| /** |
| * |
| * GSPCA sub driver for W996[78]CF JPEG USB Dual Mode Camera Chip. |
| * |
| * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com> |
| * |
| * This module is adapted from the in kernel v4l1 w9968cf driver: |
| * |
| * Copyright (C) 2002-2004 by Luca Risolia <luca.risolia@studio.unibo.it> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| */ |
| |
| /* Note this is not a stand alone driver, it gets included in ov519.c, this |
| is a bit of a hack, but it needs the driver code for a lot of different |
| ov sensors which is already present in ov519.c (the old v4l1 driver used |
| the ovchipcam framework). When we have the time we really should move |
| the sensor drivers to v4l2 sub drivers, and properly split of this |
| driver from ov519.c */ |
| |
| #define W9968CF_I2C_BUS_DELAY 4 /* delay in us for I2C bit r/w operations */ |
| |
| #define Y_QUANTABLE (&sd->jpeg_hdr[JPEG_QT0_OFFSET]) |
| #define UV_QUANTABLE (&sd->jpeg_hdr[JPEG_QT1_OFFSET]) |
| |
| static const struct v4l2_pix_format w9968cf_vga_mode[] = { |
| {160, 120, V4L2_PIX_FMT_UYVY, V4L2_FIELD_NONE, |
| .bytesperline = 160 * 2, |
| .sizeimage = 160 * 120 * 2, |
| .colorspace = V4L2_COLORSPACE_JPEG}, |
| {176, 144, V4L2_PIX_FMT_UYVY, V4L2_FIELD_NONE, |
| .bytesperline = 176 * 2, |
| .sizeimage = 176 * 144 * 2, |
| .colorspace = V4L2_COLORSPACE_JPEG}, |
| {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, |
| .bytesperline = 320 * 2, |
| .sizeimage = 320 * 240 * 2, |
| .colorspace = V4L2_COLORSPACE_JPEG}, |
| {352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, |
| .bytesperline = 352 * 2, |
| .sizeimage = 352 * 288 * 2, |
| .colorspace = V4L2_COLORSPACE_JPEG}, |
| {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, |
| .bytesperline = 640 * 2, |
| .sizeimage = 640 * 480 * 2, |
| .colorspace = V4L2_COLORSPACE_JPEG}, |
| }; |
| |
| static int reg_w(struct sd *sd, __u16 index, __u16 value); |
| |
| /*-------------------------------------------------------------------------- |
| Write 64-bit data to the fast serial bus registers. |
| Return 0 on success, -1 otherwise. |
| --------------------------------------------------------------------------*/ |
| static int w9968cf_write_fsb(struct sd *sd, u16* data) |
| { |
| struct usb_device* udev = sd->gspca_dev.dev; |
| u16 value; |
| int ret; |
| |
| value = *data++; |
| memcpy(sd->gspca_dev.usb_buf, data, 6); |
| |
| ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 0, |
| USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE, |
| value, 0x06, sd->gspca_dev.usb_buf, 6, 500); |
| if (ret < 0) { |
| PDEBUG(D_ERR, "Write FSB registers failed (%d)", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /*-------------------------------------------------------------------------- |
| Write data to the serial bus control register. |
| Return 0 on success, a negative number otherwise. |
| --------------------------------------------------------------------------*/ |
| static int w9968cf_write_sb(struct sd *sd, u16 value) |
| { |
| int ret; |
| |
| /* We don't use reg_w here, as that would cause all writes when |
| bitbanging i2c to be logged, making the logs impossible to read */ |
| ret = usb_control_msg(sd->gspca_dev.dev, |
| usb_sndctrlpipe(sd->gspca_dev.dev, 0), |
| 0, |
| USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, |
| value, 0x01, NULL, 0, 500); |
| |
| udelay(W9968CF_I2C_BUS_DELAY); |
| |
| if (ret < 0) { |
| PDEBUG(D_ERR, "Write SB reg [01] %04x failed", value); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /*-------------------------------------------------------------------------- |
| Read data from the serial bus control register. |
| Return 0 on success, a negative number otherwise. |
| --------------------------------------------------------------------------*/ |
| static int w9968cf_read_sb(struct sd *sd) |
| { |
| int ret; |
| |
| /* We don't use reg_r here, as the w9968cf is special and has 16 |
| bit registers instead of 8 bit */ |
| ret = usb_control_msg(sd->gspca_dev.dev, |
| usb_rcvctrlpipe(sd->gspca_dev.dev, 0), |
| 1, |
| USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, |
| 0, 0x01, sd->gspca_dev.usb_buf, 2, 500); |
| if (ret >= 0) |
| ret = sd->gspca_dev.usb_buf[0] | |
| (sd->gspca_dev.usb_buf[1] << 8); |
| else |
| PDEBUG(D_ERR, "Read SB reg [01] failed"); |
| |
| udelay(W9968CF_I2C_BUS_DELAY); |
| |
| return ret; |
| } |
| |
| /*-------------------------------------------------------------------------- |
| Upload quantization tables for the JPEG compression. |
| This function is called by w9968cf_start_transfer(). |
| Return 0 on success, a negative number otherwise. |
| --------------------------------------------------------------------------*/ |
| static int w9968cf_upload_quantizationtables(struct sd *sd) |
| { |
| u16 a, b; |
| int ret = 0, i, j; |
| |
| ret += reg_w(sd, 0x39, 0x0010); /* JPEG clock enable */ |
| |
| for (i = 0, j = 0; i < 32; i++, j += 2) { |
| a = Y_QUANTABLE[j] | ((unsigned)(Y_QUANTABLE[j+1]) << 8); |
| b = UV_QUANTABLE[j] | ((unsigned)(UV_QUANTABLE[j+1]) << 8); |
| ret += reg_w(sd, 0x40+i, a); |
| ret += reg_w(sd, 0x60+i, b); |
| } |
| ret += reg_w(sd, 0x39, 0x0012); /* JPEG encoder enable */ |
| |
| return ret; |
| } |
| |
| /**************************************************************************** |
| * Low-level I2C I/O functions. * |
| * The adapter supports the following I2C transfer functions: * |
| * i2c_adap_fastwrite_byte_data() (at 400 kHz bit frequency only) * |
| * i2c_adap_read_byte_data() * |
| * i2c_adap_read_byte() * |
| ****************************************************************************/ |
| |
| static int w9968cf_smbus_start(struct sd *sd) |
| { |
| int ret = 0; |
| |
| ret += w9968cf_write_sb(sd, 0x0011); /* SDE=1, SDA=0, SCL=1 */ |
| ret += w9968cf_write_sb(sd, 0x0010); /* SDE=1, SDA=0, SCL=0 */ |
| |
| return ret; |
| } |
| |
| static int w9968cf_smbus_stop(struct sd *sd) |
| { |
| int ret = 0; |
| |
| ret += w9968cf_write_sb(sd, 0x0010); /* SDE=1, SDA=0, SCL=0 */ |
| ret += w9968cf_write_sb(sd, 0x0011); /* SDE=1, SDA=0, SCL=1 */ |
| ret += w9968cf_write_sb(sd, 0x0013); /* SDE=1, SDA=1, SCL=1 */ |
| |
| return ret; |
| } |
| |
| static int w9968cf_smbus_write_byte(struct sd *sd, u8 v) |
| { |
| u8 bit; |
| int ret = 0, sda; |
| |
| for (bit = 0 ; bit < 8 ; bit++) { |
| sda = (v & 0x80) ? 2 : 0; |
| v <<= 1; |
| /* SDE=1, SDA=sda, SCL=0 */ |
| ret += w9968cf_write_sb(sd, 0x10 | sda); |
| /* SDE=1, SDA=sda, SCL=1 */ |
| ret += w9968cf_write_sb(sd, 0x11 | sda); |
| /* SDE=1, SDA=sda, SCL=0 */ |
| ret += w9968cf_write_sb(sd, 0x10 | sda); |
| } |
| |
| return ret; |
| } |
| |
| static int w9968cf_smbus_read_byte(struct sd *sd, u8* v) |
| { |
| u8 bit; |
| int ret = 0; |
| |
| /* No need to ensure SDA is high as we are always called after |
| read_ack which ends with SDA high */ |
| *v = 0; |
| for (bit = 0 ; bit < 8 ; bit++) { |
| *v <<= 1; |
| /* SDE=1, SDA=1, SCL=1 */ |
| ret += w9968cf_write_sb(sd, 0x0013); |
| *v |= (w9968cf_read_sb(sd) & 0x0008) ? 1 : 0; |
| /* SDE=1, SDA=1, SCL=0 */ |
| ret += w9968cf_write_sb(sd, 0x0012); |
| } |
| |
| return ret; |
| } |
| |
| static int w9968cf_smbus_write_nack(struct sd *sd) |
| { |
| int ret = 0; |
| |
| /* No need to ensure SDA is high as we are always called after |
| read_byte which ends with SDA high */ |
| ret += w9968cf_write_sb(sd, 0x0013); /* SDE=1, SDA=1, SCL=1 */ |
| ret += w9968cf_write_sb(sd, 0x0012); /* SDE=1, SDA=1, SCL=0 */ |
| |
| return ret; |
| } |
| |
| static int w9968cf_smbus_read_ack(struct sd *sd) |
| { |
| int ret = 0, sda; |
| |
| /* Ensure SDA is high before raising clock to avoid a spurious stop */ |
| ret += w9968cf_write_sb(sd, 0x0012); /* SDE=1, SDA=1, SCL=0 */ |
| ret += w9968cf_write_sb(sd, 0x0013); /* SDE=1, SDA=1, SCL=1 */ |
| sda = w9968cf_read_sb(sd); |
| ret += w9968cf_write_sb(sd, 0x0012); /* SDE=1, SDA=1, SCL=0 */ |
| if (sda < 0) |
| ret += sda; |
| else if (sda & 0x08) { |
| PDEBUG(D_USBI, "Did not receive i2c ACK"); |
| ret += -1; |
| } |
| |
| return ret; |
| } |
| |
| /* SMBus protocol: S Addr Wr [A] Subaddr [A] Value [A] P */ |
| static int w9968cf_i2c_w(struct sd *sd, u8 reg, u8 value) |
| { |
| u16* data = (u16 *)sd->gspca_dev.usb_buf; |
| int ret = 0; |
| |
| data[0] = 0x082f | ((sd->sensor_addr & 0x80) ? 0x1500 : 0x0); |
| data[0] |= (sd->sensor_addr & 0x40) ? 0x4000 : 0x0; |
| data[1] = 0x2082 | ((sd->sensor_addr & 0x40) ? 0x0005 : 0x0); |
| data[1] |= (sd->sensor_addr & 0x20) ? 0x0150 : 0x0; |
| data[1] |= (sd->sensor_addr & 0x10) ? 0x5400 : 0x0; |
| data[2] = 0x8208 | ((sd->sensor_addr & 0x08) ? 0x0015 : 0x0); |
| data[2] |= (sd->sensor_addr & 0x04) ? 0x0540 : 0x0; |
| data[2] |= (sd->sensor_addr & 0x02) ? 0x5000 : 0x0; |
| data[3] = 0x1d20 | ((sd->sensor_addr & 0x02) ? 0x0001 : 0x0); |
| data[3] |= (sd->sensor_addr & 0x01) ? 0x0054 : 0x0; |
| |
| ret += w9968cf_write_fsb(sd, data); |
| |
| data[0] = 0x8208 | ((reg & 0x80) ? 0x0015 : 0x0); |
| data[0] |= (reg & 0x40) ? 0x0540 : 0x0; |
| data[0] |= (reg & 0x20) ? 0x5000 : 0x0; |
| data[1] = 0x0820 | ((reg & 0x20) ? 0x0001 : 0x0); |
| data[1] |= (reg & 0x10) ? 0x0054 : 0x0; |
| data[1] |= (reg & 0x08) ? 0x1500 : 0x0; |
| data[1] |= (reg & 0x04) ? 0x4000 : 0x0; |
| data[2] = 0x2082 | ((reg & 0x04) ? 0x0005 : 0x0); |
| data[2] |= (reg & 0x02) ? 0x0150 : 0x0; |
| data[2] |= (reg & 0x01) ? 0x5400 : 0x0; |
| data[3] = 0x001d; |
| |
| ret += w9968cf_write_fsb(sd, data); |
| |
| data[0] = 0x8208 | ((value & 0x80) ? 0x0015 : 0x0); |
| data[0] |= (value & 0x40) ? 0x0540 : 0x0; |
| data[0] |= (value & 0x20) ? 0x5000 : 0x0; |
| data[1] = 0x0820 | ((value & 0x20) ? 0x0001 : 0x0); |
| data[1] |= (value & 0x10) ? 0x0054 : 0x0; |
| data[1] |= (value & 0x08) ? 0x1500 : 0x0; |
| data[1] |= (value & 0x04) ? 0x4000 : 0x0; |
| data[2] = 0x2082 | ((value & 0x04) ? 0x0005 : 0x0); |
| data[2] |= (value & 0x02) ? 0x0150 : 0x0; |
| data[2] |= (value & 0x01) ? 0x5400 : 0x0; |
| data[3] = 0xfe1d; |
| |
| ret += w9968cf_write_fsb(sd, data); |
| |
| if (!ret) |
| PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg); |
| else |
| PDEBUG(D_ERR, "i2c 0x%02x -> [0x%02x] failed", value, reg); |
| |
| return ret; |
| } |
| |
| /* SMBus protocol: S Addr Wr [A] Subaddr [A] P S Addr+1 Rd [A] [Value] NA P */ |
| static int w9968cf_i2c_r(struct sd *sd, u8 reg) |
| { |
| int ret = 0; |
| u8 value; |
| |
| /* Fast serial bus data control disable */ |
| ret += w9968cf_write_sb(sd, 0x0013); /* don't change ! */ |
| |
| ret += w9968cf_smbus_start(sd); |
| ret += w9968cf_smbus_write_byte(sd, sd->sensor_addr); |
| ret += w9968cf_smbus_read_ack(sd); |
| ret += w9968cf_smbus_write_byte(sd, reg); |
| ret += w9968cf_smbus_read_ack(sd); |
| ret += w9968cf_smbus_stop(sd); |
| ret += w9968cf_smbus_start(sd); |
| ret += w9968cf_smbus_write_byte(sd, sd->sensor_addr + 1); |
| ret += w9968cf_smbus_read_ack(sd); |
| ret += w9968cf_smbus_read_byte(sd, &value); |
| /* signal we don't want to read anymore, the v4l1 driver used to |
| send an ack here which is very wrong! (and then fixed |
| the issues this gave by retrying reads) */ |
| ret += w9968cf_smbus_write_nack(sd); |
| ret += w9968cf_smbus_stop(sd); |
| |
| /* Fast serial bus data control re-enable */ |
| ret += w9968cf_write_sb(sd, 0x0030); |
| |
| if (!ret) { |
| ret = value; |
| PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, value); |
| } else |
| PDEBUG(D_ERR, "i2c read [0x%02x] failed", reg); |
| |
| return ret; |
| } |
| |
| |
| /*-------------------------------------------------------------------------- |
| Turn on the LED on some webcams. A beep should be heard too. |
| Return 0 on success, a negative number otherwise. |
| --------------------------------------------------------------------------*/ |
| static int w9968cf_configure(struct sd *sd) |
| { |
| int ret = 0; |
| |
| ret += reg_w(sd, 0x00, 0xff00); /* power-down */ |
| ret += reg_w(sd, 0x00, 0xbf17); /* reset everything */ |
| ret += reg_w(sd, 0x00, 0xbf10); /* normal operation */ |
| ret += reg_w(sd, 0x01, 0x0010); /* serial bus, SDS high */ |
| ret += reg_w(sd, 0x01, 0x0000); /* serial bus, SDS low */ |
| ret += reg_w(sd, 0x01, 0x0010); /* ..high 'beep-beep' */ |
| ret += reg_w(sd, 0x01, 0x0030); /* Set sda scl to FSB mode */ |
| |
| if (ret) |
| PDEBUG(D_ERR, "Couldn't turn on the LED"); |
| |
| sd->stopped = 1; |
| |
| return ret; |
| } |
| |
| static int w9968cf_init(struct sd *sd) |
| { |
| int ret = 0; |
| unsigned long hw_bufsize = sd->sif ? (352 * 288 * 2) : (640 * 480 * 2), |
| y0 = 0x0000, |
| u0 = y0 + hw_bufsize/2, |
| v0 = u0 + hw_bufsize/4, |
| y1 = v0 + hw_bufsize/4, |
| u1 = y1 + hw_bufsize/2, |
| v1 = u1 + hw_bufsize/4; |
| |
| ret += reg_w(sd, 0x00, 0xff00); /* power off */ |
| ret += reg_w(sd, 0x00, 0xbf10); /* power on */ |
| |
| ret += reg_w(sd, 0x03, 0x405d); /* DRAM timings */ |
| ret += reg_w(sd, 0x04, 0x0030); /* SDRAM timings */ |
| |
| ret += reg_w(sd, 0x20, y0 & 0xffff); /* Y buf.0, low */ |
| ret += reg_w(sd, 0x21, y0 >> 16); /* Y buf.0, high */ |
| ret += reg_w(sd, 0x24, u0 & 0xffff); /* U buf.0, low */ |
| ret += reg_w(sd, 0x25, u0 >> 16); /* U buf.0, high */ |
| ret += reg_w(sd, 0x28, v0 & 0xffff); /* V buf.0, low */ |
| ret += reg_w(sd, 0x29, v0 >> 16); /* V buf.0, high */ |
| |
| ret += reg_w(sd, 0x22, y1 & 0xffff); /* Y buf.1, low */ |
| ret += reg_w(sd, 0x23, y1 >> 16); /* Y buf.1, high */ |
| ret += reg_w(sd, 0x26, u1 & 0xffff); /* U buf.1, low */ |
| ret += reg_w(sd, 0x27, u1 >> 16); /* U buf.1, high */ |
| ret += reg_w(sd, 0x2a, v1 & 0xffff); /* V buf.1, low */ |
| ret += reg_w(sd, 0x2b, v1 >> 16); /* V buf.1, high */ |
| |
| ret += reg_w(sd, 0x32, y1 & 0xffff); /* JPEG buf 0 low */ |
| ret += reg_w(sd, 0x33, y1 >> 16); /* JPEG buf 0 high */ |
| |
| ret += reg_w(sd, 0x34, y1 & 0xffff); /* JPEG buf 1 low */ |
| ret += reg_w(sd, 0x35, y1 >> 16); /* JPEG bug 1 high */ |
| |
| ret += reg_w(sd, 0x36, 0x0000);/* JPEG restart interval */ |
| ret += reg_w(sd, 0x37, 0x0804);/*JPEG VLE FIFO threshold*/ |
| ret += reg_w(sd, 0x38, 0x0000);/* disable hw up-scaling */ |
| ret += reg_w(sd, 0x3f, 0x0000); /* JPEG/MCTL test data */ |
| |
| return ret; |
| } |
| |
| static int w9968cf_set_crop_window(struct sd *sd) |
| { |
| int ret = 0, start_cropx, start_cropy, x, y, fw, fh, cw, ch, |
| max_width, max_height; |
| |
| if (sd->sif) { |
| max_width = 352; |
| max_height = 288; |
| } else { |
| max_width = 640; |
| max_height = 480; |
| } |
| |
| if (sd->sensor == SEN_OV7620) { |
| /* Sigh, this is dependend on the clock / framerate changes |
| made by the frequency control, sick. */ |
| if (sd->freq == 1) { |
| start_cropx = 277; |
| start_cropy = 37; |
| } else { |
| start_cropx = 105; |
| start_cropy = 37; |
| } |
| } else { |
| start_cropx = 320; |
| start_cropy = 35; |
| } |
| |
| /* Work around to avoid FP arithmetics */ |
| #define SC(x) ((x) << 10) |
| |
| /* Scaling factors */ |
| fw = SC(sd->gspca_dev.width) / max_width; |
| fh = SC(sd->gspca_dev.height) / max_height; |
| |
| cw = (fw >= fh) ? max_width : SC(sd->gspca_dev.width)/fh; |
| ch = (fw >= fh) ? SC(sd->gspca_dev.height)/fw : max_height; |
| |
| sd->sensor_width = max_width; |
| sd->sensor_height = max_height; |
| |
| x = (max_width - cw) / 2; |
| y = (max_height - ch) / 2; |
| |
| ret += reg_w(sd, 0x10, start_cropx + x); |
| ret += reg_w(sd, 0x11, start_cropy + y); |
| ret += reg_w(sd, 0x12, start_cropx + x + cw); |
| ret += reg_w(sd, 0x13, start_cropy + y + ch); |
| |
| return ret; |
| } |
| |
| static int w9968cf_mode_init_regs(struct sd *sd) |
| { |
| int ret = 0, val, vs_polarity, hs_polarity; |
| |
| ret += w9968cf_set_crop_window(sd); |
| |
| ret += reg_w(sd, 0x14, sd->gspca_dev.width); |
| ret += reg_w(sd, 0x15, sd->gspca_dev.height); |
| |
| /* JPEG width & height */ |
| ret += reg_w(sd, 0x30, sd->gspca_dev.width); |
| ret += reg_w(sd, 0x31, sd->gspca_dev.height); |
| |
| /* Y & UV frame buffer strides (in WORD) */ |
| if (w9968cf_vga_mode[sd->gspca_dev.curr_mode].pixelformat == |
| V4L2_PIX_FMT_JPEG) { |
| ret += reg_w(sd, 0x2c, sd->gspca_dev.width/2); |
| ret += reg_w(sd, 0x2d, sd->gspca_dev.width/4); |
| } else |
| ret += reg_w(sd, 0x2c, sd->gspca_dev.width); |
| |
| ret += reg_w(sd, 0x00, 0xbf17); /* reset everything */ |
| ret += reg_w(sd, 0x00, 0xbf10); /* normal operation */ |
| |
| /* Transfer size in WORDS (for UYVY format only) */ |
| val = sd->gspca_dev.width * sd->gspca_dev.height; |
| ret += reg_w(sd, 0x3d, val & 0xffff); /* low bits */ |
| ret += reg_w(sd, 0x3e, val >> 16); /* high bits */ |
| |
| if (w9968cf_vga_mode[sd->gspca_dev.curr_mode].pixelformat == |
| V4L2_PIX_FMT_JPEG) { |
| /* We may get called multiple times (usb isoc bw negotiat.) */ |
| jpeg_define(sd->jpeg_hdr, sd->gspca_dev.height, |
| sd->gspca_dev.width, 0x22); /* JPEG 420 */ |
| jpeg_set_qual(sd->jpeg_hdr, sd->quality); |
| ret += w9968cf_upload_quantizationtables(sd); |
| } |
| |
| /* Video Capture Control Register */ |
| if (sd->sensor == SEN_OV7620) { |
| /* Seems to work around a bug in the image sensor */ |
| vs_polarity = 1; |
| hs_polarity = 1; |
| } else { |
| vs_polarity = 1; |
| hs_polarity = 0; |
| } |
| |
| val = (vs_polarity << 12) | (hs_polarity << 11); |
| |
| /* NOTE: We may not have enough memory to do double buffering while |
| doing compression (amount of memory differs per model cam). |
| So we use the second image buffer also as jpeg stream buffer |
| (see w9968cf_init), and disable double buffering. */ |
| if (w9968cf_vga_mode[sd->gspca_dev.curr_mode].pixelformat == |
| V4L2_PIX_FMT_JPEG) { |
| /* val |= 0x0002; YUV422P */ |
| val |= 0x0003; /* YUV420P */ |
| } else |
| val |= 0x0080; /* Enable HW double buffering */ |
| |
| /* val |= 0x0020; enable clamping */ |
| /* val |= 0x0008; enable (1-2-1) filter */ |
| /* val |= 0x000c; enable (2-3-6-3-2) filter */ |
| |
| val |= 0x8000; /* capt. enable */ |
| |
| ret += reg_w(sd, 0x16, val); |
| |
| sd->gspca_dev.empty_packet = 0; |
| |
| return ret; |
| } |
| |
| static void w9968cf_stop0(struct sd *sd) |
| { |
| if (sd->gspca_dev.present) { |
| reg_w(sd, 0x39, 0x0000); /* disable JPEG encoder */ |
| reg_w(sd, 0x16, 0x0000); /* stop video capture */ |
| } |
| } |
| |
| /* The w9968cf docs say that a 0 sized packet means EOF (and also SOF |
| for the next frame). This seems to simply not be true when operating |
| in JPEG mode, in this case there may be empty packets within the |
| frame. So in JPEG mode use the JPEG SOI marker to detect SOF. |
| |
| Note to make things even more interesting the w9968cf sends *PLANAR* jpeg, |
| to be precise it sends: SOI, SOF, DRI, SOS, Y-data, SOS, U-data, SOS, |
| V-data, EOI. */ |
| static void w9968cf_pkt_scan(struct gspca_dev *gspca_dev, |
| u8 *data, /* isoc packet */ |
| int len) /* iso packet length */ |
| { |
| struct sd *sd = (struct sd *) gspca_dev; |
| |
| if (w9968cf_vga_mode[gspca_dev->curr_mode].pixelformat == |
| V4L2_PIX_FMT_JPEG) { |
| if (len >= 2 && |
| data[0] == 0xff && |
| data[1] == 0xd8) { |
| gspca_frame_add(gspca_dev, LAST_PACKET, |
| NULL, 0); |
| gspca_frame_add(gspca_dev, FIRST_PACKET, |
| sd->jpeg_hdr, JPEG_HDR_SZ); |
| /* Strip the ff d8, our own header (which adds |
| huffman and quantization tables) already has this */ |
| len -= 2; |
| data += 2; |
| } |
| } else { |
| /* In UYVY mode an empty packet signals EOF */ |
| if (gspca_dev->empty_packet) { |
| gspca_frame_add(gspca_dev, LAST_PACKET, |
| NULL, 0); |
| gspca_frame_add(gspca_dev, FIRST_PACKET, |
| NULL, 0); |
| gspca_dev->empty_packet = 0; |
| } |
| } |
| gspca_frame_add(gspca_dev, INTER_PACKET, data, len); |
| } |