywhere but ep_free(). |
| */ |
| mutex_lock(&epmutex); |
| |
| while (!list_empty(lsthead)) { |
| epi = list_entry(lsthead->next, struct epitem, fllink); |
| |
| ep = epi->ep; |
| ep_list_del(&epi->fllink); |
| down_write(&ep->sem); |
| ep_remove(ep, epi); |
| up_write(&ep->sem); |
| } |
| |
| mutex_unlock(&epmutex); |
| } |
| |
| |
| /* |
| * It opens an eventpoll file descriptor by suggesting a storage of "size" |
| * file descriptors. The size parameter is just an hint about how to size |
| * data structures. It won't prevent the user to store more than "size" |
| * file descriptors inside the epoll interface. It is the kernel part of |
| * the userspace epoll_create(2). |
| */ |
| asmlinkage long sys_epoll_create(int size) |
| { |
| int error, fd; |
| struct eventpoll *ep; |
| struct inode *inode; |
| struct file *file; |
| |
| DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d)\n", |
| current, size)); |
| |
| /* |
| * Sanity check on the size parameter, and create the internal data |
| * structure ( "struct eventpoll" ). |
| */ |
| error = -EINVAL; |
| if (size <= 0 || (error = ep_alloc(&ep)) != 0) |
| goto eexit_1; |
| |
| /* |
| * Creates all the items needed to setup an eventpoll file. That is, |
| * a file structure, and inode and a free file descriptor. |
| */ |
| error = ep_getfd(&fd, &inode, &file, ep); |
| if (error) |
| goto eexit_2; |
| |
| DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n", |
| current, size, fd)); |
| |
| return fd; |
| |
| eexit_2: |
| ep_free(ep); |
| kfree(ep); |
| eexit_1: |
| DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n", |
| current, size, error)); |
| return error; |
| } |
| |
| |
| /* |
| * The following function implements the controller interface for |
| * the eventpoll file that enables the insertion/removal/change of |
| * file descriptors inside the interest set. It represents |
| * the kernel part of the user space epoll_ctl(2). |
| */ |
| asmlinkage long |
| sys_epoll_ctl(int epfd, int op, int fd, struct epoll_event __user *event) |
| { |
| int error; |
| struct file *file, *tfile; |
| struct eventpoll *ep; |
| struct epitem *epi; |
| struct epoll_event epds; |
| |
| DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p)\n", |
| current, epfd, op, fd, event)); |
| |
| error = -EFAULT; |
| if (ep_op_hash_event(op) && |
| copy_from_user(&epds, event, sizeof(struct epoll_event))) |
| goto eexit_1; |
| |
| /* Get the "struct file *" for the eventpoll file */ |
| error = -EBADF; |
| file = fget(epfd); |
| if (!file) |
| goto eexit_1; |
| |
| /* Get the "struct file *" for the target file */ |
| tfile = fget(fd); |
| if (!tfile) |
| goto eexit_2; |
| |
| /* The target file descriptor must support poll */ |
| error = -EPERM; |
| if (!tfile->f_op || !tfile->f_op->poll) |
| goto eexit_3; |
| |
| /* |
| * We have to check that the file structure underneath the file descriptor |
| * the user passed to us _is_ an eventpoll file. And also we do not permit |
| * adding an epoll file descriptor inside itself. |
| */ |
| error = -EINVAL; |
| if (file == tfile || !is_file_epoll(file)) |
| goto eexit_3; |
| |
| /* |
| * At this point it is safe to assume that the "private_data" contains |
| * our own data structure. |
| */ |
| ep = file->private_data; |
| |
| down_write(&ep->sem); |
| |
| /* Try to lookup the file inside our hash table */ |
| epi = ep_find(ep, tfile, fd); |
| |
| error = -EINVAL; |
| switch (op) { |
| case EPOLL_CTL_ADD: |
| if (!epi) { |
| epds.events |= POLLERR | POLLHUP; |
| |
| error = ep_insert(ep, &epds, tfile, fd); |
| } else |
| error = -EEXIST; |
| break; |
| case EPOLL_CTL_DEL: |
| if (epi) |
| error = ep_remove(ep, epi); |
| else |
| error = -ENOENT; |
| break; |
| case EPOLL_CTL_MOD: |
| if (epi) { |
| epds.events |= POLLERR | POLLHUP; |
| error = ep_modify(ep, epi, &epds); |
| } else |
| error = -ENOENT; |
| break; |
| } |
| |
| /* |
| * The function ep_find() increments the usage count of the structure |
| * so, if this is not NULL, we need to release it. |
| */ |
| if (epi) |
| ep_release_epitem(epi); |
| |
| up_write(&ep->sem); |
| |
| eexit_3: |
| fput(tfile); |
| eexit_2: |
| fput(file); |
| eexit_1: |
| DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p) = %d\n", |
| current, epfd, op, fd, event, error)); |
| |
| return error; |
| } |
| |
| #define MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) |
| |
| /* |
| * Implement the event wait interface for the eventpoll file. It is the kernel |
| * part of the user space epoll_wait(2). |
| */ |
| asmlinkage long sys_epoll_wait(int epfd, struct epoll_event __user *events, |
| int maxevents, int timeout) |
| { |
| int error; |
| struct file *file; |
| struct eventpoll *ep; |
| |
| DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n", |
| current, epfd, events, maxevents, timeout)); |
| |
| /* The maximum number of event must be greater than zero */ |
| if (maxevents <= 0 || maxevents > MAX_EVENTS) |
| return -EINVAL; |
| |
| /* Verify that the area passed by the user is writeable */ |
| if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { |
| error = -EFAULT; |
| goto eexit_1; |
| } |
| |
| /* Get the "struct file *" for the eventpoll file */ |
| error = -EBADF; |
| file = fget(epfd); |
| if (!file) |
| goto eexit_1; |
| |
| /* |
| * We have to check that the file structure underneath the fd |
| * the user passed to us _is_ an eventpoll file. |
| */ |
| error = -EINVAL; |
| if (!is_file_epoll(file)) |
| goto eexit_2; |
| |
| /* |
| * At this point it is safe to assume that the "private_data" contains |
| * our own data structure. |
| */ |
| ep = file->private_data; |
| |
| /* Time to fish for events ... */ |
| error = ep_poll(ep, events, maxevents, timeout); |
| |
| eexit_2: |
| fput(file); |
| eexit_1: |
| DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) = %d\n", |
| current, epfd, events, maxevents, timeout, error)); |
| |
| return error; |
| } |
| |
| |
| /* |
| * Creates the file descriptor to be used by the epoll interface. |
| */ |
| static int ep_getfd(int *efd, struct inode **einode, struct file **efile, |
| struct eventpoll *ep) |
| { |
| struct qstr this; |
| char name[32]; |
| struct dentry *dentry; |
| struct inode *inode; |
| struct file *file; |
| int error, fd; |
| |
| /* Get an ready to use file */ |
| error = -ENFILE; |
| file = get_empty_filp(); |
| if (!file) |
| goto eexit_1; |
| |
| /* Allocates an inode from the eventpoll file system */ |
| inode = ep_eventpoll_inode(); |
| error = PTR_ERR(inode); |
| if (IS_ERR(inode)) |
| goto eexit_2; |
| |
| /* Allocates a free descriptor to plug the file onto */ |
| error = get_unused_fd(); |
| if (error < 0) |
| goto eexit_3; |
| fd = error; |
| |
| /* |
| * Link the inode to a directory entry by creating a unique name |
| * using the inode number. |
| */ |
| error = -ENOMEM; |
| sprintf(name, "[%lu]", inode->i_ino); |
| this.name = name; |
| this.len = strlen(name); |
| this.hash = inode->i_ino; |
| dentry = d_alloc(eventpoll_mnt->mnt_sb->s_root, &this); |
| if (!dentry) |
| goto eexit_4; |
| dentry->d_op = &eventpollfs_dentry_operations; |
| d_add(dentry, inode); |
| file->f_vfsmnt = mntget(eventpoll_mnt); |
| file->f_dentry = dentry; |
| file->f_mapping = inode->i_mapping; |
| |
| file->f_pos = 0; |
| file->f_flags = O_RDONLY; |
| file->f_op = &eventpoll_fops; |
| file->f_mode = FMODE_READ; |
| file->f_version = 0; |
| file->private_data = ep; |
| |
| /* Install the new setup file into the allocated fd. */ |
| fd_install(fd, file); |
| |
| *efd = fd; |
| *einode = inode; |
| *efile = file; |
| return 0; |
| |
| eexit_4: |
| put_unused_fd(fd); |
| eexit_3: |
| iput(inode); |
| eexit_2: |
| put_filp(file); |
| eexit_1: |
| return error; |
| } |
| |
| |
| static int ep_alloc(struct eventpoll **pep) |
| { |
| struct eventpoll *ep = kzalloc(sizeof(*ep), GFP_KERNEL); |
| |
| if (!ep) |
| return -ENOMEM; |
| |
| rwlock_init(&ep->lock); |
| init_rwsem(&ep->sem); |
| init_waitqueue_head(&ep->wq); |
| init_waitqueue_head(&ep->poll_wait); |
| INIT_LIST_HEAD(&ep->rdllist); |
| ep->rbr = RB_ROOT; |
| |
| *pep = ep; |
| |
| DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_alloc() ep=%p\n", |
| current, ep)); |
| return 0; |
| } |
| |
| |
| static void ep_free(struct eventpoll *ep) |
| { |
| struct rb_node *rbp; |
| struct epitem *epi; |
| |
| /* We need to release all tasks waiting for these file */ |
| if (waitqueue_active(&ep->poll_wait)) |
| ep_poll_safewake(&psw, &ep->poll_wait); |
| |
| /* |
| * We need to lock this because we could be hit by |
| * eventpoll_release_file() while we're freeing the "struct eventpoll". |
| * We do not need to hold "ep->sem" here because the epoll file |
| * is on the way to be removed and no one has references to it |
| * anymore. The only hit might come from eventpoll_release_file() but |
| * holding "epmutex" is sufficent here. |
| */ |
| mutex_lock(&epmutex); |
| |
| /* |
| * Walks through the whole tree by unregistering poll callbacks. |
| */ |
| for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { |
| epi = rb_entry(rbp, struct epitem, rbn); |
| |
| ep_unregister_pollwait(ep, epi); |
| } |
| |
| /* |
| * Walks through the whole hash by freeing each "struct epitem". At this |
| * point we are sure no poll callbacks will be lingering around, and also by |
| * write-holding "sem" we can be sure that no file cleanup code will hit |
| * us during this operation. So we can avoid the lock on "ep->lock". |
| */ |
| while ((rbp = rb_first(&ep->rbr)) != 0) { |
| epi = rb_entry(rbp, struct epitem, rbn); |
| ep_remove(ep, epi); |
| } |
| |
| mutex_unlock(&epmutex); |
| } |
| |
| |
| /* |
| * Search the file inside the eventpoll hash. It add usage count to |
| * the returned item, so the caller must call ep_release_epitem() |
| * after finished using the "struct epitem". |
| */ |
| static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) |
| { |
| int kcmp; |
| unsigned long flags; |
| struct rb_node *rbp; |
| struct epitem *epi, *epir = NULL; |
| struct epoll_filefd ffd; |
| |
| ep_set_ffd(&ffd, file, fd); |
| read_lock_irqsave(&ep->lock, flags); |
| for (rbp = ep->rbr.rb_node; rbp; ) { |
| epi = rb_entry(rbp, struct epitem, rbn); |
| kcmp = ep_cmp_ffd(&ffd, &epi->ffd); |
| if (kcmp > 0) |
| rbp = rbp->rb_right; |
| else if (kcmp < 0) |
| rbp = rbp->rb_left; |
| else { |
| ep_use_epitem(epi); |
| epir = epi; |
| break; |
| } |
| } |
| read_unlock_irqrestore(&ep->lock, flags); |
| |
| DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_find(%p) -> %p\n", |
| current, file, epir)); |
| |
| return epir; |
| } |
| |
| |
| /* |
| * Increment the usage count of the "struct epitem" making it sure |
| * that the user will have a valid pointer to reference. |
| */ |
| static void ep_use_epitem(struct epitem *epi) |
| { |
| |
| atomic_inc(&epi->usecnt); |
| } |
| |
| |
| /* |
| * Decrement ( release ) the usage count by signaling that the user |
| * has finished using the structure. It might lead to freeing the |
| * structure itself if the count goes to zero. |
| */ |
| static void ep_release_epitem(struct epitem *epi) |
| { |
| |
| if (atomic_dec_and_test(&epi->usecnt)) |
| kmem_cache_free(epi_cache, epi); |
| } |
| |
| |
| /* |
| * This is the callback that is used to add our wait queue to the |
| * target file wakeup lists. |
| */ |
| static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, |
| poll_table *pt) |
| { |
| struct epitem *epi = ep_item_from_epqueue(pt); |
| struct eppoll_entry *pwq; |
| |
| if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, SLAB_KERNEL))) { |
| init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); |
| pwq->whead = whead; |
| pwq->base = epi; |
| add_wait_queue(whead, &pwq->wait); |
| list_add_tail(&pwq->llink, &epi->pwqlist); |
| epi->nwait++; |
| } else { |
| /* We have to signal that an error occurred */ |
| epi->nwait = -1; |
| } |
| } |
| |
| |
| static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) |
| { |
| int kcmp; |
| struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; |
| struct epitem *epic; |
| |
| while (*p) { |
| parent = *p; |
| epic = rb_entry(parent, struct epitem, rbn); |
| kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); |
| if (kcmp > 0) |
| p = &parent->rb_right; |
| else |
| p = &parent->rb_left; |
| } |
| rb_link_node(&epi->rbn, parent, p); |
| rb_insert_color(&epi->rbn, &ep->rbr); |
| } |
| |
| |
| static int ep_insert(struct eventpoll *ep, struct epoll_event *event, |
| struct file *tfile, int fd) |
| { |
| int error, revents, pwake = 0; |
| unsigned long flags; |
| struct epitem *epi; |
| struct ep_pqueue epq; |
| |
| error = -ENOMEM; |
| if (!(epi = kmem_cache_alloc(epi_cache, SLAB_KERNEL))) |
| goto eexit_1; |
| |
| /* Item initialization follow here ... */ |
| ep_rb_initnode(&epi->rbn); |
| INIT_LIST_HEAD(&epi->rdllink); |
| INIT_LIST_HEAD(&epi->fllink); |
| INIT_LIST_HEAD(&epi->txlink); |
| INIT_LIST_HEAD(&epi->pwqlist); |
| epi->ep = ep; |
| ep_set_ffd(&epi->ffd, tfile, fd); |
| epi->event = *event; |
| atomic_set(&epi->usecnt, 1); |
| epi->nwait = 0; |
| |
| /* Initialize the poll table using the queue callback */ |
| epq.epi = epi; |
| init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); |
| |
| /* |
| * Attach the item to the poll hooks and get current event bits. |
| * We can safely use the file* here because its usage count has |
| * been increased by the caller of this function. |
| */ |
| revents = tfile->f_op->poll(tfile, &epq.pt); |
| |
| /* |
| * We have to check if something went wrong during the poll wait queue |
| * install process. Namely an allocation for a wait queue failed due |
| * high memory pressure. |
| */ |
| if (epi->nwait < 0) |
| goto eexit_2; |
| |
| /* Add the current item to the list of active epoll hook for this file */ |
| spin_lock(&tfile->f_ep_lock); |
| list_add_tail(&epi->fllink, &tfile->f_ep_links); |
| spin_unlock(&tfile->f_ep_lock); |
| |
| /* We have to drop the new item inside our item list to keep track of it */ |
| write_lock_irqsave(&ep->lock, flags); |
| |
| /* Add the current item to the rb-tree */ |
| ep_rbtree_insert(ep, epi); |
| |
| /* If the file is already "ready" we drop it inside the ready list */ |
| if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { |
| list_add_tail(&epi->rdllink, &ep->rdllist); |
| |
| /* Notify waiting tasks that events are available */ |
| if (waitqueue_active(&ep->wq)) |
| __wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE); |
| if (waitqueue_active(&ep->poll_wait)) |
| pwake++; |
| } |
| |
| write_unlock_irqrestore(&ep->lock, flags); |
| |
| /* We have to call this outside the lock */ |
| if (pwake) |
| ep_poll_safewake(&psw, &ep->poll_wait); |
| |
| DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_insert(%p, %p, %d)\n", |
| current, ep, tfile, fd)); |
| |
| return 0; |
| |
| eexit_2: |
| ep_unregister_pollwait(ep, epi); |
| |
| /* |
| * We need to do this because an event could have been arrived on some |
| * allocated wait queue. |
| */ |
| write_lock_irqsave(&ep->lock, flags); |
| if (ep_is_linked(&epi->rdllink)) |
| ep_list_del(&epi->rdllink); |
| write_unlock_irqrestore(&ep->lock, flags); |
| |
| kmem_cache_free(epi_cache, epi); |
| eexit_1: |
| return error; |
| } |
| |
| |
| /* |
| * Modify the interest event mask by dropping an event if the new mask |
| * has a match in the current file status. |
| */ |
| static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) |
| { |
| int pwake = 0; |
| unsigned int revents; |
| unsigned long flags; |
| |
| /* |
| * Set the new event interest mask before calling f_op->poll(), otherwise |
| * a potential race might occur. In fact if we do this operation inside |
| * the lock, an event might happen between the f_op->poll() call and the |
| * new event set registering. |
| */ |
| epi->event.events = event->events; |
| |
| /* |
| * Get current event bits. We can safely use the file* here because |
| * its usage count has been increased by the caller of this function. |
| */ |
| revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); |
| |
| write_lock_irqsave(&ep->lock, flags); |
| |
| /* Copy the data member from inside the lock */ |
| epi->event.data = event->data; |
| |
| /* |
| * If the item is not linked to the hash it means that it's on its |
| * way toward the removal. Do nothing in this case. |
| */ |
| if (ep_rb_linked(&epi->rbn)) { |
| /* |
| * If the item is "hot" and it is not registered inside the ready |
| * list, push it inside. If the item is not "hot" and it is currently |
| * registered inside the ready list, unlink it. |
| */ |
| if (revents & event->events) { |
| if (!ep_is_linked(&epi->rdllink)) { |
| list_add_tail(&epi->rdllink, &ep->rdllist); |
| |
| /* Notify waiting tasks that events are available */ |
| if (waitqueue_active(&ep->wq)) |
| __wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE | |
| TASK_INTERRUPTIBLE); |
| if (waitqueue_active(&ep->poll_wait)) |
| pwake++; |
| } |
| } |
| } |
| |
| write_unlock_irqrestore(&ep->lock, flags); |
| |
| /* We have to call this outside the lock */ |
| if (pwake) |
| ep_poll_safewake(&psw, &ep->poll_wait); |
| |
| return 0; |
| } |
| |
| |
| /* |
| * This function unregister poll callbacks from the associated file descriptor. |
| * Since this must be called without holding "ep->lock" the atomic exchange trick |
| * will protect us from multiple unregister. |
| */ |
| static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) |
| { |
| int nwait; |
| struct list_head *lsthead = &epi->pwqlist; |
| struct eppoll_entry *pwq; |
| |
| /* This is called without locks, so we need the atomic exchange */ |
| nwait = xchg(&epi->nwait, 0); |
| |
| if (nwait) { |
| while (!list_empty(lsthead)) { |
| pwq = list_entry(lsthead->next, struct eppoll_entry, llink); |
| |
| ep_list_del(&pwq->llink); |
| remove_wait_queue(pwq->whead, &pwq->wait); |
| kmem_cache_free(pwq_cache, pwq); |
| } |
| } |
| } |
| |
| |
| /* |
| * Unlink the "struct epitem" from all places it might have been hooked up. |
| * This function must be called with write IRQ lock on "ep->lock". |
| */ |
| static int ep_unlink(struct eventpoll *ep, struct epitem *epi) |
| { |
| int error; |
| |
| /* |
| * It can happen that this one is called for an item already unlinked. |
| * The check protect us from doing a double unlink ( crash ). |
| */ |
| error = -ENOENT; |
| if (!ep_rb_linked(&epi->rbn)) |
| goto eexit_1; |
| |
| /* |
| * Clear the event mask for the unlinked item. This will avoid item |
| * notifications to be sent after the unlink operation from inside |
| * the kernel->userspace event transfer loop. |
| */ |
| epi->event.events = 0; |
| |
| /* |
| * At this point is safe to do the job, unlink the item from our rb-tree. |
| * This operation togheter with the above check closes the door to |
| * double unlinks. |
| */ |
| ep_rb_erase(&epi->rbn, &ep->rbr); |
| |
| /* |
| * If the item we are going to remove is inside the ready file descriptors |
| * we want to remove it from this list to avoid stale events. |
| */ |
| if (ep_is_linked(&epi->rdllink)) |
| ep_list_del(&epi->rdllink); |
| |
| error = 0; |
| eexit_1: |
| |
| DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_unlink(%p, %p) = %d\n", |
| current, ep, epi->ffd.file, error)); |
| |
| return error; |
| } |
| |
| |
| /* |
| * Removes a "struct epitem" from the eventpoll hash and deallocates |
| * all the associated resources. |
| */ |
| static int ep_remove(struct eventpoll *ep, struct epitem *epi) |
| { |
| int error; |
| unsigned long flags; |
| struct file *file = epi->ffd.file; |
| |
| /* |
| * Removes poll wait queue hooks. We _have_ to do this without holding |
| * the "ep->lock" otherwise a deadlock might occur. This because of the |
| * sequence of the lock acquisition. Here we do "ep->lock" then the wait |
| * queue head lock when unregistering the wait queue. The wakeup callback |
| * will run by holding the wait queue head lock and will call our callback |
| * that will try to get "ep->lock". |
| */ |
| ep_unregister_pollwait(ep, epi); |
| |
| /* Remove the current item from the list of epoll hooks */ |
| spin_lock(&file->f_ep_lock); |
| if (ep_is_linked(&epi->fllink)) |
| ep_list_del(&epi->fllink); |
| spin_unlock(&file->f_ep_lock); |
| |
| /* We need to acquire the write IRQ lock before calling ep_unlink() */ |
| write_lock_irqsave(&ep->lock, flags); |
| |
| /* Really unlink the item from the hash */ |
| error = ep_unlink(ep, epi); |
| |
| write_unlock_irqrestore(&ep->lock, flags); |
| |
| if (error) |
| goto eexit_1; |
| |
| /* At this point it is safe to free the eventpoll item */ |
| ep_release_epitem(epi); |
| |
| error = 0; |
| eexit_1: |
| DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_remove(%p, %p) = %d\n", |
| current, ep, file, error)); |
| |
| return error; |
| } |
| |
| |
| /* |
| * This is the callback that is passed to the wait queue wakeup |
| * machanism. It is called by the stored file descriptors when they |
| * have events to report. |
| */ |
| static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) |
| { |
| int pwake = 0; |
| unsigned long flags; |
| struct epitem *epi = ep_item_from_wait(wait); |
| struct eventpoll *ep = epi->ep; |
| |
| DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p ep=%p\n", |
| current, epi->ffd.file, epi, ep)); |
| |
| write_lock_irqsave(&ep->lock, flags); |
| |
| /* |
| * If the event mask does not contain any poll(2) event, we consider the |
| * descriptor to be disabled. This condition is likely the effect of the |
| * EPOLLONESHOT bit that disables the descriptor when an event is received, |
| * until the next EPOLL_CTL_MOD will be issued. |
| */ |
| if (!(epi->event.events & ~EP_PRIVATE_BITS)) |
| goto is_disabled; |
| |
| /* If this file is already in the ready list we exit soon */ |
| if (ep_is_linked(&epi->rdllink)) |
| goto is_linked; |
| |
| list_add_tail(&epi->rdllink, &ep->rdllist); |
| |
| is_linked: |
| /* |
| * Wake up ( if active ) both the eventpoll wait list and the ->poll() |
| * wait list. |
| */ |
| if (waitqueue_active(&ep->wq)) |
| __wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE | |
| TASK_INTERRUPTIBLE); |
| if (waitqueue_active(&ep->poll_wait)) |
| pwake++; |
| |
| is_disabled: |
| write_unlock_irqrestore(&ep->lock, flags); |
| |
| /* We have to call this outside the lock */ |
| if (pwake) |
| ep_poll_safewake(&psw, &ep->poll_wait); |
| |
| return 1; |
| } |
| |
| |
| static int ep_eventpoll_close(struct inode *inode, struct file *file) |
| { |
| struct eventpoll *ep = file->private_data; |
| |
| if (ep) { |
| ep_free(ep); |
| kfree(ep); |
| } |
| |
| DNPRINTK(3, (KERN_INFO "[%p] eventpoll: close() ep=%p\n", current, ep)); |
| return 0; |
| } |
| |
| |
| static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) |
| { |
| unsigned int pollflags = 0; |
| unsigned long flags; |
| struct eventpoll *ep = file->private_data; |
| |
| /* Insert inside our poll wait queue */ |
| poll_wait(file, &ep->poll_wait, wait); |
| |
| /* Check our condition */ |
| read_lock_irqsave(&ep->lock, flags); |
| if (!list_empty(&ep->rdllist)) |
| pollflags = POLLIN | POLLRDNORM; |
| read_unlock_irqrestore(&ep->lock, flags); |
| |
| return pollflags; |
| } |
| |
| |
| /* |
| * Since we have to release the lock during the __copy_to_user() operation and |
| * during the f_op->poll() call, we try to collect the maximum number of items |
| * by reducing the irqlock/irqunlock switching rate. |
| */ |
| static int ep_collect_ready_items(struct eventpoll *ep, struct list_head *txlist, int maxevents) |
| { |
| int nepi; |
| unsigned long flags; |
| struct list_head *lsthead = &ep->rdllist, *lnk; |
| struct epitem *epi; |
| |
| write_lock_irqsave(&ep->lock, flags); |
| |
| for (nepi = 0, lnk = lsthead->next; lnk != lsthead && nepi < maxevents;) { |
| epi = list_entry(lnk, struct epitem, rdllink); |
| |
| lnk = lnk->next; |
| |
| /* If this file is already in the ready list we exit soon */ |
| if (!ep_is_linked(&epi->txlink)) { |
| /* |
| * This is initialized in this way so that the default |
| * behaviour of the reinjecting code will be to push back |
| * the item inside the ready list. |
| */ |
| epi->revents = epi->event.events; |
| |
| /* Link the ready item into the transfer list */ |
| list_add(&epi->txlink, txlist); |
| nepi++; |
| |
| /* |
| * Unlink the item from the ready list. |
| */ |
| ep_list_del(&epi->rdllink); |
| } |
| } |
| |
| write_unlock_irqrestore(&ep->lock, flags); |
| |
| return nepi; |
| } |
| |
| |
| /* |
| * This function is called without holding the "ep->lock" since the call to |
| * __copy_to_user() might sleep, and also f_op->poll() might reenable the IRQ |
| * because of the way poll() is traditionally implemented in Linux. |
| */ |
| static int ep_send_events(struct eventpoll *ep, struct list_head *txlist, |
| struct epoll_event __user *events) |
| { |
| int eventcnt = 0; |
| unsigned int revents; |
| struct list_head *lnk; |
| struct epitem *epi; |
| |
| /* |
| * We can loop without lock because this is a task private list. |
| * The test done during the collection loop will guarantee us that |
| * another task will not try to collect this file. Also, items |
| * cannot vanish during the loop because we are holding "sem". |
| */ |
| list_for_each(lnk, txlist) { |
| epi = list_entry(lnk, struct epitem, txlink); |
| |
| /* |
| * Get the ready file event set. We can safely use the file |
| * because we are holding the "sem" in read and this will |
| * guarantee that both the file and the item will not vanish. |
| */ |
| revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); |
| |
| /* |
| * Set the return event set for the current file descriptor. |
| * Note that only the task task was successfully able to link |
| * the item to its "txlist" will write this field. |
| */ |
| epi->revents = revents & epi->event.events; |
| |
| if (epi->revents) { |
| if (__put_user(epi->revents, |
| &events[eventcnt].events) || |
| __put_user(epi->event.data, |
| &events[eventcnt].data)) |
| return -EFAULT; |
| if (epi->event.events & EPOLLONESHOT) |
| epi->event.events &= EP_PRIVATE_BITS; |
| eventcnt++; |
| } |
| } |
| return eventcnt; |
| } |
| |
| |
| /* |
| * Walk through the transfer list we collected with ep_collect_ready_items() |
| * and, if 1) the item is still "alive" 2) its event set is not empty 3) it's |
| * not already linked, links it to the ready list. Same as above, we are holding |
| * "sem" so items cannot vanish underneath our nose. |
| */ |
| static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist) |
| { |
| int ricnt = 0, pwake = 0; |
| unsigned long flags; |
| struct epitem *epi; |
| |
| write_lock_irqsave(&ep->lock, flags); |
| |
| while (!list_empty(txlist)) { |
| epi = list_entry(txlist->next, struct epitem, txlink); |
| |
| /* Unlink the current item from the transfer list */ |
| ep_list_del(&epi->txlink); |
| |
| /* |
| * If the item is no more linked to the interest set, we don't |
| * have to push it inside the ready list because the following |
| * ep_release_epitem() is going to drop it. Also, if the current |
| * item is set to have an Edge Triggered behaviour, we don't have |
| * to push it back either. |
| */ |
| if (ep_rb_linked(&epi->rbn) && !(epi->event.events & EPOLLET) && |
| (epi->revents & epi->event.events) && !ep_is_linked(&epi->rdllink)) { |
| list_add_tail(&epi->rdllink, &ep->rdllist); |
| ricnt++; |
| } |
| } |
| |
| if (ricnt) { |
| /* |
| * Wake up ( if active ) both the eventpoll wait list and the ->poll() |
| * wait list. |
| */ |
| if (waitqueue_active(&ep->wq)) |
| __wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE | |
| TASK_INTERRUPTIBLE); |
| if (waitqueue_active(&ep->poll_wait)) |
| pwake++; |
| } |
| |
| write_unlock_irqrestore(&ep->lock, flags); |
| |
| /* We have to call this outside the lock */ |
| if (pwake) |
| ep_poll_safewake(&psw, &ep->poll_wait); |
| } |
| |
| |
| /* |
| * Perform the transfer of events to user space. |
| */ |
| static int ep_events_transfer(struct eventpoll *ep, |
| struct epoll_event __user *events, int maxevents) |
| { |
| int eventcnt = 0; |
| struct list_head txlist; |
| |
| INIT_LIST_HEAD(&txlist); |
| |
| /* |
| * We need to lock this because we could be hit by |
| * eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL). |
| */ |
| down_read(&ep->sem); |
| |
| /* Collect/extract ready items */ |
| if (ep_collect_ready_items(ep, &txlist, maxevents) > 0) { |
| /* Build result set in userspace */ |
| eventcnt = ep_send_events(ep, &txlist, events); |
| |
| /* Reinject ready items into the ready list */ |
| ep_reinject_items(ep, &txlist); |
| } |
| |
| up_read(&ep->sem); |
| |
| return eventcnt; |
| } |
| |
| |
| static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, |
| int maxevents, long timeout) |
| { |
| int res, eavail; |
| unsigned long flags; |
| long jtimeout; |
| wait_queue_t wait; |
| |
| /* |
| * Calculate the timeout by checking for the "infinite" value ( -1 ) |
| * and the overflow condition. The passed timeout is in milliseconds, |
| * that why (t * HZ) / 1000. |
| */ |
| jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ? |
| MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000; |
| |
| retry: |
| write_lock_irqsave(&ep->lock, flags); |
| |
| res = 0; |
| if (list_empty(&ep->rdllist)) { |
| /* |
| * We don't have any available event to return to the caller. |
| * We need to sleep here, and we will be wake up by |
| * ep_poll_callback() when events will become available. |
| */ |
| init_waitqueue_entry(&wait, current); |
| __add_wait_queue(&ep->wq, &wait); |
| |
| for (;;) { |
| /* |
| * We don't want to sleep if the ep_poll_callback() sends us |
| * a wakeup in between. That's why we set the task state |
| * to TASK_INTERRUPTIBLE before doing the checks. |
| */ |
| set_current_state(TASK_INTERRUPTIBLE); |
| if (!list_empty(&ep->rdllist) || !jtimeout) |
| break; |
| if (signal_pending(current)) { |
| res = -EINTR; |
| break; |
| } |
| |
| write_unlock_irqrestore(&ep->lock, flags); |
| jtimeout = schedule_timeout(jtimeout); |
| write_lock_irqsave(&ep->lock, flags); |
| } |
| __remove_wait_queue(&ep->wq, &wait); |
| |
| set_current_state(TASK_RUNNING); |
| } |
| |
| /* Is it worth to try to dig for events ? */ |
| eavail = !list_empty(&ep->rdllist); |
| |
| write_unlock_irqrestore(&ep->lock, flags); |
| |
| /* |
| * Try to transfer events to user space. In case we get 0 events and |
| * there's still timeout left over, we go trying again in search of |
| * more luck. |
| */ |
| if (!res && eavail && |
| !(res = ep_events_transfer(ep, events, maxevents)) && jtimeout) |
| goto retry; |
| |
| return res; |
| } |
| |
| |
| static int eventpollfs_delete_dentry(struct dentry *dentry) |
| { |
| |
| return 1; |
| } |
| |
| |
| static struct inode *ep_eventpoll_inode(void) |
| { |
| int error = -ENOMEM; |
| struct inode *inode = new_inode(eventpoll_mnt->mnt_sb); |
| |
| if (!inode) |
| goto eexit_1; |
| |
| inode->i_fop = &eventpoll_fops; |
| |
| /* |
| * Mark the inode dirty from the very beginning, |
| * that way it will never be moved to the dirty |
| * list because mark_inode_dirty() will think |
| * that it already _is_ on the dirty list. |
| */ |
| inode->i_state = I_DIRTY; |
| inode->i_mode = S_IRUSR | S_IWUSR; |
| inode->i_uid = current->fsuid; |
| inode->i_gid = current->fsgid; |
| inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; |
| return inode; |
| |
| eexit_1: |
| return ERR_PTR(error); |
| } |
| |
| |
| static int |
| eventpollfs_get_sb(struct file_system_type *fs_type, int flags, |
| const char *dev_name, void *data, struct vfsmount *mnt) |
| { |
| return get_sb_pseudo(fs_type, "eventpoll:", NULL, EVENTPOLLFS_MAGIC, |
| mnt); |
| } |
| |
| |
| static int __init eventpoll_init(void) |
| { |
| int error; |
| |
| mutex_init(&epmutex); |
| |
| /* Initialize the structure used to perform safe poll wait head wake ups */ |
| ep_poll_safewake_init(&psw); |
| |
| /* Allocates slab cache used to allocate "struct epitem" items */ |
| epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), |
| 0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC, |
| NULL, NULL); |
| |
| /* Allocates slab cache used to allocate "struct eppoll_entry" */ |
| pwq_cache = kmem_cache_create("eventpoll_pwq", |
| sizeof(struct eppoll_entry), 0, |
| EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL); |
| |
| /* |
| * Register the virtual file system that will be the source of inodes |
| * for the eventpoll files |
| */ |
| error = register_filesystem(&eventpoll_fs_type); |
| if (error) |
| goto epanic; |
| |
| /* Mount the above commented virtual file system */ |
| eventpoll_mnt = kern_mount(&eventpoll_fs_type); |
| error = PTR_ERR(eventpoll_mnt); |
| if (IS_ERR(eventpoll_mnt)) |
| goto epanic; |
| |
| DNPRINTK(3, (KERN_INFO "[%p] eventpoll: successfully initialized.\n", |
| current)); |
| return 0; |
| |
| epanic: |
| panic("eventpoll_init() failed\n"); |
| } |
| |
| |
| static void __exit eventpoll_exit(void) |
| { |
| /* Undo all operations done inside eventpoll_init() */ |
| unregister_filesystem(&eventpoll_fs_type); |
| mntput(eventpoll_mnt); |
| kmem_cache_destroy(pwq_cache); |
| kmem_cache_destroy(epi_cache); |
| } |
| |
| module_init(eventpoll_init); |
| module_exit(eventpoll_exit); |
| |
| MODULE_LICENSE("GPL"); |