| /* |
| * CAN bus driver for Bosch M_CAN controller |
| * |
| * Copyright (C) 2014 Freescale Semiconductor, Inc. |
| * Dong Aisheng <b29396@freescale.com> |
| * |
| * Bosch M_CAN user manual can be obtained from: |
| * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/ |
| * mcan_users_manual_v302.pdf |
| * |
| * This file is licensed under the terms of the GNU General Public |
| * License version 2. This program is licensed "as is" without any |
| * warranty of any kind, whether express or implied. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| |
| #include <linux/can/dev.h> |
| |
| /* napi related */ |
| #define M_CAN_NAPI_WEIGHT 64 |
| |
| /* message ram configuration data length */ |
| #define MRAM_CFG_LEN 8 |
| |
| /* registers definition */ |
| enum m_can_reg { |
| M_CAN_CREL = 0x0, |
| M_CAN_ENDN = 0x4, |
| M_CAN_CUST = 0x8, |
| M_CAN_FBTP = 0xc, |
| M_CAN_TEST = 0x10, |
| M_CAN_RWD = 0x14, |
| M_CAN_CCCR = 0x18, |
| M_CAN_BTP = 0x1c, |
| M_CAN_TSCC = 0x20, |
| M_CAN_TSCV = 0x24, |
| M_CAN_TOCC = 0x28, |
| M_CAN_TOCV = 0x2c, |
| M_CAN_ECR = 0x40, |
| M_CAN_PSR = 0x44, |
| M_CAN_IR = 0x50, |
| M_CAN_IE = 0x54, |
| M_CAN_ILS = 0x58, |
| M_CAN_ILE = 0x5c, |
| M_CAN_GFC = 0x80, |
| M_CAN_SIDFC = 0x84, |
| M_CAN_XIDFC = 0x88, |
| M_CAN_XIDAM = 0x90, |
| M_CAN_HPMS = 0x94, |
| M_CAN_NDAT1 = 0x98, |
| M_CAN_NDAT2 = 0x9c, |
| M_CAN_RXF0C = 0xa0, |
| M_CAN_RXF0S = 0xa4, |
| M_CAN_RXF0A = 0xa8, |
| M_CAN_RXBC = 0xac, |
| M_CAN_RXF1C = 0xb0, |
| M_CAN_RXF1S = 0xb4, |
| M_CAN_RXF1A = 0xb8, |
| M_CAN_RXESC = 0xbc, |
| M_CAN_TXBC = 0xc0, |
| M_CAN_TXFQS = 0xc4, |
| M_CAN_TXESC = 0xc8, |
| M_CAN_TXBRP = 0xcc, |
| M_CAN_TXBAR = 0xd0, |
| M_CAN_TXBCR = 0xd4, |
| M_CAN_TXBTO = 0xd8, |
| M_CAN_TXBCF = 0xdc, |
| M_CAN_TXBTIE = 0xe0, |
| M_CAN_TXBCIE = 0xe4, |
| M_CAN_TXEFC = 0xf0, |
| M_CAN_TXEFS = 0xf4, |
| M_CAN_TXEFA = 0xf8, |
| }; |
| |
| /* m_can lec values */ |
| enum m_can_lec_type { |
| LEC_NO_ERROR = 0, |
| LEC_STUFF_ERROR, |
| LEC_FORM_ERROR, |
| LEC_ACK_ERROR, |
| LEC_BIT1_ERROR, |
| LEC_BIT0_ERROR, |
| LEC_CRC_ERROR, |
| LEC_UNUSED, |
| }; |
| |
| enum m_can_mram_cfg { |
| MRAM_SIDF = 0, |
| MRAM_XIDF, |
| MRAM_RXF0, |
| MRAM_RXF1, |
| MRAM_RXB, |
| MRAM_TXE, |
| MRAM_TXB, |
| MRAM_CFG_NUM, |
| }; |
| |
| /* Test Register (TEST) */ |
| #define TEST_LBCK BIT(4) |
| |
| /* CC Control Register(CCCR) */ |
| #define CCCR_TEST BIT(7) |
| #define CCCR_MON BIT(5) |
| #define CCCR_CCE BIT(1) |
| #define CCCR_INIT BIT(0) |
| |
| /* Bit Timing & Prescaler Register (BTP) */ |
| #define BTR_BRP_MASK 0x3ff |
| #define BTR_BRP_SHIFT 16 |
| #define BTR_TSEG1_SHIFT 8 |
| #define BTR_TSEG1_MASK (0x3f << BTR_TSEG1_SHIFT) |
| #define BTR_TSEG2_SHIFT 4 |
| #define BTR_TSEG2_MASK (0xf << BTR_TSEG2_SHIFT) |
| #define BTR_SJW_SHIFT 0 |
| #define BTR_SJW_MASK 0xf |
| |
| /* Error Counter Register(ECR) */ |
| #define ECR_RP BIT(15) |
| #define ECR_REC_SHIFT 8 |
| #define ECR_REC_MASK (0x7f << ECR_REC_SHIFT) |
| #define ECR_TEC_SHIFT 0 |
| #define ECR_TEC_MASK 0xff |
| |
| /* Protocol Status Register(PSR) */ |
| #define PSR_BO BIT(7) |
| #define PSR_EW BIT(6) |
| #define PSR_EP BIT(5) |
| #define PSR_LEC_MASK 0x7 |
| |
| /* Interrupt Register(IR) */ |
| #define IR_ALL_INT 0xffffffff |
| #define IR_STE BIT(31) |
| #define IR_FOE BIT(30) |
| #define IR_ACKE BIT(29) |
| #define IR_BE BIT(28) |
| #define IR_CRCE BIT(27) |
| #define IR_WDI BIT(26) |
| #define IR_BO BIT(25) |
| #define IR_EW BIT(24) |
| #define IR_EP BIT(23) |
| #define IR_ELO BIT(22) |
| #define IR_BEU BIT(21) |
| #define IR_BEC BIT(20) |
| #define IR_DRX BIT(19) |
| #define IR_TOO BIT(18) |
| #define IR_MRAF BIT(17) |
| #define IR_TSW BIT(16) |
| #define IR_TEFL BIT(15) |
| #define IR_TEFF BIT(14) |
| #define IR_TEFW BIT(13) |
| #define IR_TEFN BIT(12) |
| #define IR_TFE BIT(11) |
| #define IR_TCF BIT(10) |
| #define IR_TC BIT(9) |
| #define IR_HPM BIT(8) |
| #define IR_RF1L BIT(7) |
| #define IR_RF1F BIT(6) |
| #define IR_RF1W BIT(5) |
| #define IR_RF1N BIT(4) |
| #define IR_RF0L BIT(3) |
| #define IR_RF0F BIT(2) |
| #define IR_RF0W BIT(1) |
| #define IR_RF0N BIT(0) |
| #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP) |
| #define IR_ERR_LEC (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE) |
| #define IR_ERR_BUS (IR_ERR_LEC | IR_WDI | IR_ELO | IR_BEU | \ |
| IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \ |
| IR_RF1L | IR_RF0L) |
| #define IR_ERR_ALL (IR_ERR_STATE | IR_ERR_BUS) |
| |
| /* Interrupt Line Select (ILS) */ |
| #define ILS_ALL_INT0 0x0 |
| #define ILS_ALL_INT1 0xFFFFFFFF |
| |
| /* Interrupt Line Enable (ILE) */ |
| #define ILE_EINT0 BIT(0) |
| #define ILE_EINT1 BIT(1) |
| |
| /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */ |
| #define RXFC_FWM_OFF 24 |
| #define RXFC_FWM_MASK 0x7f |
| #define RXFC_FWM_1 (1 << RXFC_FWM_OFF) |
| #define RXFC_FS_OFF 16 |
| #define RXFC_FS_MASK 0x7f |
| |
| /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */ |
| #define RXFS_RFL BIT(25) |
| #define RXFS_FF BIT(24) |
| #define RXFS_FPI_OFF 16 |
| #define RXFS_FPI_MASK 0x3f0000 |
| #define RXFS_FGI_OFF 8 |
| #define RXFS_FGI_MASK 0x3f00 |
| #define RXFS_FFL_MASK 0x7f |
| |
| /* Rx Buffer / FIFO Element Size Configuration (RXESC) */ |
| #define M_CAN_RXESC_8BYTES 0x0 |
| |
| /* Tx Buffer Configuration(TXBC) */ |
| #define TXBC_NDTB_OFF 16 |
| #define TXBC_NDTB_MASK 0x3f |
| |
| /* Tx Buffer Element Size Configuration(TXESC) */ |
| #define TXESC_TBDS_8BYTES 0x0 |
| |
| /* Tx Event FIFO Con.guration (TXEFC) */ |
| #define TXEFC_EFS_OFF 16 |
| #define TXEFC_EFS_MASK 0x3f |
| |
| /* Message RAM Configuration (in bytes) */ |
| #define SIDF_ELEMENT_SIZE 4 |
| #define XIDF_ELEMENT_SIZE 8 |
| #define RXF0_ELEMENT_SIZE 16 |
| #define RXF1_ELEMENT_SIZE 16 |
| #define RXB_ELEMENT_SIZE 16 |
| #define TXE_ELEMENT_SIZE 8 |
| #define TXB_ELEMENT_SIZE 16 |
| |
| /* Message RAM Elements */ |
| #define M_CAN_FIFO_ID 0x0 |
| #define M_CAN_FIFO_DLC 0x4 |
| #define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2)) |
| |
| /* Rx Buffer Element */ |
| #define RX_BUF_ESI BIT(31) |
| #define RX_BUF_XTD BIT(30) |
| #define RX_BUF_RTR BIT(29) |
| |
| /* Tx Buffer Element */ |
| #define TX_BUF_XTD BIT(30) |
| #define TX_BUF_RTR BIT(29) |
| |
| /* address offset and element number for each FIFO/Buffer in the Message RAM */ |
| struct mram_cfg { |
| u16 off; |
| u8 num; |
| }; |
| |
| /* m_can private data structure */ |
| struct m_can_priv { |
| struct can_priv can; /* must be the first member */ |
| struct napi_struct napi; |
| struct net_device *dev; |
| struct device *device; |
| struct clk *hclk; |
| struct clk *cclk; |
| void __iomem *base; |
| u32 irqstatus; |
| |
| /* message ram configuration */ |
| void __iomem *mram_base; |
| struct mram_cfg mcfg[MRAM_CFG_NUM]; |
| }; |
| |
| static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg) |
| { |
| return readl(priv->base + reg); |
| } |
| |
| static inline void m_can_write(const struct m_can_priv *priv, |
| enum m_can_reg reg, u32 val) |
| { |
| writel(val, priv->base + reg); |
| } |
| |
| static inline u32 m_can_fifo_read(const struct m_can_priv *priv, |
| u32 fgi, unsigned int offset) |
| { |
| return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off + |
| fgi * RXF0_ELEMENT_SIZE + offset); |
| } |
| |
| static inline void m_can_fifo_write(const struct m_can_priv *priv, |
| u32 fpi, unsigned int offset, u32 val) |
| { |
| return writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off + |
| fpi * TXB_ELEMENT_SIZE + offset); |
| } |
| |
| static inline void m_can_config_endisable(const struct m_can_priv *priv, |
| bool enable) |
| { |
| u32 cccr = m_can_read(priv, M_CAN_CCCR); |
| u32 timeout = 10; |
| u32 val = 0; |
| |
| if (enable) { |
| /* enable m_can configuration */ |
| m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT); |
| /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */ |
| m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE); |
| } else { |
| m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE)); |
| } |
| |
| /* there's a delay for module initialization */ |
| if (enable) |
| val = CCCR_INIT | CCCR_CCE; |
| |
| while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) { |
| if (timeout == 0) { |
| netdev_warn(priv->dev, "Failed to init module\n"); |
| return; |
| } |
| timeout--; |
| udelay(1); |
| } |
| } |
| |
| static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv) |
| { |
| m_can_write(priv, M_CAN_ILE, ILE_EINT0 | ILE_EINT1); |
| } |
| |
| static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv) |
| { |
| m_can_write(priv, M_CAN_ILE, 0x0); |
| } |
| |
| static void m_can_read_fifo(const struct net_device *dev, struct can_frame *cf, |
| u32 rxfs) |
| { |
| struct m_can_priv *priv = netdev_priv(dev); |
| u32 id, fgi; |
| |
| /* calculate the fifo get index for where to read data */ |
| fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_OFF; |
| id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID); |
| if (id & RX_BUF_XTD) |
| cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; |
| else |
| cf->can_id = (id >> 18) & CAN_SFF_MASK; |
| |
| if (id & RX_BUF_RTR) { |
| cf->can_id |= CAN_RTR_FLAG; |
| } else { |
| id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC); |
| cf->can_dlc = get_can_dlc((id >> 16) & 0x0F); |
| *(u32 *)(cf->data + 0) = m_can_fifo_read(priv, fgi, |
| M_CAN_FIFO_DATA(0)); |
| *(u32 *)(cf->data + 4) = m_can_fifo_read(priv, fgi, |
| M_CAN_FIFO_DATA(1)); |
| } |
| |
| /* acknowledge rx fifo 0 */ |
| m_can_write(priv, M_CAN_RXF0A, fgi); |
| } |
| |
| static int m_can_do_rx_poll(struct net_device *dev, int quota) |
| { |
| struct m_can_priv *priv = netdev_priv(dev); |
| struct net_device_stats *stats = &dev->stats; |
| struct sk_buff *skb; |
| struct can_frame *frame; |
| u32 pkts = 0; |
| u32 rxfs; |
| |
| rxfs = m_can_read(priv, M_CAN_RXF0S); |
| if (!(rxfs & RXFS_FFL_MASK)) { |
| netdev_dbg(dev, "no messages in fifo0\n"); |
| return 0; |
| } |
| |
| while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) { |
| if (rxfs & RXFS_RFL) |
| netdev_warn(dev, "Rx FIFO 0 Message Lost\n"); |
| |
| skb = alloc_can_skb(dev, &frame); |
| if (!skb) { |
| stats->rx_dropped++; |
| return pkts; |
| } |
| |
| m_can_read_fifo(dev, frame, rxfs); |
| |
| stats->rx_packets++; |
| stats->rx_bytes += frame->can_dlc; |
| |
| netif_receive_skb(skb); |
| |
| quota--; |
| pkts++; |
| rxfs = m_can_read(priv, M_CAN_RXF0S); |
| } |
| |
| if (pkts) |
| can_led_event(dev, CAN_LED_EVENT_RX); |
| |
| return pkts; |
| } |
| |
| static int m_can_handle_lost_msg(struct net_device *dev) |
| { |
| struct net_device_stats *stats = &dev->stats; |
| struct sk_buff *skb; |
| struct can_frame *frame; |
| |
| netdev_err(dev, "msg lost in rxf0\n"); |
| |
| stats->rx_errors++; |
| stats->rx_over_errors++; |
| |
| skb = alloc_can_err_skb(dev, &frame); |
| if (unlikely(!skb)) |
| return 0; |
| |
| frame->can_id |= CAN_ERR_CRTL; |
| frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; |
| |
| netif_receive_skb(skb); |
| |
| return 1; |
| } |
| |
| static int m_can_handle_lec_err(struct net_device *dev, |
| enum m_can_lec_type lec_type) |
| { |
| struct m_can_priv *priv = netdev_priv(dev); |
| struct net_device_stats *stats = &dev->stats; |
| struct can_frame *cf; |
| struct sk_buff *skb; |
| |
| priv->can.can_stats.bus_error++; |
| stats->rx_errors++; |
| |
| /* propagate the error condition to the CAN stack */ |
| skb = alloc_can_err_skb(dev, &cf); |
| if (unlikely(!skb)) |
| return 0; |
| |
| /* check for 'last error code' which tells us the |
| * type of the last error to occur on the CAN bus |
| */ |
| cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; |
| cf->data[2] |= CAN_ERR_PROT_UNSPEC; |
| |
| switch (lec_type) { |
| case LEC_STUFF_ERROR: |
| netdev_dbg(dev, "stuff error\n"); |
| cf->data[2] |= CAN_ERR_PROT_STUFF; |
| break; |
| case LEC_FORM_ERROR: |
| netdev_dbg(dev, "form error\n"); |
| cf->data[2] |= CAN_ERR_PROT_FORM; |
| break; |
| case LEC_ACK_ERROR: |
| netdev_dbg(dev, "ack error\n"); |
| cf->data[3] |= (CAN_ERR_PROT_LOC_ACK | |
| CAN_ERR_PROT_LOC_ACK_DEL); |
| break; |
| case LEC_BIT1_ERROR: |
| netdev_dbg(dev, "bit1 error\n"); |
| cf->data[2] |= CAN_ERR_PROT_BIT1; |
| break; |
| case LEC_BIT0_ERROR: |
| netdev_dbg(dev, "bit0 error\n"); |
| cf->data[2] |= CAN_ERR_PROT_BIT0; |
| break; |
| case LEC_CRC_ERROR: |
| netdev_dbg(dev, "CRC error\n"); |
| cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ | |
| CAN_ERR_PROT_LOC_CRC_DEL); |
| break; |
| default: |
| break; |
| } |
| |
| stats->rx_packets++; |
| stats->rx_bytes += cf->can_dlc; |
| netif_receive_skb(skb); |
| |
| return 1; |
| } |
| |
| static int m_can_get_berr_counter(const struct net_device *dev, |
| struct can_berr_counter *bec) |
| { |
| struct m_can_priv *priv = netdev_priv(dev); |
| unsigned int ecr; |
| int err; |
| |
| err = clk_prepare_enable(priv->hclk); |
| if (err) |
| return err; |
| |
| err = clk_prepare_enable(priv->cclk); |
| if (err) { |
| clk_disable_unprepare(priv->hclk); |
| return err; |
| } |
| |
| ecr = m_can_read(priv, M_CAN_ECR); |
| bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT; |
| bec->txerr = ecr & ECR_TEC_MASK; |
| |
| clk_disable_unprepare(priv->cclk); |
| clk_disable_unprepare(priv->hclk); |
| |
| return 0; |
| } |
| |
| static int m_can_handle_state_change(struct net_device *dev, |
| enum can_state new_state) |
| { |
| struct m_can_priv *priv = netdev_priv(dev); |
| struct net_device_stats *stats = &dev->stats; |
| struct can_frame *cf; |
| struct sk_buff *skb; |
| struct can_berr_counter bec; |
| unsigned int ecr; |
| |
| switch (new_state) { |
| case CAN_STATE_ERROR_ACTIVE: |
| /* error warning state */ |
| priv->can.can_stats.error_warning++; |
| priv->can.state = CAN_STATE_ERROR_WARNING; |
| break; |
| case CAN_STATE_ERROR_PASSIVE: |
| /* error passive state */ |
| priv->can.can_stats.error_passive++; |
| priv->can.state = CAN_STATE_ERROR_PASSIVE; |
| break; |
| case CAN_STATE_BUS_OFF: |
| /* bus-off state */ |
| priv->can.state = CAN_STATE_BUS_OFF; |
| m_can_disable_all_interrupts(priv); |
| can_bus_off(dev); |
| break; |
| default: |
| break; |
| } |
| |
| /* propagate the error condition to the CAN stack */ |
| skb = alloc_can_err_skb(dev, &cf); |
| if (unlikely(!skb)) |
| return 0; |
| |
| m_can_get_berr_counter(dev, &bec); |
| |
| switch (new_state) { |
| case CAN_STATE_ERROR_ACTIVE: |
| /* error warning state */ |
| cf->can_id |= CAN_ERR_CRTL; |
| cf->data[1] = (bec.txerr > bec.rxerr) ? |
| CAN_ERR_CRTL_TX_WARNING : |
| CAN_ERR_CRTL_RX_WARNING; |
| cf->data[6] = bec.txerr; |
| cf->data[7] = bec.rxerr; |
| break; |
| case CAN_STATE_ERROR_PASSIVE: |
| /* error passive state */ |
| cf->can_id |= CAN_ERR_CRTL; |
| ecr = m_can_read(priv, M_CAN_ECR); |
| if (ecr & ECR_RP) |
| cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; |
| if (bec.txerr > 127) |
| cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; |
| cf->data[6] = bec.txerr; |
| cf->data[7] = bec.rxerr; |
| break; |
| case CAN_STATE_BUS_OFF: |
| /* bus-off state */ |
| cf->can_id |= CAN_ERR_BUSOFF; |
| break; |
| default: |
| break; |
| } |
| |
| stats->rx_packets++; |
| stats->rx_bytes += cf->can_dlc; |
| netif_receive_skb(skb); |
| |
| return 1; |
| } |
| |
| static int m_can_handle_state_errors(struct net_device *dev, u32 psr) |
| { |
| struct m_can_priv *priv = netdev_priv(dev); |
| int work_done = 0; |
| |
| if ((psr & PSR_EW) && |
| (priv->can.state != CAN_STATE_ERROR_WARNING)) { |
| netdev_dbg(dev, "entered error warning state\n"); |
| work_done += m_can_handle_state_change(dev, |
| CAN_STATE_ERROR_WARNING); |
| } |
| |
| if ((psr & PSR_EP) && |
| (priv->can.state != CAN_STATE_ERROR_PASSIVE)) { |
| netdev_dbg(dev, "entered error warning state\n"); |
| work_done += m_can_handle_state_change(dev, |
| CAN_STATE_ERROR_PASSIVE); |
| } |
| |
| if ((psr & PSR_BO) && |
| (priv->can.state != CAN_STATE_BUS_OFF)) { |
| netdev_dbg(dev, "entered error warning state\n"); |
| work_done += m_can_handle_state_change(dev, |
| CAN_STATE_BUS_OFF); |
| } |
| |
| return work_done; |
| } |
| |
| static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus) |
| { |
| if (irqstatus & IR_WDI) |
| netdev_err(dev, "Message RAM Watchdog event due to missing READY\n"); |
| if (irqstatus & IR_BEU) |
| netdev_err(dev, "Error Logging Overflow\n"); |
| if (irqstatus & IR_BEU) |
| netdev_err(dev, "Bit Error Uncorrected\n"); |
| if (irqstatus & IR_BEC) |
| netdev_err(dev, "Bit Error Corrected\n"); |
| if (irqstatus & IR_TOO) |
| netdev_err(dev, "Timeout reached\n"); |
| if (irqstatus & IR_MRAF) |
| netdev_err(dev, "Message RAM access failure occurred\n"); |
| } |
| |
| static inline bool is_lec_err(u32 psr) |
| { |
| psr &= LEC_UNUSED; |
| |
| return psr && (psr != LEC_UNUSED); |
| } |
| |
| static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus, |
| u32 psr) |
| { |
| struct m_can_priv *priv = netdev_priv(dev); |
| int work_done = 0; |
| |
| if (irqstatus & IR_RF0L) |
| work_done += m_can_handle_lost_msg(dev); |
| |
| /* handle lec errors on the bus */ |
| if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && |
| is_lec_err(psr)) |
| work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED); |
| |
| /* other unproccessed error interrupts */ |
| m_can_handle_other_err(dev, irqstatus); |
| |
| return work_done; |
| } |
| |
| static int m_can_poll(struct napi_struct *napi, int quota) |
| { |
| struct net_device *dev = napi->dev; |
| struct m_can_priv *priv = netdev_priv(dev); |
| int work_done = 0; |
| u32 irqstatus, psr; |
| |
| irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR); |
| if (!irqstatus) |
| goto end; |
| |
| psr = m_can_read(priv, M_CAN_PSR); |
| if (irqstatus & IR_ERR_STATE) |
| work_done += m_can_handle_state_errors(dev, psr); |
| |
| if (irqstatus & IR_ERR_BUS) |
| work_done += m_can_handle_bus_errors(dev, irqstatus, psr); |
| |
| if (irqstatus & IR_RF0N) |
| work_done += m_can_do_rx_poll(dev, (quota - work_done)); |
| |
| if (work_done < quota) { |
| napi_complete(napi); |
| m_can_enable_all_interrupts(priv); |
| } |
| |
| end: |
| return work_done; |
| } |
| |
| static irqreturn_t m_can_isr(int irq, void *dev_id) |
| { |
| struct net_device *dev = (struct net_device *)dev_id; |
| struct m_can_priv *priv = netdev_priv(dev); |
| struct net_device_stats *stats = &dev->stats; |
| u32 ir; |
| |
| ir = m_can_read(priv, M_CAN_IR); |
| if (!ir) |
| return IRQ_NONE; |
| |
| /* ACK all irqs */ |
| if (ir & IR_ALL_INT) |
| m_can_write(priv, M_CAN_IR, ir); |
| |
| /* schedule NAPI in case of |
| * - rx IRQ |
| * - state change IRQ |
| * - bus error IRQ and bus error reporting |
| */ |
| if ((ir & IR_RF0N) || (ir & IR_ERR_ALL)) { |
| priv->irqstatus = ir; |
| m_can_disable_all_interrupts(priv); |
| napi_schedule(&priv->napi); |
| } |
| |
| /* transmission complete interrupt */ |
| if (ir & IR_TC) { |
| stats->tx_bytes += can_get_echo_skb(dev, 0); |
| stats->tx_packets++; |
| can_led_event(dev, CAN_LED_EVENT_TX); |
| netif_wake_queue(dev); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static const struct can_bittiming_const m_can_bittiming_const = { |
| .name = KBUILD_MODNAME, |
| .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ |
| .tseg1_max = 64, |
| .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ |
| .tseg2_max = 16, |
| .sjw_max = 16, |
| .brp_min = 1, |
| .brp_max = 1024, |
| .brp_inc = 1, |
| }; |
| |
| static int m_can_set_bittiming(struct net_device *dev) |
| { |
| struct m_can_priv *priv = netdev_priv(dev); |
| const struct can_bittiming *bt = &priv->can.bittiming; |
| u16 brp, sjw, tseg1, tseg2; |
| u32 reg_btp; |
| |
| brp = bt->brp - 1; |
| sjw = bt->sjw - 1; |
| tseg1 = bt->prop_seg + bt->phase_seg1 - 1; |
| tseg2 = bt->phase_seg2 - 1; |
| reg_btp = (brp << BTR_BRP_SHIFT) | (sjw << BTR_SJW_SHIFT) | |
| (tseg1 << BTR_TSEG1_SHIFT) | (tseg2 << BTR_TSEG2_SHIFT); |
| m_can_write(priv, M_CAN_BTP, reg_btp); |
| netdev_dbg(dev, "setting BTP 0x%x\n", reg_btp); |
| |
| return 0; |
| } |
| |
| /* Configure M_CAN chip: |
| * - set rx buffer/fifo element size |
| * - configure rx fifo |
| * - accept non-matching frame into fifo 0 |
| * - configure tx buffer |
| * - configure mode |
| * - setup bittiming |
| */ |
| static void m_can_chip_config(struct net_device *dev) |
| { |
| struct m_can_priv *priv = netdev_priv(dev); |
| u32 cccr, test; |
| |
| m_can_config_endisable(priv, true); |
| |
| /* RX Buffer/FIFO Element Size 8 bytes data field */ |
| m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_8BYTES); |
| |
| /* Accept Non-matching Frames Into FIFO 0 */ |
| m_can_write(priv, M_CAN_GFC, 0x0); |
| |
| /* only support one Tx Buffer currently */ |
| m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_OFF) | |
| priv->mcfg[MRAM_TXB].off); |
| |
| /* only support 8 bytes firstly */ |
| m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_8BYTES); |
| |
| m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_OFF) | |
| priv->mcfg[MRAM_TXE].off); |
| |
| /* rx fifo configuration, blocking mode, fifo size 1 */ |
| m_can_write(priv, M_CAN_RXF0C, |
| (priv->mcfg[MRAM_RXF0].num << RXFC_FS_OFF) | |
| RXFC_FWM_1 | priv->mcfg[MRAM_RXF0].off); |
| |
| m_can_write(priv, M_CAN_RXF1C, |
| (priv->mcfg[MRAM_RXF1].num << RXFC_FS_OFF) | |
| RXFC_FWM_1 | priv->mcfg[MRAM_RXF1].off); |
| |
| cccr = m_can_read(priv, M_CAN_CCCR); |
| cccr &= ~(CCCR_TEST | CCCR_MON); |
| test = m_can_read(priv, M_CAN_TEST); |
| test &= ~TEST_LBCK; |
| |
| if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) |
| cccr |= CCCR_MON; |
| |
| if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { |
| cccr |= CCCR_TEST; |
| test |= TEST_LBCK; |
| } |
| |
| m_can_write(priv, M_CAN_CCCR, cccr); |
| m_can_write(priv, M_CAN_TEST, test); |
| |
| /* enable interrupts */ |
| m_can_write(priv, M_CAN_IR, IR_ALL_INT); |
| if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) |
| m_can_write(priv, M_CAN_IE, IR_ALL_INT & ~IR_ERR_LEC); |
| else |
| m_can_write(priv, M_CAN_IE, IR_ALL_INT); |
| |
| /* route all interrupts to INT0 */ |
| m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0); |
| |
| /* set bittiming params */ |
| m_can_set_bittiming(dev); |
| |
| m_can_config_endisable(priv, false); |
| } |
| |
| static void m_can_start(struct net_device *dev) |
| { |
| struct m_can_priv *priv = netdev_priv(dev); |
| |
| /* basic m_can configuration */ |
| m_can_chip_config(dev); |
| |
| priv->can.state = CAN_STATE_ERROR_ACTIVE; |
| |
| m_can_enable_all_interrupts(priv); |
| } |
| |
| static int m_can_set_mode(struct net_device *dev, enum can_mode mode) |
| { |
| switch (mode) { |
| case CAN_MODE_START: |
| m_can_start(dev); |
| netif_wake_queue(dev); |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return 0; |
| } |
| |
| static void free_m_can_dev(struct net_device *dev) |
| { |
| free_candev(dev); |
| } |
| |
| static struct net_device *alloc_m_can_dev(void) |
| { |
| struct net_device *dev; |
| struct m_can_priv *priv; |
| |
| dev = alloc_candev(sizeof(*priv), 1); |
| if (!dev) |
| return NULL; |
| |
| priv = netdev_priv(dev); |
| netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT); |
| |
| priv->dev = dev; |
| priv->can.bittiming_const = &m_can_bittiming_const; |
| priv->can.do_set_mode = m_can_set_mode; |
| priv->can.do_get_berr_counter = m_can_get_berr_counter; |
| priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | |
| CAN_CTRLMODE_LISTENONLY | |
| CAN_CTRLMODE_BERR_REPORTING; |
| |
| return dev; |
| } |
| |
| static int m_can_open(struct net_device *dev) |
| { |
| struct m_can_priv *priv = netdev_priv(dev); |
| int err; |
| |
| err = clk_prepare_enable(priv->hclk); |
| if (err) |
| return err; |
| |
| err = clk_prepare_enable(priv->cclk); |
| if (err) |
| goto exit_disable_hclk; |
| |
| /* open the can device */ |
| err = open_candev(dev); |
| if (err) { |
| netdev_err(dev, "failed to open can device\n"); |
| goto exit_disable_cclk; |
| } |
| |
| /* register interrupt handler */ |
| err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name, |
| dev); |
| if (err < 0) { |
| netdev_err(dev, "failed to request interrupt\n"); |
| goto exit_irq_fail; |
| } |
| |
| /* start the m_can controller */ |
| m_can_start(dev); |
| |
| can_led_event(dev, CAN_LED_EVENT_OPEN); |
| napi_enable(&priv->napi); |
| netif_start_queue(dev); |
| |
| return 0; |
| |
| exit_irq_fail: |
| close_candev(dev); |
| exit_disable_cclk: |
| clk_disable_unprepare(priv->cclk); |
| exit_disable_hclk: |
| clk_disable_unprepare(priv->hclk); |
| return err; |
| } |
| |
| static void m_can_stop(struct net_device *dev) |
| { |
| struct m_can_priv *priv = netdev_priv(dev); |
| |
| /* disable all interrupts */ |
| m_can_disable_all_interrupts(priv); |
| |
| clk_disable_unprepare(priv->hclk); |
| clk_disable_unprepare(priv->cclk); |
| |
| /* set the state as STOPPED */ |
| priv->can.state = CAN_STATE_STOPPED; |
| } |
| |
| static int m_can_close(struct net_device *dev) |
| { |
| struct m_can_priv *priv = netdev_priv(dev); |
| |
| netif_stop_queue(dev); |
| napi_disable(&priv->napi); |
| m_can_stop(dev); |
| free_irq(dev->irq, dev); |
| close_candev(dev); |
| can_led_event(dev, CAN_LED_EVENT_STOP); |
| |
| return 0; |
| } |
| |
| static netdev_tx_t m_can_start_xmit(struct sk_buff *skb, |
| struct net_device *dev) |
| { |
| struct m_can_priv *priv = netdev_priv(dev); |
| struct can_frame *cf = (struct can_frame *)skb->data; |
| u32 id; |
| |
| if (can_dropped_invalid_skb(dev, skb)) |
| return NETDEV_TX_OK; |
| |
| netif_stop_queue(dev); |
| |
| if (cf->can_id & CAN_EFF_FLAG) { |
| id = cf->can_id & CAN_EFF_MASK; |
| id |= TX_BUF_XTD; |
| } else { |
| id = ((cf->can_id & CAN_SFF_MASK) << 18); |
| } |
| |
| if (cf->can_id & CAN_RTR_FLAG) |
| id |= TX_BUF_RTR; |
| |
| /* message ram configuration */ |
| m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id); |
| m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC, cf->can_dlc << 16); |
| m_can_fifo_write(priv, 0, M_CAN_FIFO_DATA(0), *(u32 *)(cf->data + 0)); |
| m_can_fifo_write(priv, 0, M_CAN_FIFO_DATA(1), *(u32 *)(cf->data + 4)); |
| can_put_echo_skb(skb, dev, 0); |
| |
| /* enable first TX buffer to start transfer */ |
| m_can_write(priv, M_CAN_TXBTIE, 0x1); |
| m_can_write(priv, M_CAN_TXBAR, 0x1); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static const struct net_device_ops m_can_netdev_ops = { |
| .ndo_open = m_can_open, |
| .ndo_stop = m_can_close, |
| .ndo_start_xmit = m_can_start_xmit, |
| }; |
| |
| static int register_m_can_dev(struct net_device *dev) |
| { |
| dev->flags |= IFF_ECHO; /* we support local echo */ |
| dev->netdev_ops = &m_can_netdev_ops; |
| |
| return register_candev(dev); |
| } |
| |
| static int m_can_of_parse_mram(struct platform_device *pdev, |
| struct m_can_priv *priv) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| struct resource *res; |
| void __iomem *addr; |
| u32 out_val[MRAM_CFG_LEN]; |
| int ret; |
| |
| /* message ram could be shared */ |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram"); |
| if (!res) |
| return -ENODEV; |
| |
| addr = devm_ioremap(&pdev->dev, res->start, resource_size(res)); |
| if (!addr) |
| return -ENOMEM; |
| |
| /* get message ram configuration */ |
| ret = of_property_read_u32_array(np, "bosch,mram-cfg", |
| out_val, sizeof(out_val) / 4); |
| if (ret) { |
| dev_err(&pdev->dev, "can not get message ram configuration\n"); |
| return -ENODEV; |
| } |
| |
| priv->mram_base = addr; |
| priv->mcfg[MRAM_SIDF].off = out_val[0]; |
| priv->mcfg[MRAM_SIDF].num = out_val[1]; |
| priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off + |
| priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE; |
| priv->mcfg[MRAM_XIDF].num = out_val[2]; |
| priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off + |
| priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE; |
| priv->mcfg[MRAM_RXF0].num = out_val[3] & RXFC_FS_MASK; |
| priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off + |
| priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE; |
| priv->mcfg[MRAM_RXF1].num = out_val[4] & RXFC_FS_MASK; |
| priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off + |
| priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE; |
| priv->mcfg[MRAM_RXB].num = out_val[5]; |
| priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off + |
| priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE; |
| priv->mcfg[MRAM_TXE].num = out_val[6]; |
| priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off + |
| priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE; |
| priv->mcfg[MRAM_TXB].num = out_val[7] & TXBC_NDTB_MASK; |
| |
| dev_dbg(&pdev->dev, "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n", |
| priv->mram_base, |
| priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num, |
| priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num, |
| priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num, |
| priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num, |
| priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num, |
| priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num, |
| priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num); |
| |
| return 0; |
| } |
| |
| static int m_can_plat_probe(struct platform_device *pdev) |
| { |
| struct net_device *dev; |
| struct m_can_priv *priv; |
| struct resource *res; |
| void __iomem *addr; |
| struct clk *hclk, *cclk; |
| int irq, ret; |
| |
| hclk = devm_clk_get(&pdev->dev, "hclk"); |
| cclk = devm_clk_get(&pdev->dev, "cclk"); |
| if (IS_ERR(hclk) || IS_ERR(cclk)) { |
| dev_err(&pdev->dev, "no clock find\n"); |
| return -ENODEV; |
| } |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can"); |
| addr = devm_ioremap_resource(&pdev->dev, res); |
| irq = platform_get_irq_byname(pdev, "int0"); |
| if (IS_ERR(addr) || irq < 0) |
| return -EINVAL; |
| |
| /* allocate the m_can device */ |
| dev = alloc_m_can_dev(); |
| if (!dev) |
| return -ENOMEM; |
| |
| priv = netdev_priv(dev); |
| dev->irq = irq; |
| priv->base = addr; |
| priv->device = &pdev->dev; |
| priv->hclk = hclk; |
| priv->cclk = cclk; |
| priv->can.clock.freq = clk_get_rate(cclk); |
| |
| ret = m_can_of_parse_mram(pdev, priv); |
| if (ret) |
| goto failed_free_dev; |
| |
| platform_set_drvdata(pdev, dev); |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| ret = register_m_can_dev(dev); |
| if (ret) { |
| dev_err(&pdev->dev, "registering %s failed (err=%d)\n", |
| KBUILD_MODNAME, ret); |
| goto failed_free_dev; |
| } |
| |
| devm_can_led_init(dev); |
| |
| dev_info(&pdev->dev, "%s device registered (regs=%p, irq=%d)\n", |
| KBUILD_MODNAME, priv->base, dev->irq); |
| |
| return 0; |
| |
| failed_free_dev: |
| free_m_can_dev(dev); |
| return ret; |
| } |
| |
| static __maybe_unused int m_can_suspend(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| struct m_can_priv *priv = netdev_priv(ndev); |
| |
| if (netif_running(ndev)) { |
| netif_stop_queue(ndev); |
| netif_device_detach(ndev); |
| } |
| |
| /* TODO: enter low power */ |
| |
| priv->can.state = CAN_STATE_SLEEPING; |
| |
| return 0; |
| } |
| |
| static __maybe_unused int m_can_resume(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| struct m_can_priv *priv = netdev_priv(ndev); |
| |
| /* TODO: exit low power */ |
| |
| priv->can.state = CAN_STATE_ERROR_ACTIVE; |
| |
| if (netif_running(ndev)) { |
| netif_device_attach(ndev); |
| netif_start_queue(ndev); |
| } |
| |
| return 0; |
| } |
| |
| static void unregister_m_can_dev(struct net_device *dev) |
| { |
| unregister_candev(dev); |
| } |
| |
| static int m_can_plat_remove(struct platform_device *pdev) |
| { |
| struct net_device *dev = platform_get_drvdata(pdev); |
| |
| unregister_m_can_dev(dev); |
| platform_set_drvdata(pdev, NULL); |
| |
| free_m_can_dev(dev); |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops m_can_pmops = { |
| SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume) |
| }; |
| |
| static const struct of_device_id m_can_of_table[] = { |
| { .compatible = "bosch,m_can", .data = NULL }, |
| { /* sentinel */ }, |
| }; |
| MODULE_DEVICE_TABLE(of, m_can_of_table); |
| |
| static struct platform_driver m_can_plat_driver = { |
| .driver = { |
| .name = KBUILD_MODNAME, |
| .of_match_table = m_can_of_table, |
| .pm = &m_can_pmops, |
| }, |
| .probe = m_can_plat_probe, |
| .remove = m_can_plat_remove, |
| }; |
| |
| module_platform_driver(m_can_plat_driver); |
| |
| MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller"); |