blob: e1e68da6f35c2edd71a08c47ddede967c90db3f9 [file] [log] [blame]
/*
* Generic EDAC defs
*
* Author: Dave Jiang <djiang@mvista.com>
*
* 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
* the terms of the GNU General Public License version 2. This program
* is licensed "as is" without any warranty of any kind, whether express
* or implied.
*
*/
#ifndef _LINUX_EDAC_H_
#define _LINUX_EDAC_H_
#include <linux/atomic.h>
#include <linux/device.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/debugfs.h>
struct device;
#define EDAC_OPSTATE_INVAL -1
#define EDAC_OPSTATE_POLL 0
#define EDAC_OPSTATE_NMI 1
#define EDAC_OPSTATE_INT 2
extern int edac_op_state;
extern int edac_err_assert;
extern atomic_t edac_handlers;
extern struct bus_type edac_subsys;
extern int edac_handler_set(void);
extern void edac_atomic_assert_error(void);
extern struct bus_type *edac_get_sysfs_subsys(void);
extern void edac_put_sysfs_subsys(void);
enum {
EDAC_REPORTING_ENABLED,
EDAC_REPORTING_DISABLED,
EDAC_REPORTING_FORCE
};
extern int edac_report_status;
#ifdef CONFIG_EDAC
static inline int get_edac_report_status(void)
{
return edac_report_status;
}
static inline void set_edac_report_status(int new)
{
edac_report_status = new;
}
#else
static inline int get_edac_report_status(void)
{
return EDAC_REPORTING_DISABLED;
}
static inline void set_edac_report_status(int new)
{
}
#endif
static inline void opstate_init(void)
{
switch (edac_op_state) {
case EDAC_OPSTATE_POLL:
case EDAC_OPSTATE_NMI:
break;
default:
edac_op_state = EDAC_OPSTATE_POLL;
}
return;
}
/* Max length of a DIMM label*/
#define EDAC_MC_LABEL_LEN 31
/* Maximum size of the location string */
#define LOCATION_SIZE 256
/* Defines the maximum number of labels that can be reported */
#define EDAC_MAX_LABELS 8
/* String used to join two or more labels */
#define OTHER_LABEL " or "
/**
* enum dev_type - describe the type of memory DRAM chips used at the stick
* @DEV_UNKNOWN: Can't be determined, or MC doesn't support detect it
* @DEV_X1: 1 bit for data
* @DEV_X2: 2 bits for data
* @DEV_X4: 4 bits for data
* @DEV_X8: 8 bits for data
* @DEV_X16: 16 bits for data
* @DEV_X32: 32 bits for data
* @DEV_X64: 64 bits for data
*
* Typical values are x4 and x8.
*/
enum dev_type {
DEV_UNKNOWN = 0,
DEV_X1,
DEV_X2,
DEV_X4,
DEV_X8,
DEV_X16,
DEV_X32, /* Do these parts exist? */
DEV_X64 /* Do these parts exist? */
};
#define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN)
#define DEV_FLAG_X1 BIT(DEV_X1)
#define DEV_FLAG_X2 BIT(DEV_X2)
#define DEV_FLAG_X4 BIT(DEV_X4)
#define DEV_FLAG_X8 BIT(DEV_X8)
#define DEV_FLAG_X16 BIT(DEV_X16)
#define DEV_FLAG_X32 BIT(DEV_X32)
#define DEV_FLAG_X64 BIT(DEV_X64)
/**
* enum hw_event_mc_err_type - type of the detected error
*
* @HW_EVENT_ERR_CORRECTED: Corrected Error - Indicates that an ECC
* corrected error was detected
* @HW_EVENT_ERR_UNCORRECTED: Uncorrected Error - Indicates an error that
* can't be corrected by ECC, but it is not
* fatal (maybe it is on an unused memory area,
* or the memory controller could recover from
* it for example, by re-trying the operation).
* @HW_EVENT_ERR_FATAL: Fatal Error - Uncorrected error that could not
* be recovered.
*/
enum hw_event_mc_err_type {
HW_EVENT_ERR_CORRECTED,
HW_EVENT_ERR_UNCORRECTED,
HW_EVENT_ERR_FATAL,
HW_EVENT_ERR_INFO,
};
static inline char *mc_event_error_type(const unsigned int err_type)
{
switch (err_type) {
case HW_EVENT_ERR_CORRECTED:
return "Corrected";
case HW_EVENT_ERR_UNCORRECTED:
return "Uncorrected";
case HW_EVENT_ERR_FATAL:
return "Fatal";
default:
case HW_EVENT_ERR_INFO:
return "Info";
}
}
/**
* enum mem_type - memory types. For a more detailed reference, please see
* http://en.wikipedia.org/wiki/DRAM
*
* @MEM_EMPTY Empty csrow
* @MEM_RESERVED: Reserved csrow type
* @MEM_UNKNOWN: Unknown csrow type
* @MEM_FPM: FPM - Fast Page Mode, used on systems up to 1995.
* @MEM_EDO: EDO - Extended data out, used on systems up to 1998.
* @MEM_BEDO: BEDO - Burst Extended data out, an EDO variant.
* @MEM_SDR: SDR - Single data rate SDRAM
* http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
* They use 3 pins for chip select: Pins 0 and 2 are
* for rank 0; pins 1 and 3 are for rank 1, if the memory
* is dual-rank.
* @MEM_RDR: Registered SDR SDRAM
* @MEM_DDR: Double data rate SDRAM
* http://en.wikipedia.org/wiki/DDR_SDRAM
* @MEM_RDDR: Registered Double data rate SDRAM
* This is a variant of the DDR memories.
* A registered memory has a buffer inside it, hiding
* part of the memory details to the memory controller.
* @MEM_RMBS: Rambus DRAM, used on a few Pentium III/IV controllers.
* @MEM_DDR2: DDR2 RAM, as described at JEDEC JESD79-2F.
* Those memories are labed as "PC2-" instead of "PC" to
* differenciate from DDR.
* @MEM_FB_DDR2: Fully-Buffered DDR2, as described at JEDEC Std No. 205
* and JESD206.
* Those memories are accessed per DIMM slot, and not by
* a chip select signal.
* @MEM_RDDR2: Registered DDR2 RAM
* This is a variant of the DDR2 memories.
* @MEM_XDR: Rambus XDR
* It is an evolution of the original RAMBUS memories,
* created to compete with DDR2. Weren't used on any
* x86 arch, but cell_edac PPC memory controller uses it.
* @MEM_DDR3: DDR3 RAM
* @MEM_RDDR3: Registered DDR3 RAM
* This is a variant of the DDR3 memories.
* @MEM_DDR4: DDR4 RAM
* @MEM_RDDR4: Registered DDR4 RAM
* This is a variant of the DDR4 memories.
*/
enum mem_type {
MEM_EMPTY = 0,
MEM_RESERVED,
MEM_UNKNOWN,
MEM_FPM,
MEM_EDO,
MEM_BEDO,
MEM_SDR,
MEM_RDR,
MEM_DDR,
MEM_RDDR,
MEM_RMBS,
MEM_DDR2,
MEM_FB_DDR2,
MEM_RDDR2,
MEM_XDR,
MEM_DDR3,
MEM_RDDR3,
MEM_DDR4,
MEM_RDDR4,
};
#define MEM_FLAG_EMPTY BIT(MEM_EMPTY)
#define MEM_FLAG_RESERVED BIT(MEM_RESERVED)
#define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN)
#define MEM_FLAG_FPM BIT(MEM_FPM)
#define MEM_FLAG_EDO BIT(MEM_EDO)
#define MEM_FLAG_BEDO BIT(MEM_BEDO)
#define MEM_FLAG_SDR BIT(MEM_SDR)
#define MEM_FLAG_RDR BIT(MEM_RDR)
#define MEM_FLAG_DDR BIT(MEM_DDR)
#define MEM_FLAG_RDDR BIT(MEM_RDDR)
#define MEM_FLAG_RMBS BIT(MEM_RMBS)
#define MEM_FLAG_DDR2 BIT(MEM_DDR2)
#define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2)
#define MEM_FLAG_RDDR2 BIT(MEM_RDDR2)
#define MEM_FLAG_XDR BIT(MEM_XDR)
#define MEM_FLAG_DDR3 BIT(MEM_DDR3)
#define MEM_FLAG_RDDR3 BIT(MEM_RDDR3)
/**
* enum edac-type - Error Detection and Correction capabilities and mode
* @EDAC_UNKNOWN: Unknown if ECC is available
* @EDAC_NONE: Doesn't support ECC
* @EDAC_RESERVED: Reserved ECC type
* @EDAC_PARITY: Detects parity errors
* @EDAC_EC: Error Checking - no correction
* @EDAC_SECDED: Single bit error correction, Double detection
* @EDAC_S2ECD2ED: Chipkill x2 devices - do these exist?
* @EDAC_S4ECD4ED: Chipkill x4 devices
* @EDAC_S8ECD8ED: Chipkill x8 devices
* @EDAC_S16ECD16ED: Chipkill x16 devices
*/
enum edac_type {
EDAC_UNKNOWN = 0,
EDAC_NONE,
EDAC_RESERVED,
EDAC_PARITY,
EDAC_EC,
EDAC_SECDED,
EDAC_S2ECD2ED,
EDAC_S4ECD4ED,
EDAC_S8ECD8ED,
EDAC_S16ECD16ED,
};
#define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN)
#define EDAC_FLAG_NONE BIT(EDAC_NONE)
#define EDAC_FLAG_PARITY BIT(EDAC_PARITY)
#define EDAC_FLAG_EC BIT(EDAC_EC)
#define EDAC_FLAG_SECDED BIT(EDAC_SECDED)
#define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED)
#define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED)
#define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED)
#define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED)
/**
* enum scrub_type - scrubbing capabilities
* @SCRUB_UNKNOWN Unknown if scrubber is available
* @SCRUB_NONE: No scrubber
* @SCRUB_SW_PROG: SW progressive (sequential) scrubbing
* @SCRUB_SW_SRC: Software scrub only errors
* @SCRUB_SW_PROG_SRC: Progressive software scrub from an error
* @SCRUB_SW_TUNABLE: Software scrub frequency is tunable
* @SCRUB_HW_PROG: HW progressive (sequential) scrubbing
* @SCRUB_HW_SRC: Hardware scrub only errors
* @SCRUB_HW_PROG_SRC: Progressive hardware scrub from an error
* SCRUB_HW_TUNABLE: Hardware scrub frequency is tunable
*/
enum scrub_type {
SCRUB_UNKNOWN = 0,
SCRUB_NONE,
SCRUB_SW_PROG,
SCRUB_SW_SRC,
SCRUB_SW_PROG_SRC,
SCRUB_SW_TUNABLE,
SCRUB_HW_PROG,
SCRUB_HW_SRC,
SCRUB_HW_PROG_SRC,
SCRUB_HW_TUNABLE
};
#define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG)
#define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC)
#define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC)
#define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE)
#define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG)
#define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC)
#define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC)
#define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE)
/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
/* EDAC internal operation states */
#define OP_ALLOC 0x100
#define OP_RUNNING_POLL 0x201
#define OP_RUNNING_INTERRUPT 0x202
#define OP_RUNNING_POLL_INTR 0x203
#define OP_OFFLINE 0x300
/*
* Concepts used at the EDAC subsystem
*
* There are several things to be aware of that aren't at all obvious:
*
* SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
*
* These are some of the many terms that are thrown about that don't always
* mean what people think they mean (Inconceivable!). In the interest of
* creating a common ground for discussion, terms and their definitions
* will be established.
*
* Memory devices: The individual DRAM chips on a memory stick. These
* devices commonly output 4 and 8 bits each (x4, x8).
* Grouping several of these in parallel provides the
* number of bits that the memory controller expects:
* typically 72 bits, in order to provide 64 bits +
* 8 bits of ECC data.
*
* Memory Stick: A printed circuit board that aggregates multiple
* memory devices in parallel. In general, this is the
* Field Replaceable Unit (FRU) which gets replaced, in
* the case of excessive errors. Most often it is also
* called DIMM (Dual Inline Memory Module).
*
* Memory Socket: A physical connector on the motherboard that accepts
* a single memory stick. Also called as "slot" on several
* datasheets.
*
* Channel: A memory controller channel, responsible to communicate
* with a group of DIMMs. Each channel has its own
* independent control (command) and data bus, and can
* be used independently or grouped with other channels.
*
* Branch: It is typically the highest hierarchy on a
* Fully-Buffered DIMM memory controller.
* Typically, it contains two channels.
* Two channels at the same branch can be used in single
* mode or in lockstep mode.
* When lockstep is enabled, the cacheline is doubled,
* but it generally brings some performance penalty.
* Also, it is generally not possible to point to just one
* memory stick when an error occurs, as the error
* correction code is calculated using two DIMMs instead
* of one. Due to that, it is capable of correcting more
* errors than on single mode.
*
* Single-channel: The data accessed by the memory controller is contained
* into one dimm only. E. g. if the data is 64 bits-wide,
* the data flows to the CPU using one 64 bits parallel
* access.
* Typically used with SDR, DDR, DDR2 and DDR3 memories.
* FB-DIMM and RAMBUS use a different concept for channel,
* so this concept doesn't apply there.
*
* Double-channel: The data size accessed by the memory controller is
* interlaced into two dimms, accessed at the same time.
* E. g. if the DIMM is 64 bits-wide (72 bits with ECC),
* the data flows to the CPU using a 128 bits parallel
* access.
*
* Chip-select row: This is the name of the DRAM signal used to select the
* DRAM ranks to be accessed. Common chip-select rows for
* single channel are 64 bits, for dual channel 128 bits.
* It may not be visible by the memory controller, as some
* DIMM types have a memory buffer that can hide direct
* access to it from the Memory Controller.
*
* Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memory.
* Motherboards commonly drive two chip-select pins to
* a memory stick. A single-ranked stick, will occupy
* only one of those rows. The other will be unused.
*
* Double-Ranked stick: A double-ranked stick has two chip-select rows which
* access different sets of memory devices. The two
* rows cannot be accessed concurrently.
*
* Double-sided stick: DEPRECATED TERM, see Double-Ranked stick.
* A double-sided stick has two chip-select rows which
* access different sets of memory devices. The two
* rows cannot be accessed concurrently. "Double-sided"
* is irrespective of the memory devices being mounted
* on both sides of the memory stick.
*
* Socket set: All of the memory sticks that are required for
* a single memory access or all of the memory sticks
* spanned by a chip-select row. A single socket set
* has two chip-select rows and if double-sided sticks
* are used these will occupy those chip-select rows.
*
* Bank: This term is avoided because it is unclear when
* needing to distinguish between chip-select rows and
* socket sets.
*
* Controller pages:
*
* Physical pages:
*
* Virtual pages:
*
*
* STRUCTURE ORGANIZATION AND CHOICES
*
*
*
* PS - I enjoyed writing all that about as much as you enjoyed reading it.
*/
/**
* enum edac_mc_layer - memory controller hierarchy layer
*
* @EDAC_MC_LAYER_BRANCH: memory layer is named "branch"
* @EDAC_MC_LAYER_CHANNEL: memory layer is named "channel"
* @EDAC_MC_LAYER_SLOT: memory layer is named "slot"
* @EDAC_MC_LAYER_CHIP_SELECT: memory layer is named "chip select"
* @EDAC_MC_LAYER_ALL_MEM: memory layout is unknown. All memory is mapped
* as a single memory area. This is used when
* retrieving errors from a firmware driven driver.
*
* This enum is used by the drivers to tell edac_mc_sysfs what name should
* be used when describing a memory stick location.
*/
enum edac_mc_layer_type {
EDAC_MC_LAYER_BRANCH,
EDAC_MC_LAYER_CHANNEL,
EDAC_MC_LAYER_SLOT,
EDAC_MC_LAYER_CHIP_SELECT,
EDAC_MC_LAYER_ALL_MEM,
};
/**
* struct edac_mc_layer - describes the memory controller hierarchy
* @layer: layer type
* @size: number of components per layer. For example,
* if the channel layer has two channels, size = 2
* @is_virt_csrow: This layer is part of the "csrow" when old API
* compatibility mode is enabled. Otherwise, it is
* a channel
*/
struct edac_mc_layer {
enum edac_mc_layer_type type;
unsigned size;
bool is_virt_csrow;
};
/*
* Maximum number of layers used by the memory controller to uniquely
* identify a single memory stick.
* NOTE: Changing this constant requires not only to change the constant
* below, but also to change the existing code at the core, as there are
* some code there that are optimized for 3 layers.
*/
#define EDAC_MAX_LAYERS 3
/**
* EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer array
* for the element given by [layer0,layer1,layer2] position
*
* @layers: a struct edac_mc_layer array, describing how many elements
* were allocated for each layer
* @n_layers: Number of layers at the @layers array
* @layer0: layer0 position
* @layer1: layer1 position. Unused if n_layers < 2
* @layer2: layer2 position. Unused if n_layers < 3
*
* For 1 layer, this macro returns &var[layer0] - &var
* For 2 layers, this macro is similar to allocate a bi-dimensional array
* and to return "&var[layer0][layer1] - &var"
* For 3 layers, this macro is similar to allocate a tri-dimensional array
* and to return "&var[layer0][layer1][layer2] - &var"
*
* A loop could be used here to make it more generic, but, as we only have
* 3 layers, this is a little faster.
* By design, layers can never be 0 or more than 3. If that ever happens,
* a NULL is returned, causing an OOPS during the memory allocation routine,
* with would point to the developer that he's doing something wrong.
*/
#define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({ \
int __i; \
if ((nlayers) == 1) \
__i = layer0; \
else if ((nlayers) == 2) \
__i = (layer1) + ((layers[1]).size * (layer0)); \
else if ((nlayers) == 3) \
__i = (layer2) + ((layers[2]).size * ((layer1) + \
((layers[1]).size * (layer0)))); \
else \
__i = -EINVAL; \
__i; \
})
/**
* EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array
* for the element given by [layer0,layer1,layer2] position
*
* @layers: a struct edac_mc_layer array, describing how many elements
* were allocated for each layer
* @var: name of the var where we want to get the pointer
* (like mci->dimms)
* @n_layers: Number of layers at the @layers array
* @layer0: layer0 position
* @layer1: layer1 position. Unused if n_layers < 2
* @layer2: layer2 position. Unused if n_layers < 3
*
* For 1 layer, this macro returns &var[layer0]
* For 2 layers, this macro is similar to allocate a bi-dimensional array
* and to return "&var[layer0][layer1]"
* For 3 layers, this macro is similar to allocate a tri-dimensional array
* and to return "&var[layer0][layer1][layer2]"
*/
#define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({ \
typeof(*var) __p; \
int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2); \
if (___i < 0) \
__p = NULL; \
else \
__p = (var)[___i]; \
__p; \
})
struct dimm_info {
struct device dev;
char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
/* Memory location data */
unsigned location[EDAC_MAX_LAYERS];
struct mem_ctl_info *mci; /* the parent */
u32 grain; /* granularity of reported error in bytes */
enum dev_type dtype; /* memory device type */
enum mem_type mtype; /* memory dimm type */
enum edac_type edac_mode; /* EDAC mode for this dimm */
u32 nr_pages; /* number of pages on this dimm */
unsigned csrow, cschannel; /* Points to the old API data */
};
/**
* struct rank_info - contains the information for one DIMM rank
*
* @chan_idx: channel number where the rank is (typically, 0 or 1)
* @ce_count: number of correctable errors for this rank
* @csrow: A pointer to the chip select row structure (the parent
* structure). The location of the rank is given by
* the (csrow->csrow_idx, chan_idx) vector.
* @dimm: A pointer to the DIMM structure, where the DIMM label
* information is stored.
*
* FIXME: Currently, the EDAC core model will assume one DIMM per rank.
* This is a bad assumption, but it makes this patch easier. Later
* patches in this series will fix this issue.
*/
struct rank_info {
int chan_idx;
struct csrow_info *csrow;
struct dimm_info *dimm;
u32 ce_count; /* Correctable Errors for this csrow */
};
struct csrow_info {
struct device dev;
/* Used only by edac_mc_find_csrow_by_page() */
unsigned long first_page; /* first page number in csrow */
unsigned long last_page; /* last page number in csrow */
unsigned long page_mask; /* used for interleaving -
* 0UL for non intlv */
int csrow_idx; /* the chip-select row */
u32 ue_count; /* Uncorrectable Errors for this csrow */
u32 ce_count; /* Correctable Errors for this csrow */
struct mem_ctl_info *mci; /* the parent */
/* channel information for this csrow */
u32 nr_channels;
struct rank_info **channels;
};
/*
* struct errcount_attribute - used to store the several error counts
*/
struct errcount_attribute_data {
int n_layers;
int pos[EDAC_MAX_LAYERS];
int layer0, layer1, layer2;
};
/**
* edac_raw_error_desc - Raw error report structure
* @grain: minimum granularity for an error report, in bytes
* @error_count: number of errors of the same type
* @top_layer: top layer of the error (layer[0])
* @mid_layer: middle layer of the error (layer[1])
* @low_layer: low layer of the error (layer[2])
* @page_frame_number: page where the error happened
* @offset_in_page: page offset
* @syndrome: syndrome of the error (or 0 if unknown or if
* the syndrome is not applicable)
* @msg: error message
* @location: location of the error
* @label: label of the affected DIMM(s)
* @other_detail: other driver-specific detail about the error
* @enable_per_layer_report: if false, the error affects all layers
* (typically, a memory controller error)
*/
struct edac_raw_error_desc {
/*
* NOTE: everything before grain won't be cleaned by
* edac_raw_error_desc_clean()
*/
char location[LOCATION_SIZE];
char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
long grain;
/* the vars below and grain will be cleaned on every new error report */
u16 error_count;
int top_layer;
int mid_layer;
int low_layer;
unsigned long page_frame_number;
unsigned long offset_in_page;
unsigned long syndrome;
const char *msg;
const char *other_detail;
bool enable_per_layer_report;
};
/* MEMORY controller information structure
*/
struct mem_ctl_info {
struct device dev;
struct bus_type *bus;
struct list_head link; /* for global list of mem_ctl_info structs */
struct module *owner; /* Module owner of this control struct */
unsigned long mtype_cap; /* memory types supported by mc */
unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */
unsigned long edac_cap; /* configuration capabilities - this is
* closely related to edac_ctl_cap. The
* difference is that the controller may be
* capable of s4ecd4ed which would be listed
* in edac_ctl_cap, but if channels aren't
* capable of s4ecd4ed then the edac_cap would
* not have that capability.
*/
unsigned long scrub_cap; /* chipset scrub capabilities */
enum scrub_type scrub_mode; /* current scrub mode */
/* Translates sdram memory scrub rate given in bytes/sec to the
internal representation and configures whatever else needs
to be configured.
*/
int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
/* Get the current sdram memory scrub rate from the internal
representation and converts it to the closest matching
bandwidth in bytes/sec.
*/
int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
/* pointer to edac checking routine */
void (*edac_check) (struct mem_ctl_info * mci);
/*
* Remaps memory pages: controller pages to physical pages.
* For most MC's, this will be NULL.
*/
/* FIXME - why not send the phys page to begin with? */
unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
unsigned long page);
int mc_idx;
struct csrow_info **csrows;
unsigned nr_csrows, num_cschannel;
/*
* Memory Controller hierarchy
*
* There are basically two types of memory controller: the ones that
* sees memory sticks ("dimms"), and the ones that sees memory ranks.
* All old memory controllers enumerate memories per rank, but most
* of the recent drivers enumerate memories per DIMM, instead.
* When the memory controller is per rank, csbased is true.
*/
unsigned n_layers;
struct edac_mc_layer *layers;
bool csbased;
/*
* DIMM info. Will eventually remove the entire csrows_info some day
*/
unsigned tot_dimms;
struct dimm_info **dimms;
/*
* FIXME - what about controllers on other busses? - IDs must be
* unique. dev pointer should be sufficiently unique, but
* BUS:SLOT.FUNC numbers may not be unique.
*/
struct device *pdev;
const char *mod_name;
const char *mod_ver;
const char *ctl_name;
const char *dev_name;
void *pvt_info;
unsigned long start_time; /* mci load start time (in jiffies) */
/*
* drivers shouldn't access those fields directly, as the core
* already handles that.
*/
u32 ce_noinfo_count, ue_noinfo_count;
u32 ue_mc, ce_mc;
u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
struct completion complete;
/* Additional top controller level attributes, but specified
* by the low level driver.
*
* Set by the low level driver to provide attributes at the
* controller level.
* An array of structures, NULL terminated
*
* If attributes are desired, then set to array of attributes
* If no attributes are desired, leave NULL
*/
const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
/* work struct for this MC */
struct delayed_work work;
/*
* Used to report an error - by being at the global struct
* makes the memory allocated by the EDAC core
*/
struct edac_raw_error_desc error_desc;
/* the internal state of this controller instance */
int op_state;
#ifdef CONFIG_EDAC_DEBUG
struct dentry *debugfs;
u8 fake_inject_layer[EDAC_MAX_LAYERS];
u32 fake_inject_ue;
u16 fake_inject_count;
#endif
};
/*
* Maximum number of memory controllers in the coherent fabric.
*/
#define EDAC_MAX_MCS 16
#endif