| /* |
| * Copyright (C) 2012 Red Hat. All rights reserved. |
| * |
| * This file is released under the GPL. |
| */ |
| |
| #include "dm-cache-policy.h" |
| #include "dm.h" |
| |
| #include <linux/hash.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| |
| #define DM_MSG_PREFIX "cache-policy-mq" |
| #define MQ_VERSION "1.0.0" |
| |
| static struct kmem_cache *mq_entry_cache; |
| |
| /*----------------------------------------------------------------*/ |
| |
| static unsigned next_power(unsigned n, unsigned min) |
| { |
| return roundup_pow_of_two(max(n, min)); |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| static unsigned long *alloc_bitset(unsigned nr_entries) |
| { |
| size_t s = sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG); |
| return vzalloc(s); |
| } |
| |
| static void free_bitset(unsigned long *bits) |
| { |
| vfree(bits); |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* |
| * Large, sequential ios are probably better left on the origin device since |
| * spindles tend to have good bandwidth. |
| * |
| * The io_tracker tries to spot when the io is in one of these sequential |
| * modes. |
| * |
| * Two thresholds to switch between random and sequential io mode are defaulting |
| * as follows and can be adjusted via the constructor and message interfaces. |
| */ |
| #define RANDOM_THRESHOLD_DEFAULT 4 |
| #define SEQUENTIAL_THRESHOLD_DEFAULT 512 |
| |
| enum io_pattern { |
| PATTERN_SEQUENTIAL, |
| PATTERN_RANDOM |
| }; |
| |
| struct io_tracker { |
| enum io_pattern pattern; |
| |
| unsigned nr_seq_samples; |
| unsigned nr_rand_samples; |
| unsigned thresholds[2]; |
| |
| dm_oblock_t last_end_oblock; |
| }; |
| |
| static void iot_init(struct io_tracker *t, |
| int sequential_threshold, int random_threshold) |
| { |
| t->pattern = PATTERN_RANDOM; |
| t->nr_seq_samples = 0; |
| t->nr_rand_samples = 0; |
| t->last_end_oblock = 0; |
| t->thresholds[PATTERN_RANDOM] = random_threshold; |
| t->thresholds[PATTERN_SEQUENTIAL] = sequential_threshold; |
| } |
| |
| static enum io_pattern iot_pattern(struct io_tracker *t) |
| { |
| return t->pattern; |
| } |
| |
| static void iot_update_stats(struct io_tracker *t, struct bio *bio) |
| { |
| if (bio->bi_sector == from_oblock(t->last_end_oblock) + 1) |
| t->nr_seq_samples++; |
| else { |
| /* |
| * Just one non-sequential IO is enough to reset the |
| * counters. |
| */ |
| if (t->nr_seq_samples) { |
| t->nr_seq_samples = 0; |
| t->nr_rand_samples = 0; |
| } |
| |
| t->nr_rand_samples++; |
| } |
| |
| t->last_end_oblock = to_oblock(bio->bi_sector + bio_sectors(bio) - 1); |
| } |
| |
| static void iot_check_for_pattern_switch(struct io_tracker *t) |
| { |
| switch (t->pattern) { |
| case PATTERN_SEQUENTIAL: |
| if (t->nr_rand_samples >= t->thresholds[PATTERN_RANDOM]) { |
| t->pattern = PATTERN_RANDOM; |
| t->nr_seq_samples = t->nr_rand_samples = 0; |
| } |
| break; |
| |
| case PATTERN_RANDOM: |
| if (t->nr_seq_samples >= t->thresholds[PATTERN_SEQUENTIAL]) { |
| t->pattern = PATTERN_SEQUENTIAL; |
| t->nr_seq_samples = t->nr_rand_samples = 0; |
| } |
| break; |
| } |
| } |
| |
| static void iot_examine_bio(struct io_tracker *t, struct bio *bio) |
| { |
| iot_update_stats(t, bio); |
| iot_check_for_pattern_switch(t); |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| |
| /* |
| * This queue is divided up into different levels. Allowing us to push |
| * entries to the back of any of the levels. Think of it as a partially |
| * sorted queue. |
| */ |
| #define NR_QUEUE_LEVELS 16u |
| |
| struct queue { |
| struct list_head qs[NR_QUEUE_LEVELS]; |
| }; |
| |
| static void queue_init(struct queue *q) |
| { |
| unsigned i; |
| |
| for (i = 0; i < NR_QUEUE_LEVELS; i++) |
| INIT_LIST_HEAD(q->qs + i); |
| } |
| |
| /* |
| * Insert an entry to the back of the given level. |
| */ |
| static void queue_push(struct queue *q, unsigned level, struct list_head *elt) |
| { |
| list_add_tail(elt, q->qs + level); |
| } |
| |
| static void queue_remove(struct list_head *elt) |
| { |
| list_del(elt); |
| } |
| |
| /* |
| * Shifts all regions down one level. This has no effect on the order of |
| * the queue. |
| */ |
| static void queue_shift_down(struct queue *q) |
| { |
| unsigned level; |
| |
| for (level = 1; level < NR_QUEUE_LEVELS; level++) |
| list_splice_init(q->qs + level, q->qs + level - 1); |
| } |
| |
| /* |
| * Gives us the oldest entry of the lowest popoulated level. If the first |
| * level is emptied then we shift down one level. |
| */ |
| static struct list_head *queue_pop(struct queue *q) |
| { |
| unsigned level; |
| struct list_head *r; |
| |
| for (level = 0; level < NR_QUEUE_LEVELS; level++) |
| if (!list_empty(q->qs + level)) { |
| r = q->qs[level].next; |
| list_del(r); |
| |
| /* have we just emptied the bottom level? */ |
| if (level == 0 && list_empty(q->qs)) |
| queue_shift_down(q); |
| |
| return r; |
| } |
| |
| return NULL; |
| } |
| |
| static struct list_head *list_pop(struct list_head *lh) |
| { |
| struct list_head *r = lh->next; |
| |
| BUG_ON(!r); |
| list_del_init(r); |
| |
| return r; |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* |
| * Describes a cache entry. Used in both the cache and the pre_cache. |
| */ |
| struct entry { |
| struct hlist_node hlist; |
| struct list_head list; |
| dm_oblock_t oblock; |
| dm_cblock_t cblock; /* valid iff in_cache */ |
| |
| /* |
| * FIXME: pack these better |
| */ |
| bool in_cache:1; |
| unsigned hit_count; |
| unsigned generation; |
| unsigned tick; |
| }; |
| |
| struct mq_policy { |
| struct dm_cache_policy policy; |
| |
| /* protects everything */ |
| struct mutex lock; |
| dm_cblock_t cache_size; |
| struct io_tracker tracker; |
| |
| /* |
| * We maintain two queues of entries. The cache proper contains |
| * the currently active mappings. Whereas the pre_cache tracks |
| * blocks that are being hit frequently and potential candidates |
| * for promotion to the cache. |
| */ |
| struct queue pre_cache; |
| struct queue cache; |
| |
| /* |
| * Keeps track of time, incremented by the core. We use this to |
| * avoid attributing multiple hits within the same tick. |
| * |
| * Access to tick_protected should be done with the spin lock held. |
| * It's copied to tick at the start of the map function (within the |
| * mutex). |
| */ |
| spinlock_t tick_lock; |
| unsigned tick_protected; |
| unsigned tick; |
| |
| /* |
| * A count of the number of times the map function has been called |
| * and found an entry in the pre_cache or cache. Currently used to |
| * calculate the generation. |
| */ |
| unsigned hit_count; |
| |
| /* |
| * A generation is a longish period that is used to trigger some |
| * book keeping effects. eg, decrementing hit counts on entries. |
| * This is needed to allow the cache to evolve as io patterns |
| * change. |
| */ |
| unsigned generation; |
| unsigned generation_period; /* in lookups (will probably change) */ |
| |
| /* |
| * Entries in the pre_cache whose hit count passes the promotion |
| * threshold move to the cache proper. Working out the correct |
| * value for the promotion_threshold is crucial to this policy. |
| */ |
| unsigned promote_threshold; |
| |
| /* |
| * We need cache_size entries for the cache, and choose to have |
| * cache_size entries for the pre_cache too. One motivation for |
| * using the same size is to make the hit counts directly |
| * comparable between pre_cache and cache. |
| */ |
| unsigned nr_entries; |
| unsigned nr_entries_allocated; |
| struct list_head free; |
| |
| /* |
| * Cache blocks may be unallocated. We store this info in a |
| * bitset. |
| */ |
| unsigned long *allocation_bitset; |
| unsigned nr_cblocks_allocated; |
| unsigned find_free_nr_words; |
| unsigned find_free_last_word; |
| |
| /* |
| * The hash table allows us to quickly find an entry by origin |
| * block. Both pre_cache and cache entries are in here. |
| */ |
| unsigned nr_buckets; |
| dm_block_t hash_bits; |
| struct hlist_head *table; |
| }; |
| |
| /*----------------------------------------------------------------*/ |
| /* Free/alloc mq cache entry structures. */ |
| static void takeout_queue(struct list_head *lh, struct queue *q) |
| { |
| unsigned level; |
| |
| for (level = 0; level < NR_QUEUE_LEVELS; level++) |
| list_splice(q->qs + level, lh); |
| } |
| |
| static void free_entries(struct mq_policy *mq) |
| { |
| struct entry *e, *tmp; |
| |
| takeout_queue(&mq->free, &mq->pre_cache); |
| takeout_queue(&mq->free, &mq->cache); |
| |
| list_for_each_entry_safe(e, tmp, &mq->free, list) |
| kmem_cache_free(mq_entry_cache, e); |
| } |
| |
| static int alloc_entries(struct mq_policy *mq, unsigned elts) |
| { |
| unsigned u = mq->nr_entries; |
| |
| INIT_LIST_HEAD(&mq->free); |
| mq->nr_entries_allocated = 0; |
| |
| while (u--) { |
| struct entry *e = kmem_cache_zalloc(mq_entry_cache, GFP_KERNEL); |
| |
| if (!e) { |
| free_entries(mq); |
| return -ENOMEM; |
| } |
| |
| |
| list_add(&e->list, &mq->free); |
| } |
| |
| return 0; |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* |
| * Simple hash table implementation. Should replace with the standard hash |
| * table that's making its way upstream. |
| */ |
| static void hash_insert(struct mq_policy *mq, struct entry *e) |
| { |
| unsigned h = hash_64(from_oblock(e->oblock), mq->hash_bits); |
| |
| hlist_add_head(&e->hlist, mq->table + h); |
| } |
| |
| static struct entry *hash_lookup(struct mq_policy *mq, dm_oblock_t oblock) |
| { |
| unsigned h = hash_64(from_oblock(oblock), mq->hash_bits); |
| struct hlist_head *bucket = mq->table + h; |
| struct entry *e; |
| |
| hlist_for_each_entry(e, bucket, hlist) |
| if (e->oblock == oblock) { |
| hlist_del(&e->hlist); |
| hlist_add_head(&e->hlist, bucket); |
| return e; |
| } |
| |
| return NULL; |
| } |
| |
| static void hash_remove(struct entry *e) |
| { |
| hlist_del(&e->hlist); |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* |
| * Allocates a new entry structure. The memory is allocated in one lump, |
| * so we just handing it out here. Returns NULL if all entries have |
| * already been allocated. Cannot fail otherwise. |
| */ |
| static struct entry *alloc_entry(struct mq_policy *mq) |
| { |
| struct entry *e; |
| |
| if (mq->nr_entries_allocated >= mq->nr_entries) { |
| BUG_ON(!list_empty(&mq->free)); |
| return NULL; |
| } |
| |
| e = list_entry(list_pop(&mq->free), struct entry, list); |
| INIT_LIST_HEAD(&e->list); |
| INIT_HLIST_NODE(&e->hlist); |
| |
| mq->nr_entries_allocated++; |
| return e; |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* |
| * Mark cache blocks allocated or not in the bitset. |
| */ |
| static void alloc_cblock(struct mq_policy *mq, dm_cblock_t cblock) |
| { |
| BUG_ON(from_cblock(cblock) > from_cblock(mq->cache_size)); |
| BUG_ON(test_bit(from_cblock(cblock), mq->allocation_bitset)); |
| |
| set_bit(from_cblock(cblock), mq->allocation_bitset); |
| mq->nr_cblocks_allocated++; |
| } |
| |
| static void free_cblock(struct mq_policy *mq, dm_cblock_t cblock) |
| { |
| BUG_ON(from_cblock(cblock) > from_cblock(mq->cache_size)); |
| BUG_ON(!test_bit(from_cblock(cblock), mq->allocation_bitset)); |
| |
| clear_bit(from_cblock(cblock), mq->allocation_bitset); |
| mq->nr_cblocks_allocated--; |
| } |
| |
| static bool any_free_cblocks(struct mq_policy *mq) |
| { |
| return mq->nr_cblocks_allocated < from_cblock(mq->cache_size); |
| } |
| |
| /* |
| * Fills result out with a cache block that isn't in use, or return |
| * -ENOSPC. This does _not_ mark the cblock as allocated, the caller is |
| * reponsible for that. |
| */ |
| static int __find_free_cblock(struct mq_policy *mq, unsigned begin, unsigned end, |
| dm_cblock_t *result, unsigned *last_word) |
| { |
| int r = -ENOSPC; |
| unsigned w; |
| |
| for (w = begin; w < end; w++) { |
| /* |
| * ffz is undefined if no zero exists |
| */ |
| if (mq->allocation_bitset[w] != ~0UL) { |
| *last_word = w; |
| *result = to_cblock((w * BITS_PER_LONG) + ffz(mq->allocation_bitset[w])); |
| if (from_cblock(*result) < from_cblock(mq->cache_size)) |
| r = 0; |
| |
| break; |
| } |
| } |
| |
| return r; |
| } |
| |
| static int find_free_cblock(struct mq_policy *mq, dm_cblock_t *result) |
| { |
| int r; |
| |
| if (!any_free_cblocks(mq)) |
| return -ENOSPC; |
| |
| r = __find_free_cblock(mq, mq->find_free_last_word, mq->find_free_nr_words, result, &mq->find_free_last_word); |
| if (r == -ENOSPC && mq->find_free_last_word) |
| r = __find_free_cblock(mq, 0, mq->find_free_last_word, result, &mq->find_free_last_word); |
| |
| return r; |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* |
| * Now we get to the meat of the policy. This section deals with deciding |
| * when to to add entries to the pre_cache and cache, and move between |
| * them. |
| */ |
| |
| /* |
| * The queue level is based on the log2 of the hit count. |
| */ |
| static unsigned queue_level(struct entry *e) |
| { |
| return min((unsigned) ilog2(e->hit_count), NR_QUEUE_LEVELS - 1u); |
| } |
| |
| /* |
| * Inserts the entry into the pre_cache or the cache. Ensures the cache |
| * block is marked as allocated if necc. Inserts into the hash table. Sets the |
| * tick which records when the entry was last moved about. |
| */ |
| static void push(struct mq_policy *mq, struct entry *e) |
| { |
| e->tick = mq->tick; |
| hash_insert(mq, e); |
| |
| if (e->in_cache) { |
| alloc_cblock(mq, e->cblock); |
| queue_push(&mq->cache, queue_level(e), &e->list); |
| } else |
| queue_push(&mq->pre_cache, queue_level(e), &e->list); |
| } |
| |
| /* |
| * Removes an entry from pre_cache or cache. Removes from the hash table. |
| * Frees off the cache block if necc. |
| */ |
| static void del(struct mq_policy *mq, struct entry *e) |
| { |
| queue_remove(&e->list); |
| hash_remove(e); |
| if (e->in_cache) |
| free_cblock(mq, e->cblock); |
| } |
| |
| /* |
| * Like del, except it removes the first entry in the queue (ie. the least |
| * recently used). |
| */ |
| static struct entry *pop(struct mq_policy *mq, struct queue *q) |
| { |
| struct entry *e = container_of(queue_pop(q), struct entry, list); |
| |
| if (e) { |
| hash_remove(e); |
| |
| if (e->in_cache) |
| free_cblock(mq, e->cblock); |
| } |
| |
| return e; |
| } |
| |
| /* |
| * Has this entry already been updated? |
| */ |
| static bool updated_this_tick(struct mq_policy *mq, struct entry *e) |
| { |
| return mq->tick == e->tick; |
| } |
| |
| /* |
| * The promotion threshold is adjusted every generation. As are the counts |
| * of the entries. |
| * |
| * At the moment the threshold is taken by averaging the hit counts of some |
| * of the entries in the cache (the first 20 entries of the first level). |
| * |
| * We can be much cleverer than this though. For example, each promotion |
| * could bump up the threshold helping to prevent churn. Much more to do |
| * here. |
| */ |
| |
| #define MAX_TO_AVERAGE 20 |
| |
| static void check_generation(struct mq_policy *mq) |
| { |
| unsigned total = 0, nr = 0, count = 0, level; |
| struct list_head *head; |
| struct entry *e; |
| |
| if ((mq->hit_count >= mq->generation_period) && |
| (mq->nr_cblocks_allocated == from_cblock(mq->cache_size))) { |
| |
| mq->hit_count = 0; |
| mq->generation++; |
| |
| for (level = 0; level < NR_QUEUE_LEVELS && count < MAX_TO_AVERAGE; level++) { |
| head = mq->cache.qs + level; |
| list_for_each_entry(e, head, list) { |
| nr++; |
| total += e->hit_count; |
| |
| if (++count >= MAX_TO_AVERAGE) |
| break; |
| } |
| } |
| |
| mq->promote_threshold = nr ? total / nr : 1; |
| if (mq->promote_threshold * nr < total) |
| mq->promote_threshold++; |
| } |
| } |
| |
| /* |
| * Whenever we use an entry we bump up it's hit counter, and push it to the |
| * back to it's current level. |
| */ |
| static void requeue_and_update_tick(struct mq_policy *mq, struct entry *e) |
| { |
| if (updated_this_tick(mq, e)) |
| return; |
| |
| e->hit_count++; |
| mq->hit_count++; |
| check_generation(mq); |
| |
| /* generation adjustment, to stop the counts increasing forever. */ |
| /* FIXME: divide? */ |
| /* e->hit_count -= min(e->hit_count - 1, mq->generation - e->generation); */ |
| e->generation = mq->generation; |
| |
| del(mq, e); |
| push(mq, e); |
| } |
| |
| /* |
| * Demote the least recently used entry from the cache to the pre_cache. |
| * Returns the new cache entry to use, and the old origin block it was |
| * mapped to. |
| * |
| * We drop the hit count on the demoted entry back to 1 to stop it bouncing |
| * straight back into the cache if it's subsequently hit. There are |
| * various options here, and more experimentation would be good: |
| * |
| * - just forget about the demoted entry completely (ie. don't insert it |
| into the pre_cache). |
| * - divide the hit count rather that setting to some hard coded value. |
| * - set the hit count to a hard coded value other than 1, eg, is it better |
| * if it goes in at level 2? |
| */ |
| static dm_cblock_t demote_cblock(struct mq_policy *mq, dm_oblock_t *oblock) |
| { |
| dm_cblock_t result; |
| struct entry *demoted = pop(mq, &mq->cache); |
| |
| BUG_ON(!demoted); |
| result = demoted->cblock; |
| *oblock = demoted->oblock; |
| demoted->in_cache = false; |
| demoted->hit_count = 1; |
| push(mq, demoted); |
| |
| return result; |
| } |
| |
| /* |
| * We modify the basic promotion_threshold depending on the specific io. |
| * |
| * If the origin block has been discarded then there's no cost to copy it |
| * to the cache. |
| * |
| * We bias towards reads, since they can be demoted at no cost if they |
| * haven't been dirtied. |
| */ |
| #define DISCARDED_PROMOTE_THRESHOLD 1 |
| #define READ_PROMOTE_THRESHOLD 4 |
| #define WRITE_PROMOTE_THRESHOLD 8 |
| |
| static unsigned adjusted_promote_threshold(struct mq_policy *mq, |
| bool discarded_oblock, int data_dir) |
| { |
| if (discarded_oblock && any_free_cblocks(mq) && data_dir == WRITE) |
| /* |
| * We don't need to do any copying at all, so give this a |
| * very low threshold. In practice this only triggers |
| * during initial population after a format. |
| */ |
| return DISCARDED_PROMOTE_THRESHOLD; |
| |
| return data_dir == READ ? |
| (mq->promote_threshold + READ_PROMOTE_THRESHOLD) : |
| (mq->promote_threshold + WRITE_PROMOTE_THRESHOLD); |
| } |
| |
| static bool should_promote(struct mq_policy *mq, struct entry *e, |
| bool discarded_oblock, int data_dir) |
| { |
| return e->hit_count >= |
| adjusted_promote_threshold(mq, discarded_oblock, data_dir); |
| } |
| |
| static int cache_entry_found(struct mq_policy *mq, |
| struct entry *e, |
| struct policy_result *result) |
| { |
| requeue_and_update_tick(mq, e); |
| |
| if (e->in_cache) { |
| result->op = POLICY_HIT; |
| result->cblock = e->cblock; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Moves and entry from the pre_cache to the cache. The main work is |
| * finding which cache block to use. |
| */ |
| static int pre_cache_to_cache(struct mq_policy *mq, struct entry *e, |
| struct policy_result *result) |
| { |
| dm_cblock_t cblock; |
| |
| if (find_free_cblock(mq, &cblock) == -ENOSPC) { |
| result->op = POLICY_REPLACE; |
| cblock = demote_cblock(mq, &result->old_oblock); |
| } else |
| result->op = POLICY_NEW; |
| |
| result->cblock = e->cblock = cblock; |
| |
| del(mq, e); |
| e->in_cache = true; |
| push(mq, e); |
| |
| return 0; |
| } |
| |
| static int pre_cache_entry_found(struct mq_policy *mq, struct entry *e, |
| bool can_migrate, bool discarded_oblock, |
| int data_dir, struct policy_result *result) |
| { |
| int r = 0; |
| bool updated = updated_this_tick(mq, e); |
| |
| requeue_and_update_tick(mq, e); |
| |
| if ((!discarded_oblock && updated) || |
| !should_promote(mq, e, discarded_oblock, data_dir)) |
| result->op = POLICY_MISS; |
| else if (!can_migrate) |
| r = -EWOULDBLOCK; |
| else |
| r = pre_cache_to_cache(mq, e, result); |
| |
| return r; |
| } |
| |
| static void insert_in_pre_cache(struct mq_policy *mq, |
| dm_oblock_t oblock) |
| { |
| struct entry *e = alloc_entry(mq); |
| |
| if (!e) |
| /* |
| * There's no spare entry structure, so we grab the least |
| * used one from the pre_cache. |
| */ |
| e = pop(mq, &mq->pre_cache); |
| |
| if (unlikely(!e)) { |
| DMWARN("couldn't pop from pre cache"); |
| return; |
| } |
| |
| e->in_cache = false; |
| e->oblock = oblock; |
| e->hit_count = 1; |
| e->generation = mq->generation; |
| push(mq, e); |
| } |
| |
| static void insert_in_cache(struct mq_policy *mq, dm_oblock_t oblock, |
| struct policy_result *result) |
| { |
| struct entry *e; |
| dm_cblock_t cblock; |
| |
| if (find_free_cblock(mq, &cblock) == -ENOSPC) { |
| result->op = POLICY_MISS; |
| insert_in_pre_cache(mq, oblock); |
| return; |
| } |
| |
| e = alloc_entry(mq); |
| if (unlikely(!e)) { |
| result->op = POLICY_MISS; |
| return; |
| } |
| |
| e->oblock = oblock; |
| e->cblock = cblock; |
| e->in_cache = true; |
| e->hit_count = 1; |
| e->generation = mq->generation; |
| push(mq, e); |
| |
| result->op = POLICY_NEW; |
| result->cblock = e->cblock; |
| } |
| |
| static int no_entry_found(struct mq_policy *mq, dm_oblock_t oblock, |
| bool can_migrate, bool discarded_oblock, |
| int data_dir, struct policy_result *result) |
| { |
| if (adjusted_promote_threshold(mq, discarded_oblock, data_dir) == 1) { |
| if (can_migrate) |
| insert_in_cache(mq, oblock, result); |
| else |
| return -EWOULDBLOCK; |
| } else { |
| insert_in_pre_cache(mq, oblock); |
| result->op = POLICY_MISS; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Looks the oblock up in the hash table, then decides whether to put in |
| * pre_cache, or cache etc. |
| */ |
| static int map(struct mq_policy *mq, dm_oblock_t oblock, |
| bool can_migrate, bool discarded_oblock, |
| int data_dir, struct policy_result *result) |
| { |
| int r = 0; |
| struct entry *e = hash_lookup(mq, oblock); |
| |
| if (e && e->in_cache) |
| r = cache_entry_found(mq, e, result); |
| else if (iot_pattern(&mq->tracker) == PATTERN_SEQUENTIAL) |
| result->op = POLICY_MISS; |
| else if (e) |
| r = pre_cache_entry_found(mq, e, can_migrate, discarded_oblock, |
| data_dir, result); |
| else |
| r = no_entry_found(mq, oblock, can_migrate, discarded_oblock, |
| data_dir, result); |
| |
| if (r == -EWOULDBLOCK) |
| result->op = POLICY_MISS; |
| |
| return r; |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* |
| * Public interface, via the policy struct. See dm-cache-policy.h for a |
| * description of these. |
| */ |
| |
| static struct mq_policy *to_mq_policy(struct dm_cache_policy *p) |
| { |
| return container_of(p, struct mq_policy, policy); |
| } |
| |
| static void mq_destroy(struct dm_cache_policy *p) |
| { |
| struct mq_policy *mq = to_mq_policy(p); |
| |
| free_bitset(mq->allocation_bitset); |
| kfree(mq->table); |
| free_entries(mq); |
| kfree(mq); |
| } |
| |
| static void copy_tick(struct mq_policy *mq) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&mq->tick_lock, flags); |
| mq->tick = mq->tick_protected; |
| spin_unlock_irqrestore(&mq->tick_lock, flags); |
| } |
| |
| static int mq_map(struct dm_cache_policy *p, dm_oblock_t oblock, |
| bool can_block, bool can_migrate, bool discarded_oblock, |
| struct bio *bio, struct policy_result *result) |
| { |
| int r; |
| struct mq_policy *mq = to_mq_policy(p); |
| |
| result->op = POLICY_MISS; |
| |
| if (can_block) |
| mutex_lock(&mq->lock); |
| else if (!mutex_trylock(&mq->lock)) |
| return -EWOULDBLOCK; |
| |
| copy_tick(mq); |
| |
| iot_examine_bio(&mq->tracker, bio); |
| r = map(mq, oblock, can_migrate, discarded_oblock, |
| bio_data_dir(bio), result); |
| |
| mutex_unlock(&mq->lock); |
| |
| return r; |
| } |
| |
| static int mq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock) |
| { |
| int r; |
| struct mq_policy *mq = to_mq_policy(p); |
| struct entry *e; |
| |
| if (!mutex_trylock(&mq->lock)) |
| return -EWOULDBLOCK; |
| |
| e = hash_lookup(mq, oblock); |
| if (e && e->in_cache) { |
| *cblock = e->cblock; |
| r = 0; |
| } else |
| r = -ENOENT; |
| |
| mutex_unlock(&mq->lock); |
| |
| return r; |
| } |
| |
| static int mq_load_mapping(struct dm_cache_policy *p, |
| dm_oblock_t oblock, dm_cblock_t cblock, |
| uint32_t hint, bool hint_valid) |
| { |
| struct mq_policy *mq = to_mq_policy(p); |
| struct entry *e; |
| |
| e = alloc_entry(mq); |
| if (!e) |
| return -ENOMEM; |
| |
| e->cblock = cblock; |
| e->oblock = oblock; |
| e->in_cache = true; |
| e->hit_count = hint_valid ? hint : 1; |
| e->generation = mq->generation; |
| push(mq, e); |
| |
| return 0; |
| } |
| |
| static int mq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn, |
| void *context) |
| { |
| struct mq_policy *mq = to_mq_policy(p); |
| int r = 0; |
| struct entry *e; |
| unsigned level; |
| |
| mutex_lock(&mq->lock); |
| |
| for (level = 0; level < NR_QUEUE_LEVELS; level++) |
| list_for_each_entry(e, &mq->cache.qs[level], list) { |
| r = fn(context, e->cblock, e->oblock, e->hit_count); |
| if (r) |
| goto out; |
| } |
| |
| out: |
| mutex_unlock(&mq->lock); |
| |
| return r; |
| } |
| |
| static void remove_mapping(struct mq_policy *mq, dm_oblock_t oblock) |
| { |
| struct entry *e = hash_lookup(mq, oblock); |
| |
| BUG_ON(!e || !e->in_cache); |
| |
| del(mq, e); |
| e->in_cache = false; |
| push(mq, e); |
| } |
| |
| static void mq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock) |
| { |
| struct mq_policy *mq = to_mq_policy(p); |
| |
| mutex_lock(&mq->lock); |
| remove_mapping(mq, oblock); |
| mutex_unlock(&mq->lock); |
| } |
| |
| static void force_mapping(struct mq_policy *mq, |
| dm_oblock_t current_oblock, dm_oblock_t new_oblock) |
| { |
| struct entry *e = hash_lookup(mq, current_oblock); |
| |
| BUG_ON(!e || !e->in_cache); |
| |
| del(mq, e); |
| e->oblock = new_oblock; |
| push(mq, e); |
| } |
| |
| static void mq_force_mapping(struct dm_cache_policy *p, |
| dm_oblock_t current_oblock, dm_oblock_t new_oblock) |
| { |
| struct mq_policy *mq = to_mq_policy(p); |
| |
| mutex_lock(&mq->lock); |
| force_mapping(mq, current_oblock, new_oblock); |
| mutex_unlock(&mq->lock); |
| } |
| |
| static dm_cblock_t mq_residency(struct dm_cache_policy *p) |
| { |
| struct mq_policy *mq = to_mq_policy(p); |
| |
| /* FIXME: lock mutex, not sure we can block here */ |
| return to_cblock(mq->nr_cblocks_allocated); |
| } |
| |
| static void mq_tick(struct dm_cache_policy *p) |
| { |
| struct mq_policy *mq = to_mq_policy(p); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&mq->tick_lock, flags); |
| mq->tick_protected++; |
| spin_unlock_irqrestore(&mq->tick_lock, flags); |
| } |
| |
| static int mq_set_config_value(struct dm_cache_policy *p, |
| const char *key, const char *value) |
| { |
| struct mq_policy *mq = to_mq_policy(p); |
| enum io_pattern pattern; |
| unsigned long tmp; |
| |
| if (!strcasecmp(key, "random_threshold")) |
| pattern = PATTERN_RANDOM; |
| else if (!strcasecmp(key, "sequential_threshold")) |
| pattern = PATTERN_SEQUENTIAL; |
| else |
| return -EINVAL; |
| |
| if (kstrtoul(value, 10, &tmp)) |
| return -EINVAL; |
| |
| mq->tracker.thresholds[pattern] = tmp; |
| |
| return 0; |
| } |
| |
| static int mq_emit_config_values(struct dm_cache_policy *p, char *result, unsigned maxlen) |
| { |
| ssize_t sz = 0; |
| struct mq_policy *mq = to_mq_policy(p); |
| |
| DMEMIT("4 random_threshold %u sequential_threshold %u", |
| mq->tracker.thresholds[PATTERN_RANDOM], |
| mq->tracker.thresholds[PATTERN_SEQUENTIAL]); |
| |
| return 0; |
| } |
| |
| /* Init the policy plugin interface function pointers. */ |
| static void init_policy_functions(struct mq_policy *mq) |
| { |
| mq->policy.destroy = mq_destroy; |
| mq->policy.map = mq_map; |
| mq->policy.lookup = mq_lookup; |
| mq->policy.load_mapping = mq_load_mapping; |
| mq->policy.walk_mappings = mq_walk_mappings; |
| mq->policy.remove_mapping = mq_remove_mapping; |
| mq->policy.writeback_work = NULL; |
| mq->policy.force_mapping = mq_force_mapping; |
| mq->policy.residency = mq_residency; |
| mq->policy.tick = mq_tick; |
| mq->policy.emit_config_values = mq_emit_config_values; |
| mq->policy.set_config_value = mq_set_config_value; |
| } |
| |
| static struct dm_cache_policy *mq_create(dm_cblock_t cache_size, |
| sector_t origin_size, |
| sector_t cache_block_size) |
| { |
| int r; |
| struct mq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL); |
| |
| if (!mq) |
| return NULL; |
| |
| init_policy_functions(mq); |
| iot_init(&mq->tracker, SEQUENTIAL_THRESHOLD_DEFAULT, RANDOM_THRESHOLD_DEFAULT); |
| |
| mq->cache_size = cache_size; |
| mq->tick_protected = 0; |
| mq->tick = 0; |
| mq->hit_count = 0; |
| mq->generation = 0; |
| mq->promote_threshold = 0; |
| mutex_init(&mq->lock); |
| spin_lock_init(&mq->tick_lock); |
| mq->find_free_nr_words = dm_div_up(from_cblock(mq->cache_size), BITS_PER_LONG); |
| mq->find_free_last_word = 0; |
| |
| queue_init(&mq->pre_cache); |
| queue_init(&mq->cache); |
| mq->generation_period = max((unsigned) from_cblock(cache_size), 1024U); |
| |
| mq->nr_entries = 2 * from_cblock(cache_size); |
| r = alloc_entries(mq, mq->nr_entries); |
| if (r) |
| goto bad_cache_alloc; |
| |
| mq->nr_entries_allocated = 0; |
| mq->nr_cblocks_allocated = 0; |
| |
| mq->nr_buckets = next_power(from_cblock(cache_size) / 2, 16); |
| mq->hash_bits = ffs(mq->nr_buckets) - 1; |
| mq->table = kzalloc(sizeof(*mq->table) * mq->nr_buckets, GFP_KERNEL); |
| if (!mq->table) |
| goto bad_alloc_table; |
| |
| mq->allocation_bitset = alloc_bitset(from_cblock(cache_size)); |
| if (!mq->allocation_bitset) |
| goto bad_alloc_bitset; |
| |
| return &mq->policy; |
| |
| bad_alloc_bitset: |
| kfree(mq->table); |
| bad_alloc_table: |
| free_entries(mq); |
| bad_cache_alloc: |
| kfree(mq); |
| |
| return NULL; |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| static struct dm_cache_policy_type mq_policy_type = { |
| .name = "mq", |
| .hint_size = 4, |
| .owner = THIS_MODULE, |
| .create = mq_create |
| }; |
| |
| static struct dm_cache_policy_type default_policy_type = { |
| .name = "default", |
| .hint_size = 4, |
| .owner = THIS_MODULE, |
| .create = mq_create |
| }; |
| |
| static int __init mq_init(void) |
| { |
| int r; |
| |
| mq_entry_cache = kmem_cache_create("dm_mq_policy_cache_entry", |
| sizeof(struct entry), |
| __alignof__(struct entry), |
| 0, NULL); |
| if (!mq_entry_cache) |
| goto bad; |
| |
| r = dm_cache_policy_register(&mq_policy_type); |
| if (r) { |
| DMERR("register failed %d", r); |
| goto bad_register_mq; |
| } |
| |
| r = dm_cache_policy_register(&default_policy_type); |
| if (!r) { |
| DMINFO("version " MQ_VERSION " loaded"); |
| return 0; |
| } |
| |
| DMERR("register failed (as default) %d", r); |
| |
| dm_cache_policy_unregister(&mq_policy_type); |
| bad_register_mq: |
| kmem_cache_destroy(mq_entry_cache); |
| bad: |
| return -ENOMEM; |
| } |
| |
| static void __exit mq_exit(void) |
| { |
| dm_cache_policy_unregister(&mq_policy_type); |
| dm_cache_policy_unregister(&default_policy_type); |
| |
| kmem_cache_destroy(mq_entry_cache); |
| } |
| |
| module_init(mq_init); |
| module_exit(mq_exit); |
| |
| MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("mq cache policy"); |
| |
| MODULE_ALIAS("dm-cache-default"); |