| /** |
| * eCryptfs: Linux filesystem encryption layer |
| * In-kernel key management code. Includes functions to parse and |
| * write authentication token-related packets with the underlying |
| * file. |
| * |
| * Copyright (C) 2004-2006 International Business Machines Corp. |
| * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com> |
| * Michael C. Thompson <mcthomps@us.ibm.com> |
| * Trevor S. Highland <trevor.highland@gmail.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of the |
| * License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
| * 02111-1307, USA. |
| */ |
| |
| #include <linux/string.h> |
| #include <linux/syscalls.h> |
| #include <linux/pagemap.h> |
| #include <linux/key.h> |
| #include <linux/random.h> |
| #include <linux/crypto.h> |
| #include <linux/scatterlist.h> |
| #include "ecryptfs_kernel.h" |
| |
| /** |
| * request_key returned an error instead of a valid key address; |
| * determine the type of error, make appropriate log entries, and |
| * return an error code. |
| */ |
| int process_request_key_err(long err_code) |
| { |
| int rc = 0; |
| |
| switch (err_code) { |
| case ENOKEY: |
| ecryptfs_printk(KERN_WARNING, "No key\n"); |
| rc = -ENOENT; |
| break; |
| case EKEYEXPIRED: |
| ecryptfs_printk(KERN_WARNING, "Key expired\n"); |
| rc = -ETIME; |
| break; |
| case EKEYREVOKED: |
| ecryptfs_printk(KERN_WARNING, "Key revoked\n"); |
| rc = -EINVAL; |
| break; |
| default: |
| ecryptfs_printk(KERN_WARNING, "Unknown error code: " |
| "[0x%.16x]\n", err_code); |
| rc = -EINVAL; |
| } |
| return rc; |
| } |
| |
| /** |
| * parse_packet_length |
| * @data: Pointer to memory containing length at offset |
| * @size: This function writes the decoded size to this memory |
| * address; zero on error |
| * @length_size: The number of bytes occupied by the encoded length |
| * |
| * Returns Zero on success |
| */ |
| static int parse_packet_length(unsigned char *data, size_t *size, |
| size_t *length_size) |
| { |
| int rc = 0; |
| |
| (*length_size) = 0; |
| (*size) = 0; |
| if (data[0] < 192) { |
| /* One-byte length */ |
| (*size) = (unsigned char)data[0]; |
| (*length_size) = 1; |
| } else if (data[0] < 224) { |
| /* Two-byte length */ |
| (*size) = (((unsigned char)(data[0]) - 192) * 256); |
| (*size) += ((unsigned char)(data[1]) + 192); |
| (*length_size) = 2; |
| } else if (data[0] == 255) { |
| /* Five-byte length; we're not supposed to see this */ |
| ecryptfs_printk(KERN_ERR, "Five-byte packet length not " |
| "supported\n"); |
| rc = -EINVAL; |
| goto out; |
| } else { |
| ecryptfs_printk(KERN_ERR, "Error parsing packet length\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| out: |
| return rc; |
| } |
| |
| /** |
| * write_packet_length |
| * @dest: The byte array target into which to write the |
| * length. Must have at least 5 bytes allocated. |
| * @size: The length to write. |
| * @packet_size_length: The number of bytes used to encode the |
| * packet length is written to this address. |
| * |
| * Returns zero on success; non-zero on error. |
| */ |
| static int write_packet_length(char *dest, size_t size, |
| size_t *packet_size_length) |
| { |
| int rc = 0; |
| |
| if (size < 192) { |
| dest[0] = size; |
| (*packet_size_length) = 1; |
| } else if (size < 65536) { |
| dest[0] = (((size - 192) / 256) + 192); |
| dest[1] = ((size - 192) % 256); |
| (*packet_size_length) = 2; |
| } else { |
| rc = -EINVAL; |
| ecryptfs_printk(KERN_WARNING, |
| "Unsupported packet size: [%d]\n", size); |
| } |
| return rc; |
| } |
| |
| static int |
| write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key, |
| char **packet, size_t *packet_len) |
| { |
| size_t i = 0; |
| size_t data_len; |
| size_t packet_size_len; |
| char *message; |
| int rc; |
| |
| /* |
| * ***** TAG 64 Packet Format ***** |
| * | Content Type | 1 byte | |
| * | Key Identifier Size | 1 or 2 bytes | |
| * | Key Identifier | arbitrary | |
| * | Encrypted File Encryption Key Size | 1 or 2 bytes | |
| * | Encrypted File Encryption Key | arbitrary | |
| */ |
| data_len = (5 + ECRYPTFS_SIG_SIZE_HEX |
| + session_key->encrypted_key_size); |
| *packet = kmalloc(data_len, GFP_KERNEL); |
| message = *packet; |
| if (!message) { |
| ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n"); |
| rc = -ENOMEM; |
| goto out; |
| } |
| message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE; |
| rc = write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX, |
| &packet_size_len); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet " |
| "header; cannot generate packet length\n"); |
| goto out; |
| } |
| i += packet_size_len; |
| memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX); |
| i += ECRYPTFS_SIG_SIZE_HEX; |
| rc = write_packet_length(&message[i], session_key->encrypted_key_size, |
| &packet_size_len); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet " |
| "header; cannot generate packet length\n"); |
| goto out; |
| } |
| i += packet_size_len; |
| memcpy(&message[i], session_key->encrypted_key, |
| session_key->encrypted_key_size); |
| i += session_key->encrypted_key_size; |
| *packet_len = i; |
| out: |
| return rc; |
| } |
| |
| static int |
| parse_tag_65_packet(struct ecryptfs_session_key *session_key, u16 *cipher_code, |
| struct ecryptfs_message *msg) |
| { |
| size_t i = 0; |
| char *data; |
| size_t data_len; |
| size_t m_size; |
| size_t message_len; |
| u16 checksum = 0; |
| u16 expected_checksum = 0; |
| int rc; |
| |
| /* |
| * ***** TAG 65 Packet Format ***** |
| * | Content Type | 1 byte | |
| * | Status Indicator | 1 byte | |
| * | File Encryption Key Size | 1 or 2 bytes | |
| * | File Encryption Key | arbitrary | |
| */ |
| message_len = msg->data_len; |
| data = msg->data; |
| if (message_len < 4) { |
| rc = -EIO; |
| goto out; |
| } |
| if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) { |
| ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n"); |
| rc = -EIO; |
| goto out; |
| } |
| if (data[i++]) { |
| ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value " |
| "[%d]\n", data[i-1]); |
| rc = -EIO; |
| goto out; |
| } |
| rc = parse_packet_length(&data[i], &m_size, &data_len); |
| if (rc) { |
| ecryptfs_printk(KERN_WARNING, "Error parsing packet length; " |
| "rc = [%d]\n", rc); |
| goto out; |
| } |
| i += data_len; |
| if (message_len < (i + m_size)) { |
| ecryptfs_printk(KERN_ERR, "The received netlink message is " |
| "shorter than expected\n"); |
| rc = -EIO; |
| goto out; |
| } |
| if (m_size < 3) { |
| ecryptfs_printk(KERN_ERR, |
| "The decrypted key is not long enough to " |
| "include a cipher code and checksum\n"); |
| rc = -EIO; |
| goto out; |
| } |
| *cipher_code = data[i++]; |
| /* The decrypted key includes 1 byte cipher code and 2 byte checksum */ |
| session_key->decrypted_key_size = m_size - 3; |
| if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) { |
| ecryptfs_printk(KERN_ERR, "key_size [%d] larger than " |
| "the maximum key size [%d]\n", |
| session_key->decrypted_key_size, |
| ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES); |
| rc = -EIO; |
| goto out; |
| } |
| memcpy(session_key->decrypted_key, &data[i], |
| session_key->decrypted_key_size); |
| i += session_key->decrypted_key_size; |
| expected_checksum += (unsigned char)(data[i++]) << 8; |
| expected_checksum += (unsigned char)(data[i++]); |
| for (i = 0; i < session_key->decrypted_key_size; i++) |
| checksum += session_key->decrypted_key[i]; |
| if (expected_checksum != checksum) { |
| ecryptfs_printk(KERN_ERR, "Invalid checksum for file " |
| "encryption key; expected [%x]; calculated " |
| "[%x]\n", expected_checksum, checksum); |
| rc = -EIO; |
| } |
| out: |
| return rc; |
| } |
| |
| |
| static int |
| write_tag_66_packet(char *signature, size_t cipher_code, |
| struct ecryptfs_crypt_stat *crypt_stat, char **packet, |
| size_t *packet_len) |
| { |
| size_t i = 0; |
| size_t j; |
| size_t data_len; |
| size_t checksum = 0; |
| size_t packet_size_len; |
| char *message; |
| int rc; |
| |
| /* |
| * ***** TAG 66 Packet Format ***** |
| * | Content Type | 1 byte | |
| * | Key Identifier Size | 1 or 2 bytes | |
| * | Key Identifier | arbitrary | |
| * | File Encryption Key Size | 1 or 2 bytes | |
| * | File Encryption Key | arbitrary | |
| */ |
| data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size); |
| *packet = kmalloc(data_len, GFP_KERNEL); |
| message = *packet; |
| if (!message) { |
| ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n"); |
| rc = -ENOMEM; |
| goto out; |
| } |
| message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE; |
| rc = write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX, |
| &packet_size_len); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet " |
| "header; cannot generate packet length\n"); |
| goto out; |
| } |
| i += packet_size_len; |
| memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX); |
| i += ECRYPTFS_SIG_SIZE_HEX; |
| /* The encrypted key includes 1 byte cipher code and 2 byte checksum */ |
| rc = write_packet_length(&message[i], crypt_stat->key_size + 3, |
| &packet_size_len); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet " |
| "header; cannot generate packet length\n"); |
| goto out; |
| } |
| i += packet_size_len; |
| message[i++] = cipher_code; |
| memcpy(&message[i], crypt_stat->key, crypt_stat->key_size); |
| i += crypt_stat->key_size; |
| for (j = 0; j < crypt_stat->key_size; j++) |
| checksum += crypt_stat->key[j]; |
| message[i++] = (checksum / 256) % 256; |
| message[i++] = (checksum % 256); |
| *packet_len = i; |
| out: |
| return rc; |
| } |
| |
| static int |
| parse_tag_67_packet(struct ecryptfs_key_record *key_rec, |
| struct ecryptfs_message *msg) |
| { |
| size_t i = 0; |
| char *data; |
| size_t data_len; |
| size_t message_len; |
| int rc; |
| |
| /* |
| * ***** TAG 65 Packet Format ***** |
| * | Content Type | 1 byte | |
| * | Status Indicator | 1 byte | |
| * | Encrypted File Encryption Key Size | 1 or 2 bytes | |
| * | Encrypted File Encryption Key | arbitrary | |
| */ |
| message_len = msg->data_len; |
| data = msg->data; |
| /* verify that everything through the encrypted FEK size is present */ |
| if (message_len < 4) { |
| rc = -EIO; |
| goto out; |
| } |
| if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) { |
| ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_67\n"); |
| rc = -EIO; |
| goto out; |
| } |
| if (data[i++]) { |
| ecryptfs_printk(KERN_ERR, "Status indicator has non zero value" |
| " [%d]\n", data[i-1]); |
| rc = -EIO; |
| goto out; |
| } |
| rc = parse_packet_length(&data[i], &key_rec->enc_key_size, &data_len); |
| if (rc) { |
| ecryptfs_printk(KERN_WARNING, "Error parsing packet length; " |
| "rc = [%d]\n", rc); |
| goto out; |
| } |
| i += data_len; |
| if (message_len < (i + key_rec->enc_key_size)) { |
| ecryptfs_printk(KERN_ERR, "message_len [%d]; max len is [%d]\n", |
| message_len, (i + key_rec->enc_key_size)); |
| rc = -EIO; |
| goto out; |
| } |
| if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) { |
| ecryptfs_printk(KERN_ERR, "Encrypted key_size [%d] larger than " |
| "the maximum key size [%d]\n", |
| key_rec->enc_key_size, |
| ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES); |
| rc = -EIO; |
| goto out; |
| } |
| memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size); |
| out: |
| return rc; |
| } |
| |
| /** |
| * decrypt_pki_encrypted_session_key - Decrypt the session key with |
| * the given auth_tok. |
| * |
| * Returns Zero on success; non-zero error otherwise. |
| */ |
| static int decrypt_pki_encrypted_session_key( |
| struct ecryptfs_mount_crypt_stat *mount_crypt_stat, |
| struct ecryptfs_auth_tok *auth_tok, |
| struct ecryptfs_crypt_stat *crypt_stat) |
| { |
| u16 cipher_code = 0; |
| struct ecryptfs_msg_ctx *msg_ctx; |
| struct ecryptfs_message *msg = NULL; |
| char *netlink_message; |
| size_t netlink_message_length; |
| int rc; |
| |
| rc = write_tag_64_packet(mount_crypt_stat->global_auth_tok_sig, |
| &(auth_tok->session_key), |
| &netlink_message, &netlink_message_length); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet"); |
| goto out; |
| } |
| rc = ecryptfs_send_message(ecryptfs_transport, netlink_message, |
| netlink_message_length, &msg_ctx); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Error sending netlink message\n"); |
| goto out; |
| } |
| rc = ecryptfs_wait_for_response(msg_ctx, &msg); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet " |
| "from the user space daemon\n"); |
| rc = -EIO; |
| goto out; |
| } |
| rc = parse_tag_65_packet(&(auth_tok->session_key), |
| &cipher_code, msg); |
| if (rc) { |
| printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n", |
| rc); |
| goto out; |
| } |
| auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY; |
| memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key, |
| auth_tok->session_key.decrypted_key_size); |
| crypt_stat->key_size = auth_tok->session_key.decrypted_key_size; |
| rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n", |
| cipher_code) |
| goto out; |
| } |
| crypt_stat->flags |= ECRYPTFS_KEY_VALID; |
| if (ecryptfs_verbosity > 0) { |
| ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n"); |
| ecryptfs_dump_hex(crypt_stat->key, |
| crypt_stat->key_size); |
| } |
| out: |
| if (msg) |
| kfree(msg); |
| return rc; |
| } |
| |
| static void wipe_auth_tok_list(struct list_head *auth_tok_list_head) |
| { |
| struct list_head *walker; |
| struct ecryptfs_auth_tok_list_item *auth_tok_list_item; |
| |
| walker = auth_tok_list_head->next; |
| while (walker != auth_tok_list_head) { |
| auth_tok_list_item = |
| list_entry(walker, struct ecryptfs_auth_tok_list_item, |
| list); |
| walker = auth_tok_list_item->list.next; |
| memset(auth_tok_list_item, 0, |
| sizeof(struct ecryptfs_auth_tok_list_item)); |
| kmem_cache_free(ecryptfs_auth_tok_list_item_cache, |
| auth_tok_list_item); |
| } |
| auth_tok_list_head->next = NULL; |
| } |
| |
| struct kmem_cache *ecryptfs_auth_tok_list_item_cache; |
| |
| |
| /** |
| * parse_tag_1_packet |
| * @crypt_stat: The cryptographic context to modify based on packet |
| * contents. |
| * @data: The raw bytes of the packet. |
| * @auth_tok_list: eCryptfs parses packets into authentication tokens; |
| * a new authentication token will be placed at the end |
| * of this list for this packet. |
| * @new_auth_tok: Pointer to a pointer to memory that this function |
| * allocates; sets the memory address of the pointer to |
| * NULL on error. This object is added to the |
| * auth_tok_list. |
| * @packet_size: This function writes the size of the parsed packet |
| * into this memory location; zero on error. |
| * |
| * Returns zero on success; non-zero on error. |
| */ |
| static int |
| parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat, |
| unsigned char *data, struct list_head *auth_tok_list, |
| struct ecryptfs_auth_tok **new_auth_tok, |
| size_t *packet_size, size_t max_packet_size) |
| { |
| size_t body_size; |
| struct ecryptfs_auth_tok_list_item *auth_tok_list_item; |
| size_t length_size; |
| int rc = 0; |
| |
| (*packet_size) = 0; |
| (*new_auth_tok) = NULL; |
| |
| /* we check that: |
| * one byte for the Tag 1 ID flag |
| * two bytes for the body size |
| * do not exceed the maximum_packet_size |
| */ |
| if (unlikely((*packet_size) + 3 > max_packet_size)) { |
| ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| /* check for Tag 1 identifier - one byte */ |
| if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) { |
| ecryptfs_printk(KERN_ERR, "Enter w/ first byte != 0x%.2x\n", |
| ECRYPTFS_TAG_1_PACKET_TYPE); |
| rc = -EINVAL; |
| goto out; |
| } |
| /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or |
| * at end of function upon failure */ |
| auth_tok_list_item = |
| kmem_cache_alloc(ecryptfs_auth_tok_list_item_cache, |
| GFP_KERNEL); |
| if (!auth_tok_list_item) { |
| ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n"); |
| rc = -ENOMEM; |
| goto out; |
| } |
| memset(auth_tok_list_item, 0, |
| sizeof(struct ecryptfs_auth_tok_list_item)); |
| (*new_auth_tok) = &auth_tok_list_item->auth_tok; |
| /* check for body size - one to two bytes |
| * |
| * ***** TAG 1 Packet Format ***** |
| * | version number | 1 byte | |
| * | key ID | 8 bytes | |
| * | public key algorithm | 1 byte | |
| * | encrypted session key | arbitrary | |
| */ |
| rc = parse_packet_length(&data[(*packet_size)], &body_size, |
| &length_size); |
| if (rc) { |
| ecryptfs_printk(KERN_WARNING, "Error parsing packet length; " |
| "rc = [%d]\n", rc); |
| goto out_free; |
| } |
| if (unlikely(body_size < (0x02 + ECRYPTFS_SIG_SIZE))) { |
| ecryptfs_printk(KERN_WARNING, "Invalid body size ([%d])\n", |
| body_size); |
| rc = -EINVAL; |
| goto out_free; |
| } |
| (*packet_size) += length_size; |
| if (unlikely((*packet_size) + body_size > max_packet_size)) { |
| ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n"); |
| rc = -EINVAL; |
| goto out_free; |
| } |
| /* Version 3 (from RFC2440) - one byte */ |
| if (unlikely(data[(*packet_size)++] != 0x03)) { |
| ecryptfs_printk(KERN_DEBUG, "Unknown version number " |
| "[%d]\n", data[(*packet_size) - 1]); |
| rc = -EINVAL; |
| goto out_free; |
| } |
| /* Read Signature */ |
| ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature, |
| &data[(*packet_size)], ECRYPTFS_SIG_SIZE); |
| *packet_size += ECRYPTFS_SIG_SIZE; |
| /* This byte is skipped because the kernel does not need to |
| * know which public key encryption algorithm was used */ |
| (*packet_size)++; |
| (*new_auth_tok)->session_key.encrypted_key_size = |
| body_size - (0x02 + ECRYPTFS_SIG_SIZE); |
| if ((*new_auth_tok)->session_key.encrypted_key_size |
| > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) { |
| ecryptfs_printk(KERN_ERR, "Tag 1 packet contains key larger " |
| "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES"); |
| rc = -EINVAL; |
| goto out; |
| } |
| ecryptfs_printk(KERN_DEBUG, "Encrypted key size = [%d]\n", |
| (*new_auth_tok)->session_key.encrypted_key_size); |
| memcpy((*new_auth_tok)->session_key.encrypted_key, |
| &data[(*packet_size)], (body_size - 0x02 - ECRYPTFS_SIG_SIZE)); |
| (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size; |
| (*new_auth_tok)->session_key.flags &= |
| ~ECRYPTFS_CONTAINS_DECRYPTED_KEY; |
| (*new_auth_tok)->session_key.flags |= |
| ECRYPTFS_CONTAINS_ENCRYPTED_KEY; |
| (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY; |
| (*new_auth_tok)->flags |= ECRYPTFS_PRIVATE_KEY; |
| /* TODO: Why are we setting this flag here? Don't we want the |
| * userspace to decrypt the session key? */ |
| (*new_auth_tok)->session_key.flags &= |
| ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT); |
| (*new_auth_tok)->session_key.flags &= |
| ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT); |
| list_add(&auth_tok_list_item->list, auth_tok_list); |
| goto out; |
| out_free: |
| (*new_auth_tok) = NULL; |
| memset(auth_tok_list_item, 0, |
| sizeof(struct ecryptfs_auth_tok_list_item)); |
| kmem_cache_free(ecryptfs_auth_tok_list_item_cache, |
| auth_tok_list_item); |
| out: |
| if (rc) |
| (*packet_size) = 0; |
| return rc; |
| } |
| |
| /** |
| * parse_tag_3_packet |
| * @crypt_stat: The cryptographic context to modify based on packet |
| * contents. |
| * @data: The raw bytes of the packet. |
| * @auth_tok_list: eCryptfs parses packets into authentication tokens; |
| * a new authentication token will be placed at the end |
| * of this list for this packet. |
| * @new_auth_tok: Pointer to a pointer to memory that this function |
| * allocates; sets the memory address of the pointer to |
| * NULL on error. This object is added to the |
| * auth_tok_list. |
| * @packet_size: This function writes the size of the parsed packet |
| * into this memory location; zero on error. |
| * @max_packet_size: maximum number of bytes to parse |
| * |
| * Returns zero on success; non-zero on error. |
| */ |
| static int |
| parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat, |
| unsigned char *data, struct list_head *auth_tok_list, |
| struct ecryptfs_auth_tok **new_auth_tok, |
| size_t *packet_size, size_t max_packet_size) |
| { |
| size_t body_size; |
| struct ecryptfs_auth_tok_list_item *auth_tok_list_item; |
| size_t length_size; |
| int rc = 0; |
| |
| (*packet_size) = 0; |
| (*new_auth_tok) = NULL; |
| |
| /* we check that: |
| * one byte for the Tag 3 ID flag |
| * two bytes for the body size |
| * do not exceed the maximum_packet_size |
| */ |
| if (unlikely((*packet_size) + 3 > max_packet_size)) { |
| ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| /* check for Tag 3 identifyer - one byte */ |
| if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) { |
| ecryptfs_printk(KERN_ERR, "Enter w/ first byte != 0x%.2x\n", |
| ECRYPTFS_TAG_3_PACKET_TYPE); |
| rc = -EINVAL; |
| goto out; |
| } |
| /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or |
| * at end of function upon failure */ |
| auth_tok_list_item = |
| kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL); |
| if (!auth_tok_list_item) { |
| ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n"); |
| rc = -ENOMEM; |
| goto out; |
| } |
| (*new_auth_tok) = &auth_tok_list_item->auth_tok; |
| |
| /* check for body size - one to two bytes */ |
| rc = parse_packet_length(&data[(*packet_size)], &body_size, |
| &length_size); |
| if (rc) { |
| ecryptfs_printk(KERN_WARNING, "Error parsing packet length; " |
| "rc = [%d]\n", rc); |
| goto out_free; |
| } |
| if (unlikely(body_size < (0x05 + ECRYPTFS_SALT_SIZE))) { |
| ecryptfs_printk(KERN_WARNING, "Invalid body size ([%d])\n", |
| body_size); |
| rc = -EINVAL; |
| goto out_free; |
| } |
| (*packet_size) += length_size; |
| |
| /* now we know the length of the remainting Tag 3 packet size: |
| * 5 fix bytes for: version string, cipher, S2K ID, hash algo, |
| * number of hash iterations |
| * ECRYPTFS_SALT_SIZE bytes for salt |
| * body_size bytes minus the stuff above is the encrypted key size |
| */ |
| if (unlikely((*packet_size) + body_size > max_packet_size)) { |
| ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n"); |
| rc = -EINVAL; |
| goto out_free; |
| } |
| |
| /* There are 5 characters of additional information in the |
| * packet */ |
| (*new_auth_tok)->session_key.encrypted_key_size = |
| body_size - (0x05 + ECRYPTFS_SALT_SIZE); |
| ecryptfs_printk(KERN_DEBUG, "Encrypted key size = [%d]\n", |
| (*new_auth_tok)->session_key.encrypted_key_size); |
| |
| /* Version 4 (from RFC2440) - one byte */ |
| if (unlikely(data[(*packet_size)++] != 0x04)) { |
| ecryptfs_printk(KERN_DEBUG, "Unknown version number " |
| "[%d]\n", data[(*packet_size) - 1]); |
| rc = -EINVAL; |
| goto out_free; |
| } |
| |
| /* cipher - one byte */ |
| ecryptfs_cipher_code_to_string(crypt_stat->cipher, |
| (u16)data[(*packet_size)]); |
| /* A little extra work to differentiate among the AES key |
| * sizes; see RFC2440 */ |
| switch(data[(*packet_size)++]) { |
| case RFC2440_CIPHER_AES_192: |
| crypt_stat->key_size = 24; |
| break; |
| default: |
| crypt_stat->key_size = |
| (*new_auth_tok)->session_key.encrypted_key_size; |
| } |
| ecryptfs_init_crypt_ctx(crypt_stat); |
| /* S2K identifier 3 (from RFC2440) */ |
| if (unlikely(data[(*packet_size)++] != 0x03)) { |
| ecryptfs_printk(KERN_ERR, "Only S2K ID 3 is currently " |
| "supported\n"); |
| rc = -ENOSYS; |
| goto out_free; |
| } |
| |
| /* TODO: finish the hash mapping */ |
| /* hash algorithm - one byte */ |
| switch (data[(*packet_size)++]) { |
| case 0x01: /* See RFC2440 for these numbers and their mappings */ |
| /* Choose MD5 */ |
| /* salt - ECRYPTFS_SALT_SIZE bytes */ |
| memcpy((*new_auth_tok)->token.password.salt, |
| &data[(*packet_size)], ECRYPTFS_SALT_SIZE); |
| (*packet_size) += ECRYPTFS_SALT_SIZE; |
| |
| /* This conversion was taken straight from RFC2440 */ |
| /* number of hash iterations - one byte */ |
| (*new_auth_tok)->token.password.hash_iterations = |
| ((u32) 16 + (data[(*packet_size)] & 15)) |
| << ((data[(*packet_size)] >> 4) + 6); |
| (*packet_size)++; |
| |
| /* encrypted session key - |
| * (body_size-5-ECRYPTFS_SALT_SIZE) bytes */ |
| memcpy((*new_auth_tok)->session_key.encrypted_key, |
| &data[(*packet_size)], |
| (*new_auth_tok)->session_key.encrypted_key_size); |
| (*packet_size) += |
| (*new_auth_tok)->session_key.encrypted_key_size; |
| (*new_auth_tok)->session_key.flags &= |
| ~ECRYPTFS_CONTAINS_DECRYPTED_KEY; |
| (*new_auth_tok)->session_key.flags |= |
| ECRYPTFS_CONTAINS_ENCRYPTED_KEY; |
| (*new_auth_tok)->token.password.hash_algo = 0x01; |
| break; |
| default: |
| ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: " |
| "[%d]\n", data[(*packet_size) - 1]); |
| rc = -ENOSYS; |
| goto out_free; |
| } |
| (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD; |
| /* TODO: Parametarize; we might actually want userspace to |
| * decrypt the session key. */ |
| (*new_auth_tok)->session_key.flags &= |
| ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT); |
| (*new_auth_tok)->session_key.flags &= |
| ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT); |
| list_add(&auth_tok_list_item->list, auth_tok_list); |
| goto out; |
| out_free: |
| (*new_auth_tok) = NULL; |
| memset(auth_tok_list_item, 0, |
| sizeof(struct ecryptfs_auth_tok_list_item)); |
| kmem_cache_free(ecryptfs_auth_tok_list_item_cache, |
| auth_tok_list_item); |
| out: |
| if (rc) |
| (*packet_size) = 0; |
| return rc; |
| } |
| |
| /** |
| * parse_tag_11_packet |
| * @data: The raw bytes of the packet |
| * @contents: This function writes the data contents of the literal |
| * packet into this memory location |
| * @max_contents_bytes: The maximum number of bytes that this function |
| * is allowed to write into contents |
| * @tag_11_contents_size: This function writes the size of the parsed |
| * contents into this memory location; zero on |
| * error |
| * @packet_size: This function writes the size of the parsed packet |
| * into this memory location; zero on error |
| * @max_packet_size: maximum number of bytes to parse |
| * |
| * Returns zero on success; non-zero on error. |
| */ |
| static int |
| parse_tag_11_packet(unsigned char *data, unsigned char *contents, |
| size_t max_contents_bytes, size_t *tag_11_contents_size, |
| size_t *packet_size, size_t max_packet_size) |
| { |
| size_t body_size; |
| size_t length_size; |
| int rc = 0; |
| |
| (*packet_size) = 0; |
| (*tag_11_contents_size) = 0; |
| |
| /* check that: |
| * one byte for the Tag 11 ID flag |
| * two bytes for the Tag 11 length |
| * do not exceed the maximum_packet_size |
| */ |
| if (unlikely((*packet_size) + 3 > max_packet_size)) { |
| ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| /* check for Tag 11 identifyer - one byte */ |
| if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) { |
| ecryptfs_printk(KERN_WARNING, |
| "Invalid tag 11 packet format\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| /* get Tag 11 content length - one or two bytes */ |
| rc = parse_packet_length(&data[(*packet_size)], &body_size, |
| &length_size); |
| if (rc) { |
| ecryptfs_printk(KERN_WARNING, |
| "Invalid tag 11 packet format\n"); |
| goto out; |
| } |
| (*packet_size) += length_size; |
| |
| if (body_size < 13) { |
| ecryptfs_printk(KERN_WARNING, "Invalid body size ([%d])\n", |
| body_size); |
| rc = -EINVAL; |
| goto out; |
| } |
| /* We have 13 bytes of surrounding packet values */ |
| (*tag_11_contents_size) = (body_size - 13); |
| |
| /* now we know the length of the remainting Tag 11 packet size: |
| * 14 fix bytes for: special flag one, special flag two, |
| * 12 skipped bytes |
| * body_size bytes minus the stuff above is the Tag 11 content |
| */ |
| /* FIXME why is the body size one byte smaller than the actual |
| * size of the body? |
| * this seems to be an error here as well as in |
| * write_tag_11_packet() */ |
| if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) { |
| ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| /* special flag one - one byte */ |
| if (data[(*packet_size)++] != 0x62) { |
| ecryptfs_printk(KERN_WARNING, "Unrecognizable packet\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| /* special flag two - one byte */ |
| if (data[(*packet_size)++] != 0x08) { |
| ecryptfs_printk(KERN_WARNING, "Unrecognizable packet\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| /* skip the next 12 bytes */ |
| (*packet_size) += 12; /* We don't care about the filename or |
| * the timestamp */ |
| |
| /* get the Tag 11 contents - tag_11_contents_size bytes */ |
| memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size)); |
| (*packet_size) += (*tag_11_contents_size); |
| |
| out: |
| if (rc) { |
| (*packet_size) = 0; |
| (*tag_11_contents_size) = 0; |
| } |
| return rc; |
| } |
| |
| /** |
| * decrypt_session_key - Decrypt the session key with the given auth_tok. |
| * |
| * Returns Zero on success; non-zero error otherwise. |
| */ |
| static int decrypt_session_key(struct ecryptfs_auth_tok *auth_tok, |
| struct ecryptfs_crypt_stat *crypt_stat) |
| { |
| struct ecryptfs_password *password_s_ptr; |
| struct scatterlist src_sg[2], dst_sg[2]; |
| struct mutex *tfm_mutex = NULL; |
| char *encrypted_session_key; |
| char *session_key; |
| struct blkcipher_desc desc = { |
| .flags = CRYPTO_TFM_REQ_MAY_SLEEP |
| }; |
| int rc = 0; |
| |
| password_s_ptr = &auth_tok->token.password; |
| if (password_s_ptr->flags & ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) |
| ecryptfs_printk(KERN_DEBUG, "Session key encryption key " |
| "set; skipping key generation\n"); |
| ecryptfs_printk(KERN_DEBUG, "Session key encryption key (size [%d])" |
| ":\n", |
| password_s_ptr->session_key_encryption_key_bytes); |
| if (ecryptfs_verbosity > 0) |
| ecryptfs_dump_hex(password_s_ptr->session_key_encryption_key, |
| password_s_ptr-> |
| session_key_encryption_key_bytes); |
| if (!strcmp(crypt_stat->cipher, |
| crypt_stat->mount_crypt_stat->global_default_cipher_name) |
| && crypt_stat->mount_crypt_stat->global_key_tfm) { |
| desc.tfm = crypt_stat->mount_crypt_stat->global_key_tfm; |
| tfm_mutex = &crypt_stat->mount_crypt_stat->global_key_tfm_mutex; |
| } else { |
| char *full_alg_name; |
| |
| rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, |
| crypt_stat->cipher, |
| "ecb"); |
| if (rc) |
| goto out; |
| desc.tfm = crypto_alloc_blkcipher(full_alg_name, 0, |
| CRYPTO_ALG_ASYNC); |
| kfree(full_alg_name); |
| if (IS_ERR(desc.tfm)) { |
| rc = PTR_ERR(desc.tfm); |
| printk(KERN_ERR "Error allocating crypto context; " |
| "rc = [%d]\n", rc); |
| goto out; |
| } |
| crypto_blkcipher_set_flags(desc.tfm, CRYPTO_TFM_REQ_WEAK_KEY); |
| } |
| if (tfm_mutex) |
| mutex_lock(tfm_mutex); |
| rc = crypto_blkcipher_setkey(desc.tfm, |
| password_s_ptr->session_key_encryption_key, |
| crypt_stat->key_size); |
| if (rc < 0) { |
| printk(KERN_ERR "Error setting key for crypto context\n"); |
| rc = -EINVAL; |
| goto out_free_tfm; |
| } |
| /* TODO: virt_to_scatterlist */ |
| encrypted_session_key = (char *)__get_free_page(GFP_KERNEL); |
| if (!encrypted_session_key) { |
| ecryptfs_printk(KERN_ERR, "Out of memory\n"); |
| rc = -ENOMEM; |
| goto out_free_tfm; |
| } |
| session_key = (char *)__get_free_page(GFP_KERNEL); |
| if (!session_key) { |
| kfree(encrypted_session_key); |
| ecryptfs_printk(KERN_ERR, "Out of memory\n"); |
| rc = -ENOMEM; |
| goto out_free_tfm; |
| } |
| memcpy(encrypted_session_key, auth_tok->session_key.encrypted_key, |
| auth_tok->session_key.encrypted_key_size); |
| src_sg[0].page = virt_to_page(encrypted_session_key); |
| src_sg[0].offset = 0; |
| BUG_ON(auth_tok->session_key.encrypted_key_size > PAGE_CACHE_SIZE); |
| src_sg[0].length = auth_tok->session_key.encrypted_key_size; |
| dst_sg[0].page = virt_to_page(session_key); |
| dst_sg[0].offset = 0; |
| auth_tok->session_key.decrypted_key_size = |
| auth_tok->session_key.encrypted_key_size; |
| dst_sg[0].length = auth_tok->session_key.encrypted_key_size; |
| rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg, |
| auth_tok->session_key.encrypted_key_size); |
| if (rc) { |
| printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc); |
| goto out_free_memory; |
| } |
| auth_tok->session_key.decrypted_key_size = |
| auth_tok->session_key.encrypted_key_size; |
| memcpy(auth_tok->session_key.decrypted_key, session_key, |
| auth_tok->session_key.decrypted_key_size); |
| auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY; |
| memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key, |
| auth_tok->session_key.decrypted_key_size); |
| crypt_stat->flags |= ECRYPTFS_KEY_VALID; |
| ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n"); |
| if (ecryptfs_verbosity > 0) |
| ecryptfs_dump_hex(crypt_stat->key, |
| crypt_stat->key_size); |
| out_free_memory: |
| memset(encrypted_session_key, 0, PAGE_CACHE_SIZE); |
| free_page((unsigned long)encrypted_session_key); |
| memset(session_key, 0, PAGE_CACHE_SIZE); |
| free_page((unsigned long)session_key); |
| out_free_tfm: |
| if (tfm_mutex) |
| mutex_unlock(tfm_mutex); |
| else |
| crypto_free_blkcipher(desc.tfm); |
| out: |
| return rc; |
| } |
| |
| /** |
| * ecryptfs_parse_packet_set |
| * @dest: The header page in memory |
| * @version: Version of file format, to guide parsing behavior |
| * |
| * Get crypt_stat to have the file's session key if the requisite key |
| * is available to decrypt the session key. |
| * |
| * Returns Zero if a valid authentication token was retrieved and |
| * processed; negative value for file not encrypted or for error |
| * conditions. |
| */ |
| int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat, |
| unsigned char *src, |
| struct dentry *ecryptfs_dentry) |
| { |
| size_t i = 0; |
| size_t found_auth_tok = 0; |
| size_t next_packet_is_auth_tok_packet; |
| char sig[ECRYPTFS_SIG_SIZE_HEX]; |
| struct list_head auth_tok_list; |
| struct list_head *walker; |
| struct ecryptfs_auth_tok *chosen_auth_tok = NULL; |
| struct ecryptfs_mount_crypt_stat *mount_crypt_stat = |
| &ecryptfs_superblock_to_private( |
| ecryptfs_dentry->d_sb)->mount_crypt_stat; |
| struct ecryptfs_auth_tok *candidate_auth_tok = NULL; |
| size_t packet_size; |
| struct ecryptfs_auth_tok *new_auth_tok; |
| unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE]; |
| size_t tag_11_contents_size; |
| size_t tag_11_packet_size; |
| int rc = 0; |
| |
| INIT_LIST_HEAD(&auth_tok_list); |
| /* Parse the header to find as many packets as we can, these will be |
| * added the our &auth_tok_list */ |
| next_packet_is_auth_tok_packet = 1; |
| while (next_packet_is_auth_tok_packet) { |
| size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i); |
| |
| switch (src[i]) { |
| case ECRYPTFS_TAG_3_PACKET_TYPE: |
| rc = parse_tag_3_packet(crypt_stat, |
| (unsigned char *)&src[i], |
| &auth_tok_list, &new_auth_tok, |
| &packet_size, max_packet_size); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Error parsing " |
| "tag 3 packet\n"); |
| rc = -EIO; |
| goto out_wipe_list; |
| } |
| i += packet_size; |
| rc = parse_tag_11_packet((unsigned char *)&src[i], |
| sig_tmp_space, |
| ECRYPTFS_SIG_SIZE, |
| &tag_11_contents_size, |
| &tag_11_packet_size, |
| max_packet_size); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "No valid " |
| "(ecryptfs-specific) literal " |
| "packet containing " |
| "authentication token " |
| "signature found after " |
| "tag 3 packet\n"); |
| rc = -EIO; |
| goto out_wipe_list; |
| } |
| i += tag_11_packet_size; |
| if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) { |
| ecryptfs_printk(KERN_ERR, "Expected " |
| "signature of size [%d]; " |
| "read size [%d]\n", |
| ECRYPTFS_SIG_SIZE, |
| tag_11_contents_size); |
| rc = -EIO; |
| goto out_wipe_list; |
| } |
| ecryptfs_to_hex(new_auth_tok->token.password.signature, |
| sig_tmp_space, tag_11_contents_size); |
| new_auth_tok->token.password.signature[ |
| ECRYPTFS_PASSWORD_SIG_SIZE] = '\0'; |
| crypt_stat->flags |= ECRYPTFS_ENCRYPTED; |
| break; |
| case ECRYPTFS_TAG_1_PACKET_TYPE: |
| rc = parse_tag_1_packet(crypt_stat, |
| (unsigned char *)&src[i], |
| &auth_tok_list, &new_auth_tok, |
| &packet_size, max_packet_size); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Error parsing " |
| "tag 1 packet\n"); |
| rc = -EIO; |
| goto out_wipe_list; |
| } |
| i += packet_size; |
| crypt_stat->flags |= ECRYPTFS_ENCRYPTED; |
| break; |
| case ECRYPTFS_TAG_11_PACKET_TYPE: |
| ecryptfs_printk(KERN_WARNING, "Invalid packet set " |
| "(Tag 11 not allowed by itself)\n"); |
| rc = -EIO; |
| goto out_wipe_list; |
| break; |
| default: |
| ecryptfs_printk(KERN_DEBUG, "No packet at offset " |
| "[%d] of the file header; hex value of " |
| "character is [0x%.2x]\n", i, src[i]); |
| next_packet_is_auth_tok_packet = 0; |
| } |
| } |
| if (list_empty(&auth_tok_list)) { |
| rc = -EINVAL; /* Do not support non-encrypted files in |
| * the 0.1 release */ |
| goto out; |
| } |
| /* If we have a global auth tok, then we should try to use |
| * it */ |
| if (mount_crypt_stat->global_auth_tok) { |
| memcpy(sig, mount_crypt_stat->global_auth_tok_sig, |
| ECRYPTFS_SIG_SIZE_HEX); |
| chosen_auth_tok = mount_crypt_stat->global_auth_tok; |
| } else |
| BUG(); /* We should always have a global auth tok in |
| * the 0.1 release */ |
| /* Scan list to see if our chosen_auth_tok works */ |
| list_for_each(walker, &auth_tok_list) { |
| struct ecryptfs_auth_tok_list_item *auth_tok_list_item; |
| auth_tok_list_item = |
| list_entry(walker, struct ecryptfs_auth_tok_list_item, |
| list); |
| candidate_auth_tok = &auth_tok_list_item->auth_tok; |
| if (unlikely(ecryptfs_verbosity > 0)) { |
| ecryptfs_printk(KERN_DEBUG, |
| "Considering cadidate auth tok:\n"); |
| ecryptfs_dump_auth_tok(candidate_auth_tok); |
| } |
| /* TODO: Replace ECRYPTFS_SIG_SIZE_HEX w/ dynamic value */ |
| if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD |
| && !strncmp(candidate_auth_tok->token.password.signature, |
| sig, ECRYPTFS_SIG_SIZE_HEX)) { |
| found_auth_tok = 1; |
| goto leave_list; |
| /* TODO: Transfer the common salt into the |
| * crypt_stat salt */ |
| } else if ((candidate_auth_tok->token_type |
| == ECRYPTFS_PRIVATE_KEY) |
| && !strncmp(candidate_auth_tok->token.private_key.signature, |
| sig, ECRYPTFS_SIG_SIZE_HEX)) { |
| found_auth_tok = 1; |
| goto leave_list; |
| } |
| } |
| if (!found_auth_tok) { |
| ecryptfs_printk(KERN_ERR, "Could not find authentication " |
| "token on temporary list for sig [%.*s]\n", |
| ECRYPTFS_SIG_SIZE_HEX, sig); |
| rc = -EIO; |
| goto out_wipe_list; |
| } |
| leave_list: |
| rc = -ENOTSUPP; |
| if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) { |
| memcpy(&(candidate_auth_tok->token.private_key), |
| &(chosen_auth_tok->token.private_key), |
| sizeof(struct ecryptfs_private_key)); |
| rc = decrypt_pki_encrypted_session_key(mount_crypt_stat, |
| candidate_auth_tok, |
| crypt_stat); |
| } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) { |
| memcpy(&(candidate_auth_tok->token.password), |
| &(chosen_auth_tok->token.password), |
| sizeof(struct ecryptfs_password)); |
| rc = decrypt_session_key(candidate_auth_tok, crypt_stat); |
| } |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Error decrypting the " |
| "session key; rc = [%d]\n", rc); |
| goto out_wipe_list; |
| } |
| rc = ecryptfs_compute_root_iv(crypt_stat); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Error computing " |
| "the root IV\n"); |
| goto out_wipe_list; |
| } |
| rc = ecryptfs_init_crypt_ctx(crypt_stat); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Error initializing crypto " |
| "context for cipher [%s]; rc = [%d]\n", |
| crypt_stat->cipher, rc); |
| } |
| out_wipe_list: |
| wipe_auth_tok_list(&auth_tok_list); |
| out: |
| return rc; |
| } |
| static int |
| pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok, |
| struct ecryptfs_crypt_stat *crypt_stat, |
| struct ecryptfs_key_record *key_rec) |
| { |
| struct ecryptfs_msg_ctx *msg_ctx = NULL; |
| char *netlink_payload; |
| size_t netlink_payload_length; |
| struct ecryptfs_message *msg; |
| int rc; |
| |
| rc = write_tag_66_packet(auth_tok->token.private_key.signature, |
| ecryptfs_code_for_cipher_string(crypt_stat), |
| crypt_stat, &netlink_payload, |
| &netlink_payload_length); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n"); |
| goto out; |
| } |
| rc = ecryptfs_send_message(ecryptfs_transport, netlink_payload, |
| netlink_payload_length, &msg_ctx); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Error sending netlink message\n"); |
| goto out; |
| } |
| rc = ecryptfs_wait_for_response(msg_ctx, &msg); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet " |
| "from the user space daemon\n"); |
| rc = -EIO; |
| goto out; |
| } |
| rc = parse_tag_67_packet(key_rec, msg); |
| if (rc) |
| ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n"); |
| kfree(msg); |
| out: |
| if (netlink_payload) |
| kfree(netlink_payload); |
| return rc; |
| } |
| /** |
| * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet |
| * @dest: Buffer into which to write the packet |
| * @max: Maximum number of bytes that can be writtn |
| * @packet_size: This function will write the number of bytes that end |
| * up constituting the packet; set to zero on error |
| * |
| * Returns zero on success; non-zero on error. |
| */ |
| static int |
| write_tag_1_packet(char *dest, size_t max, struct ecryptfs_auth_tok *auth_tok, |
| struct ecryptfs_crypt_stat *crypt_stat, |
| struct ecryptfs_mount_crypt_stat *mount_crypt_stat, |
| struct ecryptfs_key_record *key_rec, size_t *packet_size) |
| { |
| size_t i; |
| size_t encrypted_session_key_valid = 0; |
| size_t key_rec_size; |
| size_t packet_size_length; |
| int rc = 0; |
| |
| (*packet_size) = 0; |
| ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature, |
| ECRYPTFS_SIG_SIZE); |
| encrypted_session_key_valid = 0; |
| for (i = 0; i < crypt_stat->key_size; i++) |
| encrypted_session_key_valid |= |
| auth_tok->session_key.encrypted_key[i]; |
| if (encrypted_session_key_valid) { |
| memcpy(key_rec->enc_key, |
| auth_tok->session_key.encrypted_key, |
| auth_tok->session_key.encrypted_key_size); |
| goto encrypted_session_key_set; |
| } |
| if (auth_tok->session_key.encrypted_key_size == 0) |
| auth_tok->session_key.encrypted_key_size = |
| auth_tok->token.private_key.key_size; |
| rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Failed to encrypt session key " |
| "via a pki"); |
| goto out; |
| } |
| if (ecryptfs_verbosity > 0) { |
| ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n"); |
| ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size); |
| } |
| encrypted_session_key_set: |
| /* Now we have a valid key_rec. Append it to the |
| * key_rec set. */ |
| key_rec_size = (sizeof(struct ecryptfs_key_record) |
| - ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES |
| + (key_rec->enc_key_size)); |
| /* TODO: Include a packet size limit as a parameter to this |
| * function once we have multi-packet headers (for versions |
| * later than 0.1 */ |
| if (key_rec_size >= ECRYPTFS_MAX_KEYSET_SIZE) { |
| ecryptfs_printk(KERN_ERR, "Keyset too large\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| /* ***** TAG 1 Packet Format ***** |
| * | version number | 1 byte | |
| * | key ID | 8 bytes | |
| * | public key algorithm | 1 byte | |
| * | encrypted session key | arbitrary | |
| */ |
| if ((0x02 + ECRYPTFS_SIG_SIZE + key_rec->enc_key_size) >= max) { |
| ecryptfs_printk(KERN_ERR, |
| "Authentication token is too large\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE; |
| /* This format is inspired by OpenPGP; see RFC 2440 |
| * packet tag 1 */ |
| rc = write_packet_length(&dest[(*packet_size)], |
| (0x02 + ECRYPTFS_SIG_SIZE + |
| key_rec->enc_key_size), |
| &packet_size_length); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet " |
| "header; cannot generate packet length\n"); |
| goto out; |
| } |
| (*packet_size) += packet_size_length; |
| dest[(*packet_size)++] = 0x03; /* version 3 */ |
| memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE); |
| (*packet_size) += ECRYPTFS_SIG_SIZE; |
| dest[(*packet_size)++] = RFC2440_CIPHER_RSA; |
| memcpy(&dest[(*packet_size)], key_rec->enc_key, |
| key_rec->enc_key_size); |
| (*packet_size) += key_rec->enc_key_size; |
| out: |
| if (rc) |
| (*packet_size) = 0; |
| return rc; |
| } |
| |
| /** |
| * write_tag_11_packet |
| * @dest: Target into which Tag 11 packet is to be written |
| * @max: Maximum packet length |
| * @contents: Byte array of contents to copy in |
| * @contents_length: Number of bytes in contents |
| * @packet_length: Length of the Tag 11 packet written; zero on error |
| * |
| * Returns zero on success; non-zero on error. |
| */ |
| static int |
| write_tag_11_packet(char *dest, int max, char *contents, size_t contents_length, |
| size_t *packet_length) |
| { |
| size_t packet_size_length; |
| int rc = 0; |
| |
| (*packet_length) = 0; |
| if ((13 + contents_length) > max) { |
| rc = -EINVAL; |
| ecryptfs_printk(KERN_ERR, "Packet length larger than " |
| "maximum allowable\n"); |
| goto out; |
| } |
| /* General packet header */ |
| /* Packet tag */ |
| dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE; |
| /* Packet length */ |
| rc = write_packet_length(&dest[(*packet_length)], |
| (13 + contents_length), &packet_size_length); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Error generating tag 11 packet " |
| "header; cannot generate packet length\n"); |
| goto out; |
| } |
| (*packet_length) += packet_size_length; |
| /* Tag 11 specific */ |
| /* One-octet field that describes how the data is formatted */ |
| dest[(*packet_length)++] = 0x62; /* binary data */ |
| /* One-octet filename length followed by filename */ |
| dest[(*packet_length)++] = 8; |
| memcpy(&dest[(*packet_length)], "_CONSOLE", 8); |
| (*packet_length) += 8; |
| /* Four-octet number indicating modification date */ |
| memset(&dest[(*packet_length)], 0x00, 4); |
| (*packet_length) += 4; |
| /* Remainder is literal data */ |
| memcpy(&dest[(*packet_length)], contents, contents_length); |
| (*packet_length) += contents_length; |
| out: |
| if (rc) |
| (*packet_length) = 0; |
| return rc; |
| } |
| |
| /** |
| * write_tag_3_packet |
| * @dest: Buffer into which to write the packet |
| * @max: Maximum number of bytes that can be written |
| * @auth_tok: Authentication token |
| * @crypt_stat: The cryptographic context |
| * @key_rec: encrypted key |
| * @packet_size: This function will write the number of bytes that end |
| * up constituting the packet; set to zero on error |
| * |
| * Returns zero on success; non-zero on error. |
| */ |
| static int |
| write_tag_3_packet(char *dest, size_t max, struct ecryptfs_auth_tok *auth_tok, |
| struct ecryptfs_crypt_stat *crypt_stat, |
| struct ecryptfs_key_record *key_rec, size_t *packet_size) |
| { |
| size_t i; |
| size_t encrypted_session_key_valid = 0; |
| char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES]; |
| struct scatterlist dest_sg[2]; |
| struct scatterlist src_sg[2]; |
| struct mutex *tfm_mutex = NULL; |
| size_t key_rec_size; |
| size_t packet_size_length; |
| size_t cipher_code; |
| struct blkcipher_desc desc = { |
| .tfm = NULL, |
| .flags = CRYPTO_TFM_REQ_MAY_SLEEP |
| }; |
| int rc = 0; |
| |
| (*packet_size) = 0; |
| ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature, |
| ECRYPTFS_SIG_SIZE); |
| encrypted_session_key_valid = 0; |
| for (i = 0; i < crypt_stat->key_size; i++) |
| encrypted_session_key_valid |= |
| auth_tok->session_key.encrypted_key[i]; |
| if (encrypted_session_key_valid) { |
| memcpy(key_rec->enc_key, |
| auth_tok->session_key.encrypted_key, |
| auth_tok->session_key.encrypted_key_size); |
| goto encrypted_session_key_set; |
| } |
| if (auth_tok->session_key.encrypted_key_size == 0) |
| auth_tok->session_key.encrypted_key_size = |
| crypt_stat->key_size; |
| if (crypt_stat->key_size == 24 |
| && strcmp("aes", crypt_stat->cipher) == 0) { |
| memset((crypt_stat->key + 24), 0, 8); |
| auth_tok->session_key.encrypted_key_size = 32; |
| } |
| key_rec->enc_key_size = |
| auth_tok->session_key.encrypted_key_size; |
| if (auth_tok->token.password.flags & |
| ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) { |
| ecryptfs_printk(KERN_DEBUG, "Using previously generated " |
| "session key encryption key of size [%d]\n", |
| auth_tok->token.password. |
| session_key_encryption_key_bytes); |
| memcpy(session_key_encryption_key, |
| auth_tok->token.password.session_key_encryption_key, |
| crypt_stat->key_size); |
| ecryptfs_printk(KERN_DEBUG, |
| "Cached session key " "encryption key: \n"); |
| if (ecryptfs_verbosity > 0) |
| ecryptfs_dump_hex(session_key_encryption_key, 16); |
| } |
| if (unlikely(ecryptfs_verbosity > 0)) { |
| ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n"); |
| ecryptfs_dump_hex(session_key_encryption_key, 16); |
| } |
| rc = virt_to_scatterlist(crypt_stat->key, |
| key_rec->enc_key_size, src_sg, 2); |
| if (!rc) { |
| ecryptfs_printk(KERN_ERR, "Error generating scatterlist " |
| "for crypt_stat session key\n"); |
| rc = -ENOMEM; |
| goto out; |
| } |
| rc = virt_to_scatterlist(key_rec->enc_key, |
| key_rec->enc_key_size, dest_sg, 2); |
| if (!rc) { |
| ecryptfs_printk(KERN_ERR, "Error generating scatterlist " |
| "for crypt_stat encrypted session key\n"); |
| rc = -ENOMEM; |
| goto out; |
| } |
| if (!strcmp(crypt_stat->cipher, |
| crypt_stat->mount_crypt_stat->global_default_cipher_name) |
| && crypt_stat->mount_crypt_stat->global_key_tfm) { |
| desc.tfm = crypt_stat->mount_crypt_stat->global_key_tfm; |
| tfm_mutex = &crypt_stat->mount_crypt_stat->global_key_tfm_mutex; |
| } else { |
| char *full_alg_name; |
| |
| rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, |
| crypt_stat->cipher, |
| "ecb"); |
| if (rc) |
| goto out; |
| desc.tfm = crypto_alloc_blkcipher(full_alg_name, 0, |
| CRYPTO_ALG_ASYNC); |
| kfree(full_alg_name); |
| if (IS_ERR(desc.tfm)) { |
| rc = PTR_ERR(desc.tfm); |
| ecryptfs_printk(KERN_ERR, "Could not initialize crypto " |
| "context for cipher [%s]; rc = [%d]\n", |
| crypt_stat->cipher, rc); |
| goto out; |
| } |
| crypto_blkcipher_set_flags(desc.tfm, CRYPTO_TFM_REQ_WEAK_KEY); |
| } |
| if (tfm_mutex) |
| mutex_lock(tfm_mutex); |
| rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key, |
| crypt_stat->key_size); |
| if (rc < 0) { |
| if (tfm_mutex) |
| mutex_unlock(tfm_mutex); |
| ecryptfs_printk(KERN_ERR, "Error setting key for crypto " |
| "context; rc = [%d]\n", rc); |
| goto out; |
| } |
| rc = 0; |
| ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n", |
| crypt_stat->key_size); |
| rc = crypto_blkcipher_encrypt(&desc, dest_sg, src_sg, |
| (*key_rec).enc_key_size); |
| if (rc) { |
| printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc); |
| goto out; |
| } |
| if (tfm_mutex) |
| mutex_unlock(tfm_mutex); |
| ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n"); |
| if (ecryptfs_verbosity > 0) |
| ecryptfs_dump_hex(key_rec->enc_key, |
| key_rec->enc_key_size); |
| encrypted_session_key_set: |
| /* Now we have a valid key_rec. Append it to the |
| * key_rec set. */ |
| key_rec_size = (sizeof(struct ecryptfs_key_record) |
| - ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES |
| + (key_rec->enc_key_size)); |
| /* TODO: Include a packet size limit as a parameter to this |
| * function once we have multi-packet headers (for versions |
| * later than 0.1 */ |
| if (key_rec_size >= ECRYPTFS_MAX_KEYSET_SIZE) { |
| ecryptfs_printk(KERN_ERR, "Keyset too large\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| /* TODO: Packet size limit */ |
| /* We have 5 bytes of surrounding packet data */ |
| if ((0x05 + ECRYPTFS_SALT_SIZE |
| + key_rec->enc_key_size) >= max) { |
| ecryptfs_printk(KERN_ERR, "Authentication token is too " |
| "large\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| /* This format is inspired by OpenPGP; see RFC 2440 |
| * packet tag 3 */ |
| dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE; |
| /* ver+cipher+s2k+hash+salt+iter+enc_key */ |
| rc = write_packet_length(&dest[(*packet_size)], |
| (0x05 + ECRYPTFS_SALT_SIZE |
| + key_rec->enc_key_size), |
| &packet_size_length); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Error generating tag 3 packet " |
| "header; cannot generate packet length\n"); |
| goto out; |
| } |
| (*packet_size) += packet_size_length; |
| dest[(*packet_size)++] = 0x04; /* version 4 */ |
| cipher_code = ecryptfs_code_for_cipher_string(crypt_stat); |
| if (cipher_code == 0) { |
| ecryptfs_printk(KERN_WARNING, "Unable to generate code for " |
| "cipher [%s]\n", crypt_stat->cipher); |
| rc = -EINVAL; |
| goto out; |
| } |
| dest[(*packet_size)++] = cipher_code; |
| dest[(*packet_size)++] = 0x03; /* S2K */ |
| dest[(*packet_size)++] = 0x01; /* MD5 (TODO: parameterize) */ |
| memcpy(&dest[(*packet_size)], auth_tok->token.password.salt, |
| ECRYPTFS_SALT_SIZE); |
| (*packet_size) += ECRYPTFS_SALT_SIZE; /* salt */ |
| dest[(*packet_size)++] = 0x60; /* hash iterations (65536) */ |
| memcpy(&dest[(*packet_size)], key_rec->enc_key, |
| key_rec->enc_key_size); |
| (*packet_size) += key_rec->enc_key_size; |
| out: |
| if (desc.tfm && !tfm_mutex) |
| crypto_free_blkcipher(desc.tfm); |
| if (rc) |
| (*packet_size) = 0; |
| return rc; |
| } |
| |
| struct kmem_cache *ecryptfs_key_record_cache; |
| |
| /** |
| * ecryptfs_generate_key_packet_set |
| * @dest: Virtual address from which to write the key record set |
| * @crypt_stat: The cryptographic context from which the |
| * authentication tokens will be retrieved |
| * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat |
| * for the global parameters |
| * @len: The amount written |
| * @max: The maximum amount of data allowed to be written |
| * |
| * Generates a key packet set and writes it to the virtual address |
| * passed in. |
| * |
| * Returns zero on success; non-zero on error. |
| */ |
| int |
| ecryptfs_generate_key_packet_set(char *dest_base, |
| struct ecryptfs_crypt_stat *crypt_stat, |
| struct dentry *ecryptfs_dentry, size_t *len, |
| size_t max) |
| { |
| struct ecryptfs_auth_tok *auth_tok; |
| struct ecryptfs_mount_crypt_stat *mount_crypt_stat = |
| &ecryptfs_superblock_to_private( |
| ecryptfs_dentry->d_sb)->mount_crypt_stat; |
| size_t written; |
| struct ecryptfs_key_record *key_rec; |
| int rc = 0; |
| |
| (*len) = 0; |
| key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL); |
| if (!key_rec) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| if (mount_crypt_stat->global_auth_tok) { |
| auth_tok = mount_crypt_stat->global_auth_tok; |
| if (auth_tok->token_type == ECRYPTFS_PASSWORD) { |
| rc = write_tag_3_packet((dest_base + (*len)), |
| max, auth_tok, |
| crypt_stat, key_rec, |
| &written); |
| if (rc) { |
| ecryptfs_printk(KERN_WARNING, "Error " |
| "writing tag 3 packet\n"); |
| goto out_free; |
| } |
| (*len) += written; |
| /* Write auth tok signature packet */ |
| rc = write_tag_11_packet( |
| (dest_base + (*len)), |
| (max - (*len)), |
| key_rec->sig, ECRYPTFS_SIG_SIZE, &written); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Error writing " |
| "auth tok signature packet\n"); |
| goto out_free; |
| } |
| (*len) += written; |
| } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) { |
| rc = write_tag_1_packet(dest_base + (*len), |
| max, auth_tok, |
| crypt_stat,mount_crypt_stat, |
| key_rec, &written); |
| if (rc) { |
| ecryptfs_printk(KERN_WARNING, "Error " |
| "writing tag 1 packet\n"); |
| goto out_free; |
| } |
| (*len) += written; |
| } else { |
| ecryptfs_printk(KERN_WARNING, "Unsupported " |
| "authentication token type\n"); |
| rc = -EINVAL; |
| goto out_free; |
| } |
| } else |
| BUG(); |
| if (likely((max - (*len)) > 0)) { |
| dest_base[(*len)] = 0x00; |
| } else { |
| ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n"); |
| rc = -EIO; |
| } |
| |
| out_free: |
| kmem_cache_free(ecryptfs_key_record_cache, key_rec); |
| out: |
| if (rc) |
| (*len) = 0; |
| return rc; |
| } |