| /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module |
| * |
| * This driver supports the memory controllers found on the Intel |
| * processor family Sandy Bridge. |
| * |
| * This file may be distributed under the terms of the |
| * GNU General Public License version 2 only. |
| * |
| * Copyright (c) 2011 by: |
| * Mauro Carvalho Chehab <mchehab@redhat.com> |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/pci_ids.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/edac.h> |
| #include <linux/mmzone.h> |
| #include <linux/smp.h> |
| #include <linux/bitmap.h> |
| #include <linux/math64.h> |
| #include <asm/processor.h> |
| #include <asm/mce.h> |
| |
| #include "edac_core.h" |
| |
| /* Static vars */ |
| static LIST_HEAD(sbridge_edac_list); |
| static DEFINE_MUTEX(sbridge_edac_lock); |
| static int probed; |
| |
| /* |
| * Alter this version for the module when modifications are made |
| */ |
| #define SBRIDGE_REVISION " Ver: 1.0.0 " |
| #define EDAC_MOD_STR "sbridge_edac" |
| |
| /* |
| * Debug macros |
| */ |
| #define sbridge_printk(level, fmt, arg...) \ |
| edac_printk(level, "sbridge", fmt, ##arg) |
| |
| #define sbridge_mc_printk(mci, level, fmt, arg...) \ |
| edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg) |
| |
| /* |
| * Get a bit field at register value <v>, from bit <lo> to bit <hi> |
| */ |
| #define GET_BITFIELD(v, lo, hi) \ |
| (((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo)) |
| |
| /* |
| * sbridge Memory Controller Registers |
| */ |
| |
| /* |
| * FIXME: For now, let's order by device function, as it makes |
| * easier for driver's development process. This table should be |
| * moved to pci_id.h when submitted upstream |
| */ |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */ |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */ |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */ |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */ |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */ |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */ |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */ |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */ |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */ |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */ |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */ |
| |
| /* |
| * Currently, unused, but will be needed in the future |
| * implementations, as they hold the error counters |
| */ |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */ |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */ |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */ |
| #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */ |
| |
| /* Devices 12 Function 6, Offsets 0x80 to 0xcc */ |
| static const u32 dram_rule[] = { |
| 0x80, 0x88, 0x90, 0x98, 0xa0, |
| 0xa8, 0xb0, 0xb8, 0xc0, 0xc8, |
| }; |
| #define MAX_SAD ARRAY_SIZE(dram_rule) |
| |
| #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff) |
| #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3) |
| #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1) |
| #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0) |
| |
| static char *get_dram_attr(u32 reg) |
| { |
| switch(DRAM_ATTR(reg)) { |
| case 0: |
| return "DRAM"; |
| case 1: |
| return "MMCFG"; |
| case 2: |
| return "NXM"; |
| default: |
| return "unknown"; |
| } |
| } |
| |
| static const u32 interleave_list[] = { |
| 0x84, 0x8c, 0x94, 0x9c, 0xa4, |
| 0xac, 0xb4, 0xbc, 0xc4, 0xcc, |
| }; |
| #define MAX_INTERLEAVE ARRAY_SIZE(interleave_list) |
| |
| #define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2) |
| #define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5) |
| #define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10) |
| #define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13) |
| #define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18) |
| #define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21) |
| #define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26) |
| #define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29) |
| |
| static inline int sad_pkg(u32 reg, int interleave) |
| { |
| switch (interleave) { |
| case 0: |
| return SAD_PKG0(reg); |
| case 1: |
| return SAD_PKG1(reg); |
| case 2: |
| return SAD_PKG2(reg); |
| case 3: |
| return SAD_PKG3(reg); |
| case 4: |
| return SAD_PKG4(reg); |
| case 5: |
| return SAD_PKG5(reg); |
| case 6: |
| return SAD_PKG6(reg); |
| case 7: |
| return SAD_PKG7(reg); |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| /* Devices 12 Function 7 */ |
| |
| #define TOLM 0x80 |
| #define TOHM 0x84 |
| |
| #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff) |
| #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff) |
| |
| /* Device 13 Function 6 */ |
| |
| #define SAD_TARGET 0xf0 |
| |
| #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11) |
| |
| #define SAD_CONTROL 0xf4 |
| |
| #define NODE_ID(reg) GET_BITFIELD(reg, 0, 2) |
| |
| /* Device 14 function 0 */ |
| |
| static const u32 tad_dram_rule[] = { |
| 0x40, 0x44, 0x48, 0x4c, |
| 0x50, 0x54, 0x58, 0x5c, |
| 0x60, 0x64, 0x68, 0x6c, |
| }; |
| #define MAX_TAD ARRAY_SIZE(tad_dram_rule) |
| |
| #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff) |
| #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11) |
| #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9) |
| #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7) |
| #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5) |
| #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3) |
| #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1) |
| |
| /* Device 15, function 0 */ |
| |
| #define MCMTR 0x7c |
| |
| #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2) |
| #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1) |
| #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0) |
| |
| /* Device 15, function 1 */ |
| |
| #define RASENABLES 0xac |
| #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0) |
| |
| /* Device 15, functions 2-5 */ |
| |
| static const int mtr_regs[] = { |
| 0x80, 0x84, 0x88, |
| }; |
| |
| #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19) |
| #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14) |
| #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13) |
| #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4) |
| #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1) |
| |
| static const u32 tad_ch_nilv_offset[] = { |
| 0x90, 0x94, 0x98, 0x9c, |
| 0xa0, 0xa4, 0xa8, 0xac, |
| 0xb0, 0xb4, 0xb8, 0xbc, |
| }; |
| #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29) |
| #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26) |
| |
| static const u32 rir_way_limit[] = { |
| 0x108, 0x10c, 0x110, 0x114, 0x118, |
| }; |
| #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit) |
| |
| #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31) |
| #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29) |
| #define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff) |
| |
| #define MAX_RIR_WAY 8 |
| |
| static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = { |
| { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c }, |
| { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c }, |
| { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c }, |
| { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c }, |
| { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc }, |
| }; |
| |
| #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19) |
| #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14) |
| |
| /* Device 16, functions 2-7 */ |
| |
| /* |
| * FIXME: Implement the error count reads directly |
| */ |
| |
| static const u32 correrrcnt[] = { |
| 0x104, 0x108, 0x10c, 0x110, |
| }; |
| |
| #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31) |
| #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30) |
| #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15) |
| #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14) |
| |
| static const u32 correrrthrsld[] = { |
| 0x11c, 0x120, 0x124, 0x128, |
| }; |
| |
| #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30) |
| #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14) |
| |
| |
| /* Device 17, function 0 */ |
| |
| #define RANK_CFG_A 0x0328 |
| |
| #define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11) |
| |
| /* |
| * sbridge structs |
| */ |
| |
| #define NUM_CHANNELS 4 |
| #define MAX_DIMMS 3 /* Max DIMMS per channel */ |
| |
| struct sbridge_info { |
| u32 mcmtr; |
| }; |
| |
| struct sbridge_channel { |
| u32 ranks; |
| u32 dimms; |
| }; |
| |
| struct pci_id_descr { |
| int dev; |
| int func; |
| int dev_id; |
| int optional; |
| }; |
| |
| struct pci_id_table { |
| const struct pci_id_descr *descr; |
| int n_devs; |
| }; |
| |
| struct sbridge_dev { |
| struct list_head list; |
| u8 bus, mc; |
| u8 node_id, source_id; |
| struct pci_dev **pdev; |
| int n_devs; |
| struct mem_ctl_info *mci; |
| }; |
| |
| struct sbridge_pvt { |
| struct pci_dev *pci_ta, *pci_ddrio, *pci_ras; |
| struct pci_dev *pci_sad0, *pci_sad1, *pci_ha0; |
| struct pci_dev *pci_br; |
| struct pci_dev *pci_tad[NUM_CHANNELS]; |
| |
| struct sbridge_dev *sbridge_dev; |
| |
| struct sbridge_info info; |
| struct sbridge_channel channel[NUM_CHANNELS]; |
| |
| /* Memory type detection */ |
| bool is_mirrored, is_lockstep, is_close_pg; |
| |
| /* Fifo double buffers */ |
| struct mce mce_entry[MCE_LOG_LEN]; |
| struct mce mce_outentry[MCE_LOG_LEN]; |
| |
| /* Fifo in/out counters */ |
| unsigned mce_in, mce_out; |
| |
| /* Count indicator to show errors not got */ |
| unsigned mce_overrun; |
| |
| /* Memory description */ |
| u64 tolm, tohm; |
| }; |
| |
| #define PCI_DESCR(device, function, device_id, opt) \ |
| .dev = (device), \ |
| .func = (function), \ |
| .dev_id = (device_id), \ |
| .optional = opt |
| |
| static const struct pci_id_descr pci_dev_descr_sbridge[] = { |
| /* Processor Home Agent */ |
| { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0) }, |
| |
| /* Memory controller */ |
| { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0) }, |
| { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0) }, |
| { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0) }, |
| { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0) }, |
| { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0) }, |
| { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0) }, |
| { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1) }, |
| |
| /* System Address Decoder */ |
| { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0) }, |
| { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0) }, |
| |
| /* Broadcast Registers */ |
| { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0) }, |
| }; |
| |
| #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) } |
| static const struct pci_id_table pci_dev_descr_sbridge_table[] = { |
| PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge), |
| {0,} /* 0 terminated list. */ |
| }; |
| |
| /* |
| * pci_device_id table for which devices we are looking for |
| */ |
| static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = { |
| {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)}, |
| {0,} /* 0 terminated list. */ |
| }; |
| |
| |
| /**************************************************************************** |
| Ancillary status routines |
| ****************************************************************************/ |
| |
| static inline int numrank(u32 mtr) |
| { |
| int ranks = (1 << RANK_CNT_BITS(mtr)); |
| |
| if (ranks > 4) { |
| edac_dbg(0, "Invalid number of ranks: %d (max = 4) raw value = %x (%04x)\n", |
| ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr); |
| return -EINVAL; |
| } |
| |
| return ranks; |
| } |
| |
| static inline int numrow(u32 mtr) |
| { |
| int rows = (RANK_WIDTH_BITS(mtr) + 12); |
| |
| if (rows < 13 || rows > 18) { |
| edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n", |
| rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr); |
| return -EINVAL; |
| } |
| |
| return 1 << rows; |
| } |
| |
| static inline int numcol(u32 mtr) |
| { |
| int cols = (COL_WIDTH_BITS(mtr) + 10); |
| |
| if (cols > 12) { |
| edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n", |
| cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr); |
| return -EINVAL; |
| } |
| |
| return 1 << cols; |
| } |
| |
| static struct sbridge_dev *get_sbridge_dev(u8 bus) |
| { |
| struct sbridge_dev *sbridge_dev; |
| |
| list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { |
| if (sbridge_dev->bus == bus) |
| return sbridge_dev; |
| } |
| |
| return NULL; |
| } |
| |
| static struct sbridge_dev *alloc_sbridge_dev(u8 bus, |
| const struct pci_id_table *table) |
| { |
| struct sbridge_dev *sbridge_dev; |
| |
| sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL); |
| if (!sbridge_dev) |
| return NULL; |
| |
| sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs, |
| GFP_KERNEL); |
| if (!sbridge_dev->pdev) { |
| kfree(sbridge_dev); |
| return NULL; |
| } |
| |
| sbridge_dev->bus = bus; |
| sbridge_dev->n_devs = table->n_devs; |
| list_add_tail(&sbridge_dev->list, &sbridge_edac_list); |
| |
| return sbridge_dev; |
| } |
| |
| static void free_sbridge_dev(struct sbridge_dev *sbridge_dev) |
| { |
| list_del(&sbridge_dev->list); |
| kfree(sbridge_dev->pdev); |
| kfree(sbridge_dev); |
| } |
| |
| /**************************************************************************** |
| Memory check routines |
| ****************************************************************************/ |
| static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot, |
| unsigned func) |
| { |
| struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus); |
| int i; |
| |
| if (!sbridge_dev) |
| return NULL; |
| |
| for (i = 0; i < sbridge_dev->n_devs; i++) { |
| if (!sbridge_dev->pdev[i]) |
| continue; |
| |
| if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot && |
| PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) { |
| edac_dbg(1, "Associated %02x.%02x.%d with %p\n", |
| bus, slot, func, sbridge_dev->pdev[i]); |
| return sbridge_dev->pdev[i]; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * check_if_ecc_is_active() - Checks if ECC is active |
| * bus: Device bus |
| */ |
| static int check_if_ecc_is_active(const u8 bus) |
| { |
| struct pci_dev *pdev = NULL; |
| u32 mcmtr; |
| |
| pdev = get_pdev_slot_func(bus, 15, 0); |
| if (!pdev) { |
| sbridge_printk(KERN_ERR, "Couldn't find PCI device " |
| "%2x.%02d.%d!!!\n", |
| bus, 15, 0); |
| return -ENODEV; |
| } |
| |
| pci_read_config_dword(pdev, MCMTR, &mcmtr); |
| if (!IS_ECC_ENABLED(mcmtr)) { |
| sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n"); |
| return -ENODEV; |
| } |
| return 0; |
| } |
| |
| static int get_dimm_config(struct mem_ctl_info *mci) |
| { |
| struct sbridge_pvt *pvt = mci->pvt_info; |
| struct dimm_info *dimm; |
| unsigned i, j, banks, ranks, rows, cols, npages; |
| u64 size; |
| u32 reg; |
| enum edac_type mode; |
| enum mem_type mtype; |
| |
| pci_read_config_dword(pvt->pci_br, SAD_TARGET, ®); |
| pvt->sbridge_dev->source_id = SOURCE_ID(reg); |
| |
| pci_read_config_dword(pvt->pci_br, SAD_CONTROL, ®); |
| pvt->sbridge_dev->node_id = NODE_ID(reg); |
| edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n", |
| pvt->sbridge_dev->mc, |
| pvt->sbridge_dev->node_id, |
| pvt->sbridge_dev->source_id); |
| |
| pci_read_config_dword(pvt->pci_ras, RASENABLES, ®); |
| if (IS_MIRROR_ENABLED(reg)) { |
| edac_dbg(0, "Memory mirror is enabled\n"); |
| pvt->is_mirrored = true; |
| } else { |
| edac_dbg(0, "Memory mirror is disabled\n"); |
| pvt->is_mirrored = false; |
| } |
| |
| pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr); |
| if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) { |
| edac_dbg(0, "Lockstep is enabled\n"); |
| mode = EDAC_S8ECD8ED; |
| pvt->is_lockstep = true; |
| } else { |
| edac_dbg(0, "Lockstep is disabled\n"); |
| mode = EDAC_S4ECD4ED; |
| pvt->is_lockstep = false; |
| } |
| if (IS_CLOSE_PG(pvt->info.mcmtr)) { |
| edac_dbg(0, "address map is on closed page mode\n"); |
| pvt->is_close_pg = true; |
| } else { |
| edac_dbg(0, "address map is on open page mode\n"); |
| pvt->is_close_pg = false; |
| } |
| |
| if (pvt->pci_ddrio) { |
| pci_read_config_dword(pvt->pci_ddrio, RANK_CFG_A, ®); |
| if (IS_RDIMM_ENABLED(reg)) { |
| /* FIXME: Can also be LRDIMM */ |
| edac_dbg(0, "Memory is registered\n"); |
| mtype = MEM_RDDR3; |
| } else { |
| edac_dbg(0, "Memory is unregistered\n"); |
| mtype = MEM_DDR3; |
| } |
| } else { |
| edac_dbg(0, "Cannot determine memory type\n"); |
| mtype = MEM_UNKNOWN; |
| } |
| |
| /* On all supported DDR3 DIMM types, there are 8 banks available */ |
| banks = 8; |
| |
| for (i = 0; i < NUM_CHANNELS; i++) { |
| u32 mtr; |
| |
| for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) { |
| dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, |
| i, j, 0); |
| pci_read_config_dword(pvt->pci_tad[i], |
| mtr_regs[j], &mtr); |
| edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr); |
| if (IS_DIMM_PRESENT(mtr)) { |
| pvt->channel[i].dimms++; |
| |
| ranks = numrank(mtr); |
| rows = numrow(mtr); |
| cols = numcol(mtr); |
| |
| /* DDR3 has 8 I/O banks */ |
| size = ((u64)rows * cols * banks * ranks) >> (20 - 3); |
| npages = MiB_TO_PAGES(size); |
| |
| edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", |
| pvt->sbridge_dev->mc, i, j, |
| size, npages, |
| banks, ranks, rows, cols); |
| |
| dimm->nr_pages = npages; |
| dimm->grain = 32; |
| dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4; |
| dimm->mtype = mtype; |
| dimm->edac_mode = mode; |
| snprintf(dimm->label, sizeof(dimm->label), |
| "CPU_SrcID#%u_Channel#%u_DIMM#%u", |
| pvt->sbridge_dev->source_id, i, j); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void get_memory_layout(const struct mem_ctl_info *mci) |
| { |
| struct sbridge_pvt *pvt = mci->pvt_info; |
| int i, j, k, n_sads, n_tads, sad_interl; |
| u32 reg; |
| u64 limit, prv = 0; |
| u64 tmp_mb; |
| u32 mb, kb; |
| u32 rir_way; |
| |
| /* |
| * Step 1) Get TOLM/TOHM ranges |
| */ |
| |
| /* Address range is 32:28 */ |
| pci_read_config_dword(pvt->pci_sad1, TOLM, |
| ®); |
| pvt->tolm = GET_TOLM(reg); |
| tmp_mb = (1 + pvt->tolm) >> 20; |
| |
| mb = div_u64_rem(tmp_mb, 1000, &kb); |
| edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm); |
| |
| /* Address range is already 45:25 */ |
| pci_read_config_dword(pvt->pci_sad1, TOHM, |
| ®); |
| pvt->tohm = GET_TOHM(reg); |
| tmp_mb = (1 + pvt->tohm) >> 20; |
| |
| mb = div_u64_rem(tmp_mb, 1000, &kb); |
| edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tohm); |
| |
| /* |
| * Step 2) Get SAD range and SAD Interleave list |
| * TAD registers contain the interleave wayness. However, it |
| * seems simpler to just discover it indirectly, with the |
| * algorithm bellow. |
| */ |
| prv = 0; |
| for (n_sads = 0; n_sads < MAX_SAD; n_sads++) { |
| /* SAD_LIMIT Address range is 45:26 */ |
| pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads], |
| ®); |
| limit = SAD_LIMIT(reg); |
| |
| if (!DRAM_RULE_ENABLE(reg)) |
| continue; |
| |
| if (limit <= prv) |
| break; |
| |
| tmp_mb = (limit + 1) >> 20; |
| mb = div_u64_rem(tmp_mb, 1000, &kb); |
| edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n", |
| n_sads, |
| get_dram_attr(reg), |
| mb, kb, |
| ((u64)tmp_mb) << 20L, |
| INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]", |
| reg); |
| prv = limit; |
| |
| pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads], |
| ®); |
| sad_interl = sad_pkg(reg, 0); |
| for (j = 0; j < 8; j++) { |
| if (j > 0 && sad_interl == sad_pkg(reg, j)) |
| break; |
| |
| edac_dbg(0, "SAD#%d, interleave #%d: %d\n", |
| n_sads, j, sad_pkg(reg, j)); |
| } |
| } |
| |
| /* |
| * Step 3) Get TAD range |
| */ |
| prv = 0; |
| for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { |
| pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads], |
| ®); |
| limit = TAD_LIMIT(reg); |
| if (limit <= prv) |
| break; |
| tmp_mb = (limit + 1) >> 20; |
| |
| mb = div_u64_rem(tmp_mb, 1000, &kb); |
| edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n", |
| n_tads, mb, kb, |
| ((u64)tmp_mb) << 20L, |
| (u32)TAD_SOCK(reg), |
| (u32)TAD_CH(reg), |
| (u32)TAD_TGT0(reg), |
| (u32)TAD_TGT1(reg), |
| (u32)TAD_TGT2(reg), |
| (u32)TAD_TGT3(reg), |
| reg); |
| prv = limit; |
| } |
| |
| /* |
| * Step 4) Get TAD offsets, per each channel |
| */ |
| for (i = 0; i < NUM_CHANNELS; i++) { |
| if (!pvt->channel[i].dimms) |
| continue; |
| for (j = 0; j < n_tads; j++) { |
| pci_read_config_dword(pvt->pci_tad[i], |
| tad_ch_nilv_offset[j], |
| ®); |
| tmp_mb = TAD_OFFSET(reg) >> 20; |
| mb = div_u64_rem(tmp_mb, 1000, &kb); |
| edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n", |
| i, j, |
| mb, kb, |
| ((u64)tmp_mb) << 20L, |
| reg); |
| } |
| } |
| |
| /* |
| * Step 6) Get RIR Wayness/Limit, per each channel |
| */ |
| for (i = 0; i < NUM_CHANNELS; i++) { |
| if (!pvt->channel[i].dimms) |
| continue; |
| for (j = 0; j < MAX_RIR_RANGES; j++) { |
| pci_read_config_dword(pvt->pci_tad[i], |
| rir_way_limit[j], |
| ®); |
| |
| if (!IS_RIR_VALID(reg)) |
| continue; |
| |
| tmp_mb = RIR_LIMIT(reg) >> 20; |
| rir_way = 1 << RIR_WAY(reg); |
| mb = div_u64_rem(tmp_mb, 1000, &kb); |
| edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n", |
| i, j, |
| mb, kb, |
| ((u64)tmp_mb) << 20L, |
| rir_way, |
| reg); |
| |
| for (k = 0; k < rir_way; k++) { |
| pci_read_config_dword(pvt->pci_tad[i], |
| rir_offset[j][k], |
| ®); |
| tmp_mb = RIR_OFFSET(reg) << 6; |
| |
| mb = div_u64_rem(tmp_mb, 1000, &kb); |
| edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n", |
| i, j, k, |
| mb, kb, |
| ((u64)tmp_mb) << 20L, |
| (u32)RIR_RNK_TGT(reg), |
| reg); |
| } |
| } |
| } |
| } |
| |
| struct mem_ctl_info *get_mci_for_node_id(u8 node_id) |
| { |
| struct sbridge_dev *sbridge_dev; |
| |
| list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { |
| if (sbridge_dev->node_id == node_id) |
| return sbridge_dev->mci; |
| } |
| return NULL; |
| } |
| |
| static int get_memory_error_data(struct mem_ctl_info *mci, |
| u64 addr, |
| u8 *socket, |
| long *channel_mask, |
| u8 *rank, |
| char **area_type, char *msg) |
| { |
| struct mem_ctl_info *new_mci; |
| struct sbridge_pvt *pvt = mci->pvt_info; |
| int n_rir, n_sads, n_tads, sad_way, sck_xch; |
| int sad_interl, idx, base_ch; |
| int interleave_mode; |
| unsigned sad_interleave[MAX_INTERLEAVE]; |
| u32 reg; |
| u8 ch_way,sck_way; |
| u32 tad_offset; |
| u32 rir_way; |
| u32 mb, kb; |
| u64 ch_addr, offset, limit, prv = 0; |
| |
| |
| /* |
| * Step 0) Check if the address is at special memory ranges |
| * The check bellow is probably enough to fill all cases where |
| * the error is not inside a memory, except for the legacy |
| * range (e. g. VGA addresses). It is unlikely, however, that the |
| * memory controller would generate an error on that range. |
| */ |
| if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) { |
| sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr); |
| return -EINVAL; |
| } |
| if (addr >= (u64)pvt->tohm) { |
| sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr); |
| return -EINVAL; |
| } |
| |
| /* |
| * Step 1) Get socket |
| */ |
| for (n_sads = 0; n_sads < MAX_SAD; n_sads++) { |
| pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads], |
| ®); |
| |
| if (!DRAM_RULE_ENABLE(reg)) |
| continue; |
| |
| limit = SAD_LIMIT(reg); |
| if (limit <= prv) { |
| sprintf(msg, "Can't discover the memory socket"); |
| return -EINVAL; |
| } |
| if (addr <= limit) |
| break; |
| prv = limit; |
| } |
| if (n_sads == MAX_SAD) { |
| sprintf(msg, "Can't discover the memory socket"); |
| return -EINVAL; |
| } |
| *area_type = get_dram_attr(reg); |
| interleave_mode = INTERLEAVE_MODE(reg); |
| |
| pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads], |
| ®); |
| sad_interl = sad_pkg(reg, 0); |
| for (sad_way = 0; sad_way < 8; sad_way++) { |
| if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way)) |
| break; |
| sad_interleave[sad_way] = sad_pkg(reg, sad_way); |
| edac_dbg(0, "SAD interleave #%d: %d\n", |
| sad_way, sad_interleave[sad_way]); |
| } |
| edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n", |
| pvt->sbridge_dev->mc, |
| n_sads, |
| addr, |
| limit, |
| sad_way + 7, |
| interleave_mode ? "" : "XOR[18:16]"); |
| if (interleave_mode) |
| idx = ((addr >> 6) ^ (addr >> 16)) & 7; |
| else |
| idx = (addr >> 6) & 7; |
| switch (sad_way) { |
| case 1: |
| idx = 0; |
| break; |
| case 2: |
| idx = idx & 1; |
| break; |
| case 4: |
| idx = idx & 3; |
| break; |
| case 8: |
| break; |
| default: |
| sprintf(msg, "Can't discover socket interleave"); |
| return -EINVAL; |
| } |
| *socket = sad_interleave[idx]; |
| edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n", |
| idx, sad_way, *socket); |
| |
| /* |
| * Move to the proper node structure, in order to access the |
| * right PCI registers |
| */ |
| new_mci = get_mci_for_node_id(*socket); |
| if (!new_mci) { |
| sprintf(msg, "Struct for socket #%u wasn't initialized", |
| *socket); |
| return -EINVAL; |
| } |
| mci = new_mci; |
| pvt = mci->pvt_info; |
| |
| /* |
| * Step 2) Get memory channel |
| */ |
| prv = 0; |
| for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { |
| pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads], |
| ®); |
| limit = TAD_LIMIT(reg); |
| if (limit <= prv) { |
| sprintf(msg, "Can't discover the memory channel"); |
| return -EINVAL; |
| } |
| if (addr <= limit) |
| break; |
| prv = limit; |
| } |
| ch_way = TAD_CH(reg) + 1; |
| sck_way = TAD_SOCK(reg) + 1; |
| /* |
| * FIXME: Is it right to always use channel 0 for offsets? |
| */ |
| pci_read_config_dword(pvt->pci_tad[0], |
| tad_ch_nilv_offset[n_tads], |
| &tad_offset); |
| |
| if (ch_way == 3) |
| idx = addr >> 6; |
| else |
| idx = addr >> (6 + sck_way); |
| idx = idx % ch_way; |
| |
| /* |
| * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ??? |
| */ |
| switch (idx) { |
| case 0: |
| base_ch = TAD_TGT0(reg); |
| break; |
| case 1: |
| base_ch = TAD_TGT1(reg); |
| break; |
| case 2: |
| base_ch = TAD_TGT2(reg); |
| break; |
| case 3: |
| base_ch = TAD_TGT3(reg); |
| break; |
| default: |
| sprintf(msg, "Can't discover the TAD target"); |
| return -EINVAL; |
| } |
| *channel_mask = 1 << base_ch; |
| |
| if (pvt->is_mirrored) { |
| *channel_mask |= 1 << ((base_ch + 2) % 4); |
| switch(ch_way) { |
| case 2: |
| case 4: |
| sck_xch = 1 << sck_way * (ch_way >> 1); |
| break; |
| default: |
| sprintf(msg, "Invalid mirror set. Can't decode addr"); |
| return -EINVAL; |
| } |
| } else |
| sck_xch = (1 << sck_way) * ch_way; |
| |
| if (pvt->is_lockstep) |
| *channel_mask |= 1 << ((base_ch + 1) % 4); |
| |
| offset = TAD_OFFSET(tad_offset); |
| |
| edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n", |
| n_tads, |
| addr, |
| limit, |
| (u32)TAD_SOCK(reg), |
| ch_way, |
| offset, |
| idx, |
| base_ch, |
| *channel_mask); |
| |
| /* Calculate channel address */ |
| /* Remove the TAD offset */ |
| |
| if (offset > addr) { |
| sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!", |
| offset, addr); |
| return -EINVAL; |
| } |
| addr -= offset; |
| /* Store the low bits [0:6] of the addr */ |
| ch_addr = addr & 0x7f; |
| /* Remove socket wayness and remove 6 bits */ |
| addr >>= 6; |
| addr = div_u64(addr, sck_xch); |
| #if 0 |
| /* Divide by channel way */ |
| addr = addr / ch_way; |
| #endif |
| /* Recover the last 6 bits */ |
| ch_addr |= addr << 6; |
| |
| /* |
| * Step 3) Decode rank |
| */ |
| for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) { |
| pci_read_config_dword(pvt->pci_tad[base_ch], |
| rir_way_limit[n_rir], |
| ®); |
| |
| if (!IS_RIR_VALID(reg)) |
| continue; |
| |
| limit = RIR_LIMIT(reg); |
| mb = div_u64_rem(limit >> 20, 1000, &kb); |
| edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n", |
| n_rir, |
| mb, kb, |
| limit, |
| 1 << RIR_WAY(reg)); |
| if (ch_addr <= limit) |
| break; |
| } |
| if (n_rir == MAX_RIR_RANGES) { |
| sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx", |
| ch_addr); |
| return -EINVAL; |
| } |
| rir_way = RIR_WAY(reg); |
| if (pvt->is_close_pg) |
| idx = (ch_addr >> 6); |
| else |
| idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */ |
| idx %= 1 << rir_way; |
| |
| pci_read_config_dword(pvt->pci_tad[base_ch], |
| rir_offset[n_rir][idx], |
| ®); |
| *rank = RIR_RNK_TGT(reg); |
| |
| edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n", |
| n_rir, |
| ch_addr, |
| limit, |
| rir_way, |
| idx); |
| |
| return 0; |
| } |
| |
| /**************************************************************************** |
| Device initialization routines: put/get, init/exit |
| ****************************************************************************/ |
| |
| /* |
| * sbridge_put_all_devices 'put' all the devices that we have |
| * reserved via 'get' |
| */ |
| static void sbridge_put_devices(struct sbridge_dev *sbridge_dev) |
| { |
| int i; |
| |
| edac_dbg(0, "\n"); |
| for (i = 0; i < sbridge_dev->n_devs; i++) { |
| struct pci_dev *pdev = sbridge_dev->pdev[i]; |
| if (!pdev) |
| continue; |
| edac_dbg(0, "Removing dev %02x:%02x.%d\n", |
| pdev->bus->number, |
| PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); |
| pci_dev_put(pdev); |
| } |
| } |
| |
| static void sbridge_put_all_devices(void) |
| { |
| struct sbridge_dev *sbridge_dev, *tmp; |
| |
| list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) { |
| sbridge_put_devices(sbridge_dev); |
| free_sbridge_dev(sbridge_dev); |
| } |
| } |
| |
| /* |
| * sbridge_get_all_devices Find and perform 'get' operation on the MCH's |
| * device/functions we want to reference for this driver |
| * |
| * Need to 'get' device 16 func 1 and func 2 |
| */ |
| static int sbridge_get_onedevice(struct pci_dev **prev, |
| u8 *num_mc, |
| const struct pci_id_table *table, |
| const unsigned devno) |
| { |
| struct sbridge_dev *sbridge_dev; |
| const struct pci_id_descr *dev_descr = &table->descr[devno]; |
| |
| struct pci_dev *pdev = NULL; |
| u8 bus = 0; |
| |
| sbridge_printk(KERN_INFO, |
| "Seeking for: dev %02x.%d PCI ID %04x:%04x\n", |
| dev_descr->dev, dev_descr->func, |
| PCI_VENDOR_ID_INTEL, dev_descr->dev_id); |
| |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
| dev_descr->dev_id, *prev); |
| |
| if (!pdev) { |
| if (*prev) { |
| *prev = pdev; |
| return 0; |
| } |
| |
| if (dev_descr->optional) |
| return 0; |
| |
| if (devno == 0) |
| return -ENODEV; |
| |
| sbridge_printk(KERN_INFO, |
| "Device not found: dev %02x.%d PCI ID %04x:%04x\n", |
| dev_descr->dev, dev_descr->func, |
| PCI_VENDOR_ID_INTEL, dev_descr->dev_id); |
| |
| /* End of list, leave */ |
| return -ENODEV; |
| } |
| bus = pdev->bus->number; |
| |
| sbridge_dev = get_sbridge_dev(bus); |
| if (!sbridge_dev) { |
| sbridge_dev = alloc_sbridge_dev(bus, table); |
| if (!sbridge_dev) { |
| pci_dev_put(pdev); |
| return -ENOMEM; |
| } |
| (*num_mc)++; |
| } |
| |
| if (sbridge_dev->pdev[devno]) { |
| sbridge_printk(KERN_ERR, |
| "Duplicated device for " |
| "dev %02x:%d.%d PCI ID %04x:%04x\n", |
| bus, dev_descr->dev, dev_descr->func, |
| PCI_VENDOR_ID_INTEL, dev_descr->dev_id); |
| pci_dev_put(pdev); |
| return -ENODEV; |
| } |
| |
| sbridge_dev->pdev[devno] = pdev; |
| |
| /* Sanity check */ |
| if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev || |
| PCI_FUNC(pdev->devfn) != dev_descr->func)) { |
| sbridge_printk(KERN_ERR, |
| "Device PCI ID %04x:%04x " |
| "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n", |
| PCI_VENDOR_ID_INTEL, dev_descr->dev_id, |
| bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), |
| bus, dev_descr->dev, dev_descr->func); |
| return -ENODEV; |
| } |
| |
| /* Be sure that the device is enabled */ |
| if (unlikely(pci_enable_device(pdev) < 0)) { |
| sbridge_printk(KERN_ERR, |
| "Couldn't enable " |
| "dev %02x:%d.%d PCI ID %04x:%04x\n", |
| bus, dev_descr->dev, dev_descr->func, |
| PCI_VENDOR_ID_INTEL, dev_descr->dev_id); |
| return -ENODEV; |
| } |
| |
| edac_dbg(0, "Detected dev %02x:%d.%d PCI ID %04x:%04x\n", |
| bus, dev_descr->dev, dev_descr->func, |
| PCI_VENDOR_ID_INTEL, dev_descr->dev_id); |
| |
| /* |
| * As stated on drivers/pci/search.c, the reference count for |
| * @from is always decremented if it is not %NULL. So, as we need |
| * to get all devices up to null, we need to do a get for the device |
| */ |
| pci_dev_get(pdev); |
| |
| *prev = pdev; |
| |
| return 0; |
| } |
| |
| static int sbridge_get_all_devices(u8 *num_mc) |
| { |
| int i, rc; |
| struct pci_dev *pdev = NULL; |
| const struct pci_id_table *table = pci_dev_descr_sbridge_table; |
| |
| while (table && table->descr) { |
| for (i = 0; i < table->n_devs; i++) { |
| pdev = NULL; |
| do { |
| rc = sbridge_get_onedevice(&pdev, num_mc, |
| table, i); |
| if (rc < 0) { |
| if (i == 0) { |
| i = table->n_devs; |
| break; |
| } |
| sbridge_put_all_devices(); |
| return -ENODEV; |
| } |
| } while (pdev); |
| } |
| table++; |
| } |
| |
| return 0; |
| } |
| |
| static int mci_bind_devs(struct mem_ctl_info *mci, |
| struct sbridge_dev *sbridge_dev) |
| { |
| struct sbridge_pvt *pvt = mci->pvt_info; |
| struct pci_dev *pdev; |
| int i, func, slot; |
| |
| for (i = 0; i < sbridge_dev->n_devs; i++) { |
| pdev = sbridge_dev->pdev[i]; |
| if (!pdev) |
| continue; |
| slot = PCI_SLOT(pdev->devfn); |
| func = PCI_FUNC(pdev->devfn); |
| switch (slot) { |
| case 12: |
| switch (func) { |
| case 6: |
| pvt->pci_sad0 = pdev; |
| break; |
| case 7: |
| pvt->pci_sad1 = pdev; |
| break; |
| default: |
| goto error; |
| } |
| break; |
| case 13: |
| switch (func) { |
| case 6: |
| pvt->pci_br = pdev; |
| break; |
| default: |
| goto error; |
| } |
| break; |
| case 14: |
| switch (func) { |
| case 0: |
| pvt->pci_ha0 = pdev; |
| break; |
| default: |
| goto error; |
| } |
| break; |
| case 15: |
| switch (func) { |
| case 0: |
| pvt->pci_ta = pdev; |
| break; |
| case 1: |
| pvt->pci_ras = pdev; |
| break; |
| case 2: |
| case 3: |
| case 4: |
| case 5: |
| pvt->pci_tad[func - 2] = pdev; |
| break; |
| default: |
| goto error; |
| } |
| break; |
| case 17: |
| switch (func) { |
| case 0: |
| pvt->pci_ddrio = pdev; |
| break; |
| default: |
| goto error; |
| } |
| break; |
| default: |
| goto error; |
| } |
| |
| edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", |
| sbridge_dev->bus, |
| PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), |
| pdev); |
| } |
| |
| /* Check if everything were registered */ |
| if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 || |
| !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta) |
| goto enodev; |
| |
| for (i = 0; i < NUM_CHANNELS; i++) { |
| if (!pvt->pci_tad[i]) |
| goto enodev; |
| } |
| return 0; |
| |
| enodev: |
| sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); |
| return -ENODEV; |
| |
| error: |
| sbridge_printk(KERN_ERR, "Device %d, function %d " |
| "is out of the expected range\n", |
| slot, func); |
| return -EINVAL; |
| } |
| |
| /**************************************************************************** |
| Error check routines |
| ****************************************************************************/ |
| |
| /* |
| * While Sandy Bridge has error count registers, SMI BIOS read values from |
| * and resets the counters. So, they are not reliable for the OS to read |
| * from them. So, we have no option but to just trust on whatever MCE is |
| * telling us about the errors. |
| */ |
| static void sbridge_mce_output_error(struct mem_ctl_info *mci, |
| const struct mce *m) |
| { |
| struct mem_ctl_info *new_mci; |
| struct sbridge_pvt *pvt = mci->pvt_info; |
| enum hw_event_mc_err_type tp_event; |
| char *type, *optype, msg[256]; |
| bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); |
| bool overflow = GET_BITFIELD(m->status, 62, 62); |
| bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); |
| bool recoverable = GET_BITFIELD(m->status, 56, 56); |
| u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); |
| u32 mscod = GET_BITFIELD(m->status, 16, 31); |
| u32 errcode = GET_BITFIELD(m->status, 0, 15); |
| u32 channel = GET_BITFIELD(m->status, 0, 3); |
| u32 optypenum = GET_BITFIELD(m->status, 4, 6); |
| long channel_mask, first_channel; |
| u8 rank, socket; |
| int rc, dimm; |
| char *area_type = NULL; |
| |
| if (uncorrected_error) { |
| if (ripv) { |
| type = "FATAL"; |
| tp_event = HW_EVENT_ERR_FATAL; |
| } else { |
| type = "NON_FATAL"; |
| tp_event = HW_EVENT_ERR_UNCORRECTED; |
| } |
| } else { |
| type = "CORRECTED"; |
| tp_event = HW_EVENT_ERR_CORRECTED; |
| } |
| |
| /* |
| * According with Table 15-9 of the Intel Architecture spec vol 3A, |
| * memory errors should fit in this mask: |
| * 000f 0000 1mmm cccc (binary) |
| * where: |
| * f = Correction Report Filtering Bit. If 1, subsequent errors |
| * won't be shown |
| * mmm = error type |
| * cccc = channel |
| * If the mask doesn't match, report an error to the parsing logic |
| */ |
| if (! ((errcode & 0xef80) == 0x80)) { |
| optype = "Can't parse: it is not a mem"; |
| } else { |
| switch (optypenum) { |
| case 0: |
| optype = "generic undef request error"; |
| break; |
| case 1: |
| optype = "memory read error"; |
| break; |
| case 2: |
| optype = "memory write error"; |
| break; |
| case 3: |
| optype = "addr/cmd error"; |
| break; |
| case 4: |
| optype = "memory scrubbing error"; |
| break; |
| default: |
| optype = "reserved"; |
| break; |
| } |
| } |
| |
| rc = get_memory_error_data(mci, m->addr, &socket, |
| &channel_mask, &rank, &area_type, msg); |
| if (rc < 0) |
| goto err_parsing; |
| new_mci = get_mci_for_node_id(socket); |
| if (!new_mci) { |
| strcpy(msg, "Error: socket got corrupted!"); |
| goto err_parsing; |
| } |
| mci = new_mci; |
| pvt = mci->pvt_info; |
| |
| first_channel = find_first_bit(&channel_mask, NUM_CHANNELS); |
| |
| if (rank < 4) |
| dimm = 0; |
| else if (rank < 8) |
| dimm = 1; |
| else |
| dimm = 2; |
| |
| |
| /* |
| * FIXME: On some memory configurations (mirror, lockstep), the |
| * Memory Controller can't point the error to a single DIMM. The |
| * EDAC core should be handling the channel mask, in order to point |
| * to the group of dimm's where the error may be happening. |
| */ |
| snprintf(msg, sizeof(msg), |
| "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d", |
| overflow ? " OVERFLOW" : "", |
| (uncorrected_error && recoverable) ? " recoverable" : "", |
| area_type, |
| mscod, errcode, |
| socket, |
| channel_mask, |
| rank); |
| |
| edac_dbg(0, "%s\n", msg); |
| |
| /* FIXME: need support for channel mask */ |
| |
| /* Call the helper to output message */ |
| edac_mc_handle_error(tp_event, mci, core_err_cnt, |
| m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, |
| channel, dimm, -1, |
| optype, msg); |
| return; |
| err_parsing: |
| edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, |
| -1, -1, -1, |
| msg, ""); |
| |
| } |
| |
| /* |
| * sbridge_check_error Retrieve and process errors reported by the |
| * hardware. Called by the Core module. |
| */ |
| static void sbridge_check_error(struct mem_ctl_info *mci) |
| { |
| struct sbridge_pvt *pvt = mci->pvt_info; |
| int i; |
| unsigned count = 0; |
| struct mce *m; |
| |
| /* |
| * MCE first step: Copy all mce errors into a temporary buffer |
| * We use a double buffering here, to reduce the risk of |
| * loosing an error. |
| */ |
| smp_rmb(); |
| count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in) |
| % MCE_LOG_LEN; |
| if (!count) |
| return; |
| |
| m = pvt->mce_outentry; |
| if (pvt->mce_in + count > MCE_LOG_LEN) { |
| unsigned l = MCE_LOG_LEN - pvt->mce_in; |
| |
| memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l); |
| smp_wmb(); |
| pvt->mce_in = 0; |
| count -= l; |
| m += l; |
| } |
| memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count); |
| smp_wmb(); |
| pvt->mce_in += count; |
| |
| smp_rmb(); |
| if (pvt->mce_overrun) { |
| sbridge_printk(KERN_ERR, "Lost %d memory errors\n", |
| pvt->mce_overrun); |
| smp_wmb(); |
| pvt->mce_overrun = 0; |
| } |
| |
| /* |
| * MCE second step: parse errors and display |
| */ |
| for (i = 0; i < count; i++) |
| sbridge_mce_output_error(mci, &pvt->mce_outentry[i]); |
| } |
| |
| /* |
| * sbridge_mce_check_error Replicates mcelog routine to get errors |
| * This routine simply queues mcelog errors, and |
| * return. The error itself should be handled later |
| * by sbridge_check_error. |
| * WARNING: As this routine should be called at NMI time, extra care should |
| * be taken to avoid deadlocks, and to be as fast as possible. |
| */ |
| static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct mce *mce = (struct mce *)data; |
| struct mem_ctl_info *mci; |
| struct sbridge_pvt *pvt; |
| |
| mci = get_mci_for_node_id(mce->socketid); |
| if (!mci) |
| return NOTIFY_BAD; |
| pvt = mci->pvt_info; |
| |
| /* |
| * Just let mcelog handle it if the error is |
| * outside the memory controller. A memory error |
| * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. |
| * bit 12 has an special meaning. |
| */ |
| if ((mce->status & 0xefff) >> 7 != 1) |
| return NOTIFY_DONE; |
| |
| printk("sbridge: HANDLING MCE MEMORY ERROR\n"); |
| |
| printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n", |
| mce->extcpu, mce->mcgstatus, mce->bank, mce->status); |
| printk("TSC %llx ", mce->tsc); |
| printk("ADDR %llx ", mce->addr); |
| printk("MISC %llx ", mce->misc); |
| |
| printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n", |
| mce->cpuvendor, mce->cpuid, mce->time, |
| mce->socketid, mce->apicid); |
| |
| /* Only handle if it is the right mc controller */ |
| if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc) |
| return NOTIFY_DONE; |
| |
| smp_rmb(); |
| if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) { |
| smp_wmb(); |
| pvt->mce_overrun++; |
| return NOTIFY_DONE; |
| } |
| |
| /* Copy memory error at the ringbuffer */ |
| memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce)); |
| smp_wmb(); |
| pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN; |
| |
| /* Handle fatal errors immediately */ |
| if (mce->mcgstatus & 1) |
| sbridge_check_error(mci); |
| |
| /* Advice mcelog that the error were handled */ |
| return NOTIFY_STOP; |
| } |
| |
| static struct notifier_block sbridge_mce_dec = { |
| .notifier_call = sbridge_mce_check_error, |
| }; |
| |
| /**************************************************************************** |
| EDAC register/unregister logic |
| ****************************************************************************/ |
| |
| static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev) |
| { |
| struct mem_ctl_info *mci = sbridge_dev->mci; |
| struct sbridge_pvt *pvt; |
| |
| if (unlikely(!mci || !mci->pvt_info)) { |
| edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev); |
| |
| sbridge_printk(KERN_ERR, "Couldn't find mci handler\n"); |
| return; |
| } |
| |
| pvt = mci->pvt_info; |
| |
| edac_dbg(0, "MC: mci = %p, dev = %p\n", |
| mci, &sbridge_dev->pdev[0]->dev); |
| |
| /* Remove MC sysfs nodes */ |
| edac_mc_del_mc(mci->pdev); |
| |
| edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); |
| kfree(mci->ctl_name); |
| edac_mc_free(mci); |
| sbridge_dev->mci = NULL; |
| } |
| |
| static int sbridge_register_mci(struct sbridge_dev *sbridge_dev) |
| { |
| struct mem_ctl_info *mci; |
| struct edac_mc_layer layers[2]; |
| struct sbridge_pvt *pvt; |
| int rc; |
| |
| /* Check the number of active and not disabled channels */ |
| rc = check_if_ecc_is_active(sbridge_dev->bus); |
| if (unlikely(rc < 0)) |
| return rc; |
| |
| /* allocate a new MC control structure */ |
| layers[0].type = EDAC_MC_LAYER_CHANNEL; |
| layers[0].size = NUM_CHANNELS; |
| layers[0].is_virt_csrow = false; |
| layers[1].type = EDAC_MC_LAYER_SLOT; |
| layers[1].size = MAX_DIMMS; |
| layers[1].is_virt_csrow = true; |
| mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers, |
| sizeof(*pvt)); |
| |
| if (unlikely(!mci)) |
| return -ENOMEM; |
| |
| edac_dbg(0, "MC: mci = %p, dev = %p\n", |
| mci, &sbridge_dev->pdev[0]->dev); |
| |
| pvt = mci->pvt_info; |
| memset(pvt, 0, sizeof(*pvt)); |
| |
| /* Associate sbridge_dev and mci for future usage */ |
| pvt->sbridge_dev = sbridge_dev; |
| sbridge_dev->mci = mci; |
| |
| mci->mtype_cap = MEM_FLAG_DDR3; |
| mci->edac_ctl_cap = EDAC_FLAG_NONE; |
| mci->edac_cap = EDAC_FLAG_NONE; |
| mci->mod_name = "sbridge_edac.c"; |
| mci->mod_ver = SBRIDGE_REVISION; |
| mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx); |
| mci->dev_name = pci_name(sbridge_dev->pdev[0]); |
| mci->ctl_page_to_phys = NULL; |
| |
| /* Set the function pointer to an actual operation function */ |
| mci->edac_check = sbridge_check_error; |
| |
| /* Store pci devices at mci for faster access */ |
| rc = mci_bind_devs(mci, sbridge_dev); |
| if (unlikely(rc < 0)) |
| goto fail0; |
| |
| /* Get dimm basic config and the memory layout */ |
| get_dimm_config(mci); |
| get_memory_layout(mci); |
| |
| /* record ptr to the generic device */ |
| mci->pdev = &sbridge_dev->pdev[0]->dev; |
| |
| /* add this new MC control structure to EDAC's list of MCs */ |
| if (unlikely(edac_mc_add_mc(mci))) { |
| edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); |
| rc = -EINVAL; |
| goto fail0; |
| } |
| |
| return 0; |
| |
| fail0: |
| kfree(mci->ctl_name); |
| edac_mc_free(mci); |
| sbridge_dev->mci = NULL; |
| return rc; |
| } |
| |
| /* |
| * sbridge_probe Probe for ONE instance of device to see if it is |
| * present. |
| * return: |
| * 0 for FOUND a device |
| * < 0 for error code |
| */ |
| |
| static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id) |
| { |
| int rc; |
| u8 mc, num_mc = 0; |
| struct sbridge_dev *sbridge_dev; |
| |
| /* get the pci devices we want to reserve for our use */ |
| mutex_lock(&sbridge_edac_lock); |
| |
| /* |
| * All memory controllers are allocated at the first pass. |
| */ |
| if (unlikely(probed >= 1)) { |
| mutex_unlock(&sbridge_edac_lock); |
| return -ENODEV; |
| } |
| probed++; |
| |
| rc = sbridge_get_all_devices(&num_mc); |
| if (unlikely(rc < 0)) |
| goto fail0; |
| mc = 0; |
| |
| list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { |
| edac_dbg(0, "Registering MC#%d (%d of %d)\n", |
| mc, mc + 1, num_mc); |
| sbridge_dev->mc = mc++; |
| rc = sbridge_register_mci(sbridge_dev); |
| if (unlikely(rc < 0)) |
| goto fail1; |
| } |
| |
| sbridge_printk(KERN_INFO, "Driver loaded.\n"); |
| |
| mutex_unlock(&sbridge_edac_lock); |
| return 0; |
| |
| fail1: |
| list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) |
| sbridge_unregister_mci(sbridge_dev); |
| |
| sbridge_put_all_devices(); |
| fail0: |
| mutex_unlock(&sbridge_edac_lock); |
| return rc; |
| } |
| |
| /* |
| * sbridge_remove destructor for one instance of device |
| * |
| */ |
| static void sbridge_remove(struct pci_dev *pdev) |
| { |
| struct sbridge_dev *sbridge_dev; |
| |
| edac_dbg(0, "\n"); |
| |
| /* |
| * we have a trouble here: pdev value for removal will be wrong, since |
| * it will point to the X58 register used to detect that the machine |
| * is a Nehalem or upper design. However, due to the way several PCI |
| * devices are grouped together to provide MC functionality, we need |
| * to use a different method for releasing the devices |
| */ |
| |
| mutex_lock(&sbridge_edac_lock); |
| |
| if (unlikely(!probed)) { |
| mutex_unlock(&sbridge_edac_lock); |
| return; |
| } |
| |
| list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) |
| sbridge_unregister_mci(sbridge_dev); |
| |
| /* Release PCI resources */ |
| sbridge_put_all_devices(); |
| |
| probed--; |
| |
| mutex_unlock(&sbridge_edac_lock); |
| } |
| |
| MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl); |
| |
| /* |
| * sbridge_driver pci_driver structure for this module |
| * |
| */ |
| static struct pci_driver sbridge_driver = { |
| .name = "sbridge_edac", |
| .probe = sbridge_probe, |
| .remove = sbridge_remove, |
| .id_table = sbridge_pci_tbl, |
| }; |
| |
| /* |
| * sbridge_init Module entry function |
| * Try to initialize this module for its devices |
| */ |
| static int __init sbridge_init(void) |
| { |
| int pci_rc; |
| |
| edac_dbg(2, "\n"); |
| |
| /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
| opstate_init(); |
| |
| pci_rc = pci_register_driver(&sbridge_driver); |
| |
| if (pci_rc >= 0) { |
| mce_register_decode_chain(&sbridge_mce_dec); |
| return 0; |
| } |
| |
| sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n", |
| pci_rc); |
| |
| return pci_rc; |
| } |
| |
| /* |
| * sbridge_exit() Module exit function |
| * Unregister the driver |
| */ |
| static void __exit sbridge_exit(void) |
| { |
| edac_dbg(2, "\n"); |
| pci_unregister_driver(&sbridge_driver); |
| mce_unregister_decode_chain(&sbridge_mce_dec); |
| } |
| |
| module_init(sbridge_init); |
| module_exit(sbridge_exit); |
| |
| module_param(edac_op_state, int, 0444); |
| MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>"); |
| MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); |
| MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - " |
| SBRIDGE_REVISION); |