blob: 88f821dd3bfbd25befe8ff949df9560fb982310d [file] [log] [blame]
/* Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/delay.h>
#include "sde_hwio.h"
#include "sde_hw_ctl.h"
#include "sde_dbg.h"
#include "sde_kms.h"
#include "sde_reg_dma.h"
#define CTL_LAYER(lm) \
(((lm) == LM_5) ? (0x024) : (((lm) - LM_0) * 0x004))
#define CTL_LAYER_EXT(lm) \
(0x40 + (((lm) - LM_0) * 0x004))
#define CTL_LAYER_EXT2(lm) \
(0x70 + (((lm) - LM_0) * 0x004))
#define CTL_LAYER_EXT3(lm) \
(0xA0 + (((lm) - LM_0) * 0x004))
#define CTL_TOP 0x014
#define CTL_FLUSH 0x018
#define CTL_START 0x01C
#define CTL_PREPARE 0x0d0
#define CTL_SW_RESET 0x030
#define CTL_LAYER_EXTN_OFFSET 0x40
#define CTL_ROT_TOP 0x0C0
#define CTL_ROT_FLUSH 0x0C4
#define CTL_ROT_START 0x0CC
#define CTL_MIXER_BORDER_OUT BIT(24)
#define CTL_FLUSH_MASK_ROT BIT(27)
#define CTL_FLUSH_MASK_CTL BIT(17)
#define SDE_REG_RESET_TIMEOUT_US 2000
static struct sde_ctl_cfg *_ctl_offset(enum sde_ctl ctl,
struct sde_mdss_cfg *m,
void __iomem *addr,
struct sde_hw_blk_reg_map *b)
{
int i;
for (i = 0; i < m->ctl_count; i++) {
if (ctl == m->ctl[i].id) {
b->base_off = addr;
b->blk_off = m->ctl[i].base;
b->length = m->ctl[i].len;
b->hwversion = m->hwversion;
b->log_mask = SDE_DBG_MASK_CTL;
return &m->ctl[i];
}
}
return ERR_PTR(-ENOMEM);
}
static int _mixer_stages(const struct sde_lm_cfg *mixer, int count,
enum sde_lm lm)
{
int i;
int stages = -EINVAL;
for (i = 0; i < count; i++) {
if (lm == mixer[i].id) {
stages = mixer[i].sblk->maxblendstages;
break;
}
}
return stages;
}
static inline void sde_hw_ctl_trigger_start(struct sde_hw_ctl *ctx)
{
SDE_REG_WRITE(&ctx->hw, CTL_START, 0x1);
}
static inline void sde_hw_ctl_trigger_pending(struct sde_hw_ctl *ctx)
{
SDE_REG_WRITE(&ctx->hw, CTL_PREPARE, 0x1);
}
static inline void sde_hw_ctl_trigger_rot_start(struct sde_hw_ctl *ctx)
{
/* ROT flush bit is latched during ROT start, so set it first */
if (CTL_FLUSH_MASK_ROT & ctx->pending_flush_mask) {
ctx->pending_flush_mask &= ~CTL_FLUSH_MASK_ROT;
SDE_REG_WRITE(&ctx->hw, CTL_FLUSH, CTL_FLUSH_MASK_ROT);
}
SDE_REG_WRITE(&ctx->hw, CTL_ROT_START, BIT(0));
}
static inline void sde_hw_ctl_clear_pending_flush(struct sde_hw_ctl *ctx)
{
ctx->pending_flush_mask = 0x0;
}
static inline void sde_hw_ctl_update_pending_flush(struct sde_hw_ctl *ctx,
u32 flushbits)
{
ctx->pending_flush_mask |= flushbits;
}
static u32 sde_hw_ctl_get_pending_flush(struct sde_hw_ctl *ctx)
{
if (!ctx)
return 0x0;
return ctx->pending_flush_mask;
}
static inline void sde_hw_ctl_trigger_flush(struct sde_hw_ctl *ctx)
{
SDE_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask);
}
static inline u32 sde_hw_ctl_get_flush_register(struct sde_hw_ctl *ctx)
{
struct sde_hw_blk_reg_map *c = &ctx->hw;
u32 rot_op_mode;
rot_op_mode = SDE_REG_READ(c, CTL_ROT_TOP) & 0x3;
/* rotate flush bit is undefined if offline mode, so ignore it */
if (rot_op_mode == SDE_CTL_ROT_OP_MODE_OFFLINE)
return SDE_REG_READ(c, CTL_FLUSH) & ~CTL_FLUSH_MASK_ROT;
return SDE_REG_READ(c, CTL_FLUSH);
}
static inline uint32_t sde_hw_ctl_get_bitmask_sspp(struct sde_hw_ctl *ctx,
enum sde_sspp sspp)
{
uint32_t flushbits = 0;
switch (sspp) {
case SSPP_VIG0:
flushbits = BIT(0);
break;
case SSPP_VIG1:
flushbits = BIT(1);
break;
case SSPP_VIG2:
flushbits = BIT(2);
break;
case SSPP_VIG3:
flushbits = BIT(18);
break;
case SSPP_RGB0:
flushbits = BIT(3);
break;
case SSPP_RGB1:
flushbits = BIT(4);
break;
case SSPP_RGB2:
flushbits = BIT(5);
break;
case SSPP_RGB3:
flushbits = BIT(19);
break;
case SSPP_DMA0:
flushbits = BIT(11);
break;
case SSPP_DMA1:
flushbits = BIT(12);
break;
case SSPP_DMA2:
flushbits = BIT(24);
break;
case SSPP_DMA3:
flushbits = BIT(25);
break;
case SSPP_CURSOR0:
flushbits = BIT(22);
break;
case SSPP_CURSOR1:
flushbits = BIT(23);
break;
default:
break;
}
return flushbits;
}
static inline uint32_t sde_hw_ctl_get_bitmask_mixer(struct sde_hw_ctl *ctx,
enum sde_lm lm)
{
uint32_t flushbits = 0;
switch (lm) {
case LM_0:
flushbits = BIT(6);
break;
case LM_1:
flushbits = BIT(7);
break;
case LM_2:
flushbits = BIT(8);
break;
case LM_3:
flushbits = BIT(9);
break;
case LM_4:
flushbits = BIT(10);
break;
case LM_5:
flushbits = BIT(20);
break;
default:
return -EINVAL;
}
flushbits |= CTL_FLUSH_MASK_CTL;
return flushbits;
}
static inline int sde_hw_ctl_get_bitmask_dspp(struct sde_hw_ctl *ctx,
u32 *flushbits, enum sde_dspp dspp)
{
switch (dspp) {
case DSPP_0:
*flushbits |= BIT(13);
break;
case DSPP_1:
*flushbits |= BIT(14);
break;
default:
return -EINVAL;
}
return 0;
}
static inline int sde_hw_ctl_get_bitmask_dspp_pavlut(struct sde_hw_ctl *ctx,
u32 *flushbits, enum sde_dspp dspp)
{
switch (dspp) {
case DSPP_0:
*flushbits |= BIT(3);
break;
case DSPP_1:
*flushbits |= BIT(4);
break;
default:
return -EINVAL;
}
return 0;
}
static inline int sde_hw_ctl_get_bitmask_intf(struct sde_hw_ctl *ctx,
u32 *flushbits, enum sde_intf intf)
{
switch (intf) {
case INTF_0:
*flushbits |= BIT(31);
break;
case INTF_1:
*flushbits |= BIT(30);
break;
case INTF_2:
*flushbits |= BIT(29);
break;
case INTF_3:
*flushbits |= BIT(28);
break;
default:
return -EINVAL;
}
return 0;
}
static inline int sde_hw_ctl_get_bitmask_wb(struct sde_hw_ctl *ctx,
u32 *flushbits, enum sde_wb wb)
{
switch (wb) {
case WB_0:
case WB_1:
case WB_2:
*flushbits |= BIT(16);
break;
default:
return -EINVAL;
}
return 0;
}
static inline int sde_hw_ctl_get_bitmask_rot(struct sde_hw_ctl *ctx,
u32 *flushbits, enum sde_rot rot)
{
switch (rot) {
case ROT_0:
*flushbits |= CTL_FLUSH_MASK_ROT;
break;
default:
return -EINVAL;
}
return 0;
}
static inline int sde_hw_ctl_get_bitmask_cdm(struct sde_hw_ctl *ctx,
u32 *flushbits, enum sde_cdm cdm)
{
switch (cdm) {
case CDM_0:
*flushbits |= BIT(26);
break;
default:
return -EINVAL;
}
return 0;
}
static u32 sde_hw_ctl_poll_reset_status(struct sde_hw_ctl *ctx, u32 timeout_us)
{
struct sde_hw_blk_reg_map *c = &ctx->hw;
ktime_t timeout;
u32 status;
timeout = ktime_add_us(ktime_get(), timeout_us);
/*
* it takes around 30us to have mdp finish resetting its ctl path
* poll every 50us so that reset should be completed at 1st poll
*/
do {
status = SDE_REG_READ(c, CTL_SW_RESET);
status &= 0x1;
if (status)
usleep_range(20, 50);
} while (status && ktime_compare_safe(ktime_get(), timeout) < 0);
return status;
}
static int sde_hw_ctl_reset_control(struct sde_hw_ctl *ctx)
{
struct sde_hw_blk_reg_map *c = &ctx->hw;
pr_debug("issuing hw ctl reset for ctl:%d\n", ctx->idx);
SDE_REG_WRITE(c, CTL_SW_RESET, 0x1);
if (sde_hw_ctl_poll_reset_status(ctx, SDE_REG_RESET_TIMEOUT_US))
return -EINVAL;
return 0;
}
static int sde_hw_ctl_wait_reset_status(struct sde_hw_ctl *ctx)
{
struct sde_hw_blk_reg_map *c = &ctx->hw;
u32 status;
status = SDE_REG_READ(c, CTL_SW_RESET);
status &= 0x01;
if (!status)
return 0;
pr_debug("hw ctl reset is set for ctl:%d\n", ctx->idx);
if (sde_hw_ctl_poll_reset_status(ctx, SDE_REG_RESET_TIMEOUT_US)) {
pr_err("hw recovery is not complete for ctl:%d\n", ctx->idx);
return -EINVAL;
}
return 0;
}
static void sde_hw_ctl_clear_all_blendstages(struct sde_hw_ctl *ctx)
{
struct sde_hw_blk_reg_map *c = &ctx->hw;
int i;
for (i = 0; i < ctx->mixer_count; i++) {
int mixer_id = ctx->mixer_hw_caps[i].id;
SDE_REG_WRITE(c, CTL_LAYER(mixer_id), 0);
SDE_REG_WRITE(c, CTL_LAYER_EXT(mixer_id), 0);
SDE_REG_WRITE(c, CTL_LAYER_EXT2(mixer_id), 0);
SDE_REG_WRITE(c, CTL_LAYER_EXT3(mixer_id), 0);
}
}
static void sde_hw_ctl_setup_blendstage(struct sde_hw_ctl *ctx,
enum sde_lm lm, struct sde_hw_stage_cfg *stage_cfg)
{
struct sde_hw_blk_reg_map *c = &ctx->hw;
u32 mixercfg = 0, mixercfg_ext = 0, mix, ext;
u32 mixercfg_ext2 = 0, mixercfg_ext3 = 0;
int i, j;
u8 stages;
int pipes_per_stage;
stages = _mixer_stages(ctx->mixer_hw_caps, ctx->mixer_count, lm);
if (stages < 0)
return;
if (test_bit(SDE_MIXER_SOURCESPLIT,
&ctx->mixer_hw_caps->features))
pipes_per_stage = PIPES_PER_STAGE;
else
pipes_per_stage = 1;
mixercfg = CTL_MIXER_BORDER_OUT; /* always set BORDER_OUT */
if (!stage_cfg)
goto exit;
for (i = 0; i <= stages; i++) {
/* overflow to ext register if 'i + 1 > 7' */
mix = (i + 1) & 0x7;
ext = i >= 7;
for (j = 0 ; j < pipes_per_stage; j++) {
enum sde_sspp_multirect_index rect_index =
stage_cfg->multirect_index[i][j];
switch (stage_cfg->stage[i][j]) {
case SSPP_VIG0:
if (rect_index == SDE_SSPP_RECT_1) {
mixercfg_ext3 |= ((i + 1) & 0xF) << 0;
} else {
mixercfg |= mix << 0;
mixercfg_ext |= ext << 0;
}
break;
case SSPP_VIG1:
if (rect_index == SDE_SSPP_RECT_1) {
mixercfg_ext3 |= ((i + 1) & 0xF) << 4;
} else {
mixercfg |= mix << 3;
mixercfg_ext |= ext << 2;
}
break;
case SSPP_VIG2:
if (rect_index == SDE_SSPP_RECT_1) {
mixercfg_ext3 |= ((i + 1) & 0xF) << 8;
} else {
mixercfg |= mix << 6;
mixercfg_ext |= ext << 4;
}
break;
case SSPP_VIG3:
if (rect_index == SDE_SSPP_RECT_1) {
mixercfg_ext3 |= ((i + 1) & 0xF) << 12;
} else {
mixercfg |= mix << 26;
mixercfg_ext |= ext << 6;
}
break;
case SSPP_RGB0:
mixercfg |= mix << 9;
mixercfg_ext |= ext << 8;
break;
case SSPP_RGB1:
mixercfg |= mix << 12;
mixercfg_ext |= ext << 10;
break;
case SSPP_RGB2:
mixercfg |= mix << 15;
mixercfg_ext |= ext << 12;
break;
case SSPP_RGB3:
mixercfg |= mix << 29;
mixercfg_ext |= ext << 14;
break;
case SSPP_DMA0:
if (rect_index == SDE_SSPP_RECT_1) {
mixercfg_ext2 |= ((i + 1) & 0xF) << 8;
} else {
mixercfg |= mix << 18;
mixercfg_ext |= ext << 16;
}
break;
case SSPP_DMA1:
if (rect_index == SDE_SSPP_RECT_1) {
mixercfg_ext2 |= ((i + 1) & 0xF) << 12;
} else {
mixercfg |= mix << 21;
mixercfg_ext |= ext << 18;
}
break;
case SSPP_DMA2:
if (rect_index == SDE_SSPP_RECT_1) {
mixercfg_ext2 |= ((i + 1) & 0xF) << 16;
} else {
mix |= (i + 1) & 0xF;
mixercfg_ext2 |= mix << 0;
}
break;
case SSPP_DMA3:
if (rect_index == SDE_SSPP_RECT_1) {
mixercfg_ext2 |= ((i + 1) & 0xF) << 20;
} else {
mix |= (i + 1) & 0xF;
mixercfg_ext2 |= mix << 4;
}
break;
case SSPP_CURSOR0:
mixercfg_ext |= ((i + 1) & 0xF) << 20;
break;
case SSPP_CURSOR1:
mixercfg_ext |= ((i + 1) & 0xF) << 26;
break;
default:
break;
}
}
}
exit:
SDE_REG_WRITE(c, CTL_LAYER(lm), mixercfg);
SDE_REG_WRITE(c, CTL_LAYER_EXT(lm), mixercfg_ext);
SDE_REG_WRITE(c, CTL_LAYER_EXT2(lm), mixercfg_ext2);
SDE_REG_WRITE(c, CTL_LAYER_EXT3(lm), mixercfg_ext3);
}
static void sde_hw_ctl_intf_cfg(struct sde_hw_ctl *ctx,
struct sde_hw_intf_cfg *cfg)
{
struct sde_hw_blk_reg_map *c = &ctx->hw;
u32 intf_cfg = 0;
intf_cfg |= (cfg->intf & 0xF) << 4;
if (cfg->wb)
intf_cfg |= (cfg->wb & 0x3) + 2;
if (cfg->mode_3d) {
intf_cfg |= BIT(19);
intf_cfg |= (cfg->mode_3d - 0x1) << 20;
}
switch (cfg->intf_mode_sel) {
case SDE_CTL_MODE_SEL_VID:
intf_cfg &= ~BIT(17);
intf_cfg &= ~(0x3 << 15);
break;
case SDE_CTL_MODE_SEL_CMD:
intf_cfg |= BIT(17);
intf_cfg |= ((cfg->stream_sel & 0x3) << 15);
break;
default:
pr_err("unknown interface type %d\n", cfg->intf_mode_sel);
return;
}
SDE_REG_WRITE(c, CTL_TOP, intf_cfg);
}
static void sde_hw_ctl_setup_sbuf_cfg(struct sde_hw_ctl *ctx,
struct sde_ctl_sbuf_cfg *cfg)
{
struct sde_hw_blk_reg_map *c = &ctx->hw;
u32 val;
val = cfg->rot_op_mode & 0x3;
SDE_REG_WRITE(c, CTL_ROT_TOP, val);
}
static void sde_hw_reg_dma_flush(struct sde_hw_ctl *ctx, bool blocking)
{
struct sde_hw_reg_dma_ops *ops = sde_reg_dma_get_ops();
if (ops && ops->last_command)
ops->last_command(ctx, DMA_CTL_QUEUE0,
(blocking ? REG_DMA_WAIT4_COMP : REG_DMA_NOWAIT));
}
static void _setup_ctl_ops(struct sde_hw_ctl_ops *ops,
unsigned long cap)
{
ops->clear_pending_flush = sde_hw_ctl_clear_pending_flush;
ops->update_pending_flush = sde_hw_ctl_update_pending_flush;
ops->get_pending_flush = sde_hw_ctl_get_pending_flush;
ops->trigger_flush = sde_hw_ctl_trigger_flush;
ops->get_flush_register = sde_hw_ctl_get_flush_register;
ops->trigger_start = sde_hw_ctl_trigger_start;
ops->trigger_pending = sde_hw_ctl_trigger_pending;
ops->setup_intf_cfg = sde_hw_ctl_intf_cfg;
ops->reset = sde_hw_ctl_reset_control;
ops->wait_reset_status = sde_hw_ctl_wait_reset_status;
ops->clear_all_blendstages = sde_hw_ctl_clear_all_blendstages;
ops->setup_blendstage = sde_hw_ctl_setup_blendstage;
ops->get_bitmask_sspp = sde_hw_ctl_get_bitmask_sspp;
ops->get_bitmask_mixer = sde_hw_ctl_get_bitmask_mixer;
ops->get_bitmask_dspp = sde_hw_ctl_get_bitmask_dspp;
ops->get_bitmask_dspp_pavlut = sde_hw_ctl_get_bitmask_dspp_pavlut;
ops->get_bitmask_intf = sde_hw_ctl_get_bitmask_intf;
ops->get_bitmask_cdm = sde_hw_ctl_get_bitmask_cdm;
ops->get_bitmask_wb = sde_hw_ctl_get_bitmask_wb;
ops->reg_dma_flush = sde_hw_reg_dma_flush;
if (cap & BIT(SDE_CTL_SBUF)) {
ops->get_bitmask_rot = sde_hw_ctl_get_bitmask_rot;
ops->setup_sbuf_cfg = sde_hw_ctl_setup_sbuf_cfg;
ops->trigger_rot_start = sde_hw_ctl_trigger_rot_start;
}
};
static struct sde_hw_blk_ops sde_hw_ops = {
.start = NULL,
.stop = NULL,
};
struct sde_hw_ctl *sde_hw_ctl_init(enum sde_ctl idx,
void __iomem *addr,
struct sde_mdss_cfg *m)
{
struct sde_hw_ctl *c;
struct sde_ctl_cfg *cfg;
int rc;
c = kzalloc(sizeof(*c), GFP_KERNEL);
if (!c)
return ERR_PTR(-ENOMEM);
cfg = _ctl_offset(idx, m, addr, &c->hw);
if (IS_ERR_OR_NULL(cfg)) {
kfree(c);
pr_err("failed to create sde_hw_ctl %d\n", idx);
return ERR_PTR(-EINVAL);
}
c->caps = cfg;
_setup_ctl_ops(&c->ops, c->caps->features);
c->idx = idx;
c->mixer_count = m->mixer_count;
c->mixer_hw_caps = m->mixer;
rc = sde_hw_blk_init(&c->base, SDE_HW_BLK_CTL, idx, &sde_hw_ops);
if (rc) {
SDE_ERROR("failed to init hw blk %d\n", rc);
goto blk_init_error;
}
sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name, c->hw.blk_off,
c->hw.blk_off + c->hw.length, c->hw.xin_id);
return c;
blk_init_error:
kzfree(c);
return ERR_PTR(rc);
}
void sde_hw_ctl_destroy(struct sde_hw_ctl *ctx)
{
if (ctx)
sde_hw_blk_destroy(&ctx->base);
kfree(ctx);
}