| /* |
| * NAND flash simulator. |
| * |
| * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org> |
| * |
| * Copyright (C) 2004 Nokia Corporation |
| * |
| * Note: NS means "NAND Simulator". |
| * Note: Input means input TO flash chip, output means output FROM chip. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2, or (at your option) any later |
| * version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
| * Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/types.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/vmalloc.h> |
| #include <asm/div64.h> |
| #include <linux/slab.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/nand_bch.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/delay.h> |
| #include <linux/list.h> |
| #include <linux/random.h> |
| #include <linux/sched.h> |
| #include <linux/fs.h> |
| #include <linux/pagemap.h> |
| |
| /* Default simulator parameters values */ |
| #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ |
| !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \ |
| !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \ |
| !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE) |
| #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98 |
| #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39 |
| #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */ |
| #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */ |
| #endif |
| |
| #ifndef CONFIG_NANDSIM_ACCESS_DELAY |
| #define CONFIG_NANDSIM_ACCESS_DELAY 25 |
| #endif |
| #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY |
| #define CONFIG_NANDSIM_PROGRAMM_DELAY 200 |
| #endif |
| #ifndef CONFIG_NANDSIM_ERASE_DELAY |
| #define CONFIG_NANDSIM_ERASE_DELAY 2 |
| #endif |
| #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE |
| #define CONFIG_NANDSIM_OUTPUT_CYCLE 40 |
| #endif |
| #ifndef CONFIG_NANDSIM_INPUT_CYCLE |
| #define CONFIG_NANDSIM_INPUT_CYCLE 50 |
| #endif |
| #ifndef CONFIG_NANDSIM_BUS_WIDTH |
| #define CONFIG_NANDSIM_BUS_WIDTH 8 |
| #endif |
| #ifndef CONFIG_NANDSIM_DO_DELAYS |
| #define CONFIG_NANDSIM_DO_DELAYS 0 |
| #endif |
| #ifndef CONFIG_NANDSIM_LOG |
| #define CONFIG_NANDSIM_LOG 0 |
| #endif |
| #ifndef CONFIG_NANDSIM_DBG |
| #define CONFIG_NANDSIM_DBG 0 |
| #endif |
| #ifndef CONFIG_NANDSIM_MAX_PARTS |
| #define CONFIG_NANDSIM_MAX_PARTS 32 |
| #endif |
| |
| static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE; |
| static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE; |
| static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE; |
| static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE; |
| static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY; |
| static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY; |
| static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY; |
| static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE; |
| static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE; |
| static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH; |
| static uint do_delays = CONFIG_NANDSIM_DO_DELAYS; |
| static uint log = CONFIG_NANDSIM_LOG; |
| static uint dbg = CONFIG_NANDSIM_DBG; |
| static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS]; |
| static unsigned int parts_num; |
| static char *badblocks = NULL; |
| static char *weakblocks = NULL; |
| static char *weakpages = NULL; |
| static unsigned int bitflips = 0; |
| static char *gravepages = NULL; |
| static unsigned int rptwear = 0; |
| static unsigned int overridesize = 0; |
| static char *cache_file = NULL; |
| static unsigned int bbt; |
| static unsigned int bch; |
| |
| module_param(first_id_byte, uint, 0400); |
| module_param(second_id_byte, uint, 0400); |
| module_param(third_id_byte, uint, 0400); |
| module_param(fourth_id_byte, uint, 0400); |
| module_param(access_delay, uint, 0400); |
| module_param(programm_delay, uint, 0400); |
| module_param(erase_delay, uint, 0400); |
| module_param(output_cycle, uint, 0400); |
| module_param(input_cycle, uint, 0400); |
| module_param(bus_width, uint, 0400); |
| module_param(do_delays, uint, 0400); |
| module_param(log, uint, 0400); |
| module_param(dbg, uint, 0400); |
| module_param_array(parts, ulong, &parts_num, 0400); |
| module_param(badblocks, charp, 0400); |
| module_param(weakblocks, charp, 0400); |
| module_param(weakpages, charp, 0400); |
| module_param(bitflips, uint, 0400); |
| module_param(gravepages, charp, 0400); |
| module_param(rptwear, uint, 0400); |
| module_param(overridesize, uint, 0400); |
| module_param(cache_file, charp, 0400); |
| module_param(bbt, uint, 0400); |
| module_param(bch, uint, 0400); |
| |
| MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)"); |
| MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)"); |
| MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command"); |
| MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command"); |
| MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)"); |
| MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds"); |
| MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)"); |
| MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)"); |
| MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)"); |
| MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)"); |
| MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero"); |
| MODULE_PARM_DESC(log, "Perform logging if not zero"); |
| MODULE_PARM_DESC(dbg, "Output debug information if not zero"); |
| MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas"); |
| /* Page and erase block positions for the following parameters are independent of any partitions */ |
| MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas"); |
| MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]" |
| " separated by commas e.g. 113:2 means eb 113" |
| " can be erased only twice before failing"); |
| MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]" |
| " separated by commas e.g. 1401:2 means page 1401" |
| " can be written only twice before failing"); |
| MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)"); |
| MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]" |
| " separated by commas e.g. 1401:2 means page 1401" |
| " can be read only twice before failing"); |
| MODULE_PARM_DESC(rptwear, "Number of erases between reporting wear, if not zero"); |
| MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. " |
| "The size is specified in erase blocks and as the exponent of a power of two" |
| " e.g. 5 means a size of 32 erase blocks"); |
| MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory"); |
| MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area"); |
| MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " |
| "be correctable in 512-byte blocks"); |
| |
| /* The largest possible page size */ |
| #define NS_LARGEST_PAGE_SIZE 4096 |
| |
| /* The prefix for simulator output */ |
| #define NS_OUTPUT_PREFIX "[nandsim]" |
| |
| /* Simulator's output macros (logging, debugging, warning, error) */ |
| #define NS_LOG(args...) \ |
| do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0) |
| #define NS_DBG(args...) \ |
| do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0) |
| #define NS_WARN(args...) \ |
| do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0) |
| #define NS_ERR(args...) \ |
| do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0) |
| #define NS_INFO(args...) \ |
| do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0) |
| |
| /* Busy-wait delay macros (microseconds, milliseconds) */ |
| #define NS_UDELAY(us) \ |
| do { if (do_delays) udelay(us); } while(0) |
| #define NS_MDELAY(us) \ |
| do { if (do_delays) mdelay(us); } while(0) |
| |
| /* Is the nandsim structure initialized ? */ |
| #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0) |
| |
| /* Good operation completion status */ |
| #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0))) |
| |
| /* Operation failed completion status */ |
| #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns)) |
| |
| /* Calculate the page offset in flash RAM image by (row, column) address */ |
| #define NS_RAW_OFFSET(ns) \ |
| (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column) |
| |
| /* Calculate the OOB offset in flash RAM image by (row, column) address */ |
| #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz) |
| |
| /* After a command is input, the simulator goes to one of the following states */ |
| #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */ |
| #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */ |
| #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */ |
| #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */ |
| #define STATE_CMD_READOOB 0x00000005 /* read OOB area */ |
| #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */ |
| #define STATE_CMD_STATUS 0x00000007 /* read status */ |
| #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */ |
| #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */ |
| #define STATE_CMD_READID 0x0000000A /* read ID */ |
| #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */ |
| #define STATE_CMD_RESET 0x0000000C /* reset */ |
| #define STATE_CMD_RNDOUT 0x0000000D /* random output command */ |
| #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */ |
| #define STATE_CMD_MASK 0x0000000F /* command states mask */ |
| |
| /* After an address is input, the simulator goes to one of these states */ |
| #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */ |
| #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */ |
| #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */ |
| #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */ |
| #define STATE_ADDR_MASK 0x00000070 /* address states mask */ |
| |
| /* During data input/output the simulator is in these states */ |
| #define STATE_DATAIN 0x00000100 /* waiting for data input */ |
| #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */ |
| |
| #define STATE_DATAOUT 0x00001000 /* waiting for page data output */ |
| #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */ |
| #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */ |
| #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */ |
| #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */ |
| |
| /* Previous operation is done, ready to accept new requests */ |
| #define STATE_READY 0x00000000 |
| |
| /* This state is used to mark that the next state isn't known yet */ |
| #define STATE_UNKNOWN 0x10000000 |
| |
| /* Simulator's actions bit masks */ |
| #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */ |
| #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */ |
| #define ACTION_SECERASE 0x00300000 /* erase sector */ |
| #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */ |
| #define ACTION_HALFOFF 0x00500000 /* add to address half of page */ |
| #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */ |
| #define ACTION_MASK 0x00700000 /* action mask */ |
| |
| #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */ |
| #define NS_OPER_STATES 6 /* Maximum number of states in operation */ |
| |
| #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */ |
| #define OPT_PAGE256 0x00000001 /* 256-byte page chips */ |
| #define OPT_PAGE512 0x00000002 /* 512-byte page chips */ |
| #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */ |
| #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */ |
| #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */ |
| #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */ |
| #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */ |
| #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */ |
| |
| /* Remove action bits from state */ |
| #define NS_STATE(x) ((x) & ~ACTION_MASK) |
| |
| /* |
| * Maximum previous states which need to be saved. Currently saving is |
| * only needed for page program operation with preceded read command |
| * (which is only valid for 512-byte pages). |
| */ |
| #define NS_MAX_PREVSTATES 1 |
| |
| /* Maximum page cache pages needed to read or write a NAND page to the cache_file */ |
| #define NS_MAX_HELD_PAGES 16 |
| |
| /* |
| * A union to represent flash memory contents and flash buffer. |
| */ |
| union ns_mem { |
| u_char *byte; /* for byte access */ |
| uint16_t *word; /* for 16-bit word access */ |
| }; |
| |
| /* |
| * The structure which describes all the internal simulator data. |
| */ |
| struct nandsim { |
| struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS]; |
| unsigned int nbparts; |
| |
| uint busw; /* flash chip bus width (8 or 16) */ |
| u_char ids[4]; /* chip's ID bytes */ |
| uint32_t options; /* chip's characteristic bits */ |
| uint32_t state; /* current chip state */ |
| uint32_t nxstate; /* next expected state */ |
| |
| uint32_t *op; /* current operation, NULL operations isn't known yet */ |
| uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */ |
| uint16_t npstates; /* number of previous states saved */ |
| uint16_t stateidx; /* current state index */ |
| |
| /* The simulated NAND flash pages array */ |
| union ns_mem *pages; |
| |
| /* Slab allocator for nand pages */ |
| struct kmem_cache *nand_pages_slab; |
| |
| /* Internal buffer of page + OOB size bytes */ |
| union ns_mem buf; |
| |
| /* NAND flash "geometry" */ |
| struct { |
| uint64_t totsz; /* total flash size, bytes */ |
| uint32_t secsz; /* flash sector (erase block) size, bytes */ |
| uint pgsz; /* NAND flash page size, bytes */ |
| uint oobsz; /* page OOB area size, bytes */ |
| uint64_t totszoob; /* total flash size including OOB, bytes */ |
| uint pgszoob; /* page size including OOB , bytes*/ |
| uint secszoob; /* sector size including OOB, bytes */ |
| uint pgnum; /* total number of pages */ |
| uint pgsec; /* number of pages per sector */ |
| uint secshift; /* bits number in sector size */ |
| uint pgshift; /* bits number in page size */ |
| uint oobshift; /* bits number in OOB size */ |
| uint pgaddrbytes; /* bytes per page address */ |
| uint secaddrbytes; /* bytes per sector address */ |
| uint idbytes; /* the number ID bytes that this chip outputs */ |
| } geom; |
| |
| /* NAND flash internal registers */ |
| struct { |
| unsigned command; /* the command register */ |
| u_char status; /* the status register */ |
| uint row; /* the page number */ |
| uint column; /* the offset within page */ |
| uint count; /* internal counter */ |
| uint num; /* number of bytes which must be processed */ |
| uint off; /* fixed page offset */ |
| } regs; |
| |
| /* NAND flash lines state */ |
| struct { |
| int ce; /* chip Enable */ |
| int cle; /* command Latch Enable */ |
| int ale; /* address Latch Enable */ |
| int wp; /* write Protect */ |
| } lines; |
| |
| /* Fields needed when using a cache file */ |
| struct file *cfile; /* Open file */ |
| unsigned char *pages_written; /* Which pages have been written */ |
| void *file_buf; |
| struct page *held_pages[NS_MAX_HELD_PAGES]; |
| int held_cnt; |
| }; |
| |
| /* |
| * Operations array. To perform any operation the simulator must pass |
| * through the correspondent states chain. |
| */ |
| static struct nandsim_operations { |
| uint32_t reqopts; /* options which are required to perform the operation */ |
| uint32_t states[NS_OPER_STATES]; /* operation's states */ |
| } ops[NS_OPER_NUM] = { |
| /* Read page + OOB from the beginning */ |
| {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY, |
| STATE_DATAOUT, STATE_READY}}, |
| /* Read page + OOB from the second half */ |
| {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY, |
| STATE_DATAOUT, STATE_READY}}, |
| /* Read OOB */ |
| {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY, |
| STATE_DATAOUT, STATE_READY}}, |
| /* Program page starting from the beginning */ |
| {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN, |
| STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, |
| /* Program page starting from the beginning */ |
| {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE, |
| STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, |
| /* Program page starting from the second half */ |
| {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE, |
| STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, |
| /* Program OOB */ |
| {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE, |
| STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, |
| /* Erase sector */ |
| {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}}, |
| /* Read status */ |
| {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}}, |
| /* Read multi-plane status */ |
| {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}}, |
| /* Read ID */ |
| {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}}, |
| /* Large page devices read page */ |
| {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY, |
| STATE_DATAOUT, STATE_READY}}, |
| /* Large page devices random page read */ |
| {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY, |
| STATE_DATAOUT, STATE_READY}}, |
| }; |
| |
| struct weak_block { |
| struct list_head list; |
| unsigned int erase_block_no; |
| unsigned int max_erases; |
| unsigned int erases_done; |
| }; |
| |
| static LIST_HEAD(weak_blocks); |
| |
| struct weak_page { |
| struct list_head list; |
| unsigned int page_no; |
| unsigned int max_writes; |
| unsigned int writes_done; |
| }; |
| |
| static LIST_HEAD(weak_pages); |
| |
| struct grave_page { |
| struct list_head list; |
| unsigned int page_no; |
| unsigned int max_reads; |
| unsigned int reads_done; |
| }; |
| |
| static LIST_HEAD(grave_pages); |
| |
| static unsigned long *erase_block_wear = NULL; |
| static unsigned int wear_eb_count = 0; |
| static unsigned long total_wear = 0; |
| static unsigned int rptwear_cnt = 0; |
| |
| /* MTD structure for NAND controller */ |
| static struct mtd_info *nsmtd; |
| |
| static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE]; |
| |
| /* |
| * Allocate array of page pointers, create slab allocation for an array |
| * and initialize the array by NULL pointers. |
| * |
| * RETURNS: 0 if success, -ENOMEM if memory alloc fails. |
| */ |
| static int alloc_device(struct nandsim *ns) |
| { |
| struct file *cfile; |
| int i, err; |
| |
| if (cache_file) { |
| cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600); |
| if (IS_ERR(cfile)) |
| return PTR_ERR(cfile); |
| if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) { |
| NS_ERR("alloc_device: cache file not readable\n"); |
| err = -EINVAL; |
| goto err_close; |
| } |
| if (!cfile->f_op->write && !cfile->f_op->aio_write) { |
| NS_ERR("alloc_device: cache file not writeable\n"); |
| err = -EINVAL; |
| goto err_close; |
| } |
| ns->pages_written = vzalloc(ns->geom.pgnum); |
| if (!ns->pages_written) { |
| NS_ERR("alloc_device: unable to allocate pages written array\n"); |
| err = -ENOMEM; |
| goto err_close; |
| } |
| ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL); |
| if (!ns->file_buf) { |
| NS_ERR("alloc_device: unable to allocate file buf\n"); |
| err = -ENOMEM; |
| goto err_free; |
| } |
| ns->cfile = cfile; |
| return 0; |
| } |
| |
| ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem)); |
| if (!ns->pages) { |
| NS_ERR("alloc_device: unable to allocate page array\n"); |
| return -ENOMEM; |
| } |
| for (i = 0; i < ns->geom.pgnum; i++) { |
| ns->pages[i].byte = NULL; |
| } |
| ns->nand_pages_slab = kmem_cache_create("nandsim", |
| ns->geom.pgszoob, 0, 0, NULL); |
| if (!ns->nand_pages_slab) { |
| NS_ERR("cache_create: unable to create kmem_cache\n"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| |
| err_free: |
| vfree(ns->pages_written); |
| err_close: |
| filp_close(cfile, NULL); |
| return err; |
| } |
| |
| /* |
| * Free any allocated pages, and free the array of page pointers. |
| */ |
| static void free_device(struct nandsim *ns) |
| { |
| int i; |
| |
| if (ns->cfile) { |
| kfree(ns->file_buf); |
| vfree(ns->pages_written); |
| filp_close(ns->cfile, NULL); |
| return; |
| } |
| |
| if (ns->pages) { |
| for (i = 0; i < ns->geom.pgnum; i++) { |
| if (ns->pages[i].byte) |
| kmem_cache_free(ns->nand_pages_slab, |
| ns->pages[i].byte); |
| } |
| kmem_cache_destroy(ns->nand_pages_slab); |
| vfree(ns->pages); |
| } |
| } |
| |
| static char *get_partition_name(int i) |
| { |
| char buf[64]; |
| sprintf(buf, "NAND simulator partition %d", i); |
| return kstrdup(buf, GFP_KERNEL); |
| } |
| |
| static uint64_t divide(uint64_t n, uint32_t d) |
| { |
| do_div(n, d); |
| return n; |
| } |
| |
| /* |
| * Initialize the nandsim structure. |
| * |
| * RETURNS: 0 if success, -ERRNO if failure. |
| */ |
| static int init_nandsim(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct nandsim *ns = chip->priv; |
| int i, ret = 0; |
| uint64_t remains; |
| uint64_t next_offset; |
| |
| if (NS_IS_INITIALIZED(ns)) { |
| NS_ERR("init_nandsim: nandsim is already initialized\n"); |
| return -EIO; |
| } |
| |
| /* Force mtd to not do delays */ |
| chip->chip_delay = 0; |
| |
| /* Initialize the NAND flash parameters */ |
| ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8; |
| ns->geom.totsz = mtd->size; |
| ns->geom.pgsz = mtd->writesize; |
| ns->geom.oobsz = mtd->oobsize; |
| ns->geom.secsz = mtd->erasesize; |
| ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz; |
| ns->geom.pgnum = divide(ns->geom.totsz, ns->geom.pgsz); |
| ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz; |
| ns->geom.secshift = ffs(ns->geom.secsz) - 1; |
| ns->geom.pgshift = chip->page_shift; |
| ns->geom.oobshift = ffs(ns->geom.oobsz) - 1; |
| ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz; |
| ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec; |
| ns->options = 0; |
| |
| if (ns->geom.pgsz == 256) { |
| ns->options |= OPT_PAGE256; |
| } |
| else if (ns->geom.pgsz == 512) { |
| ns->options |= OPT_PAGE512; |
| if (ns->busw == 8) |
| ns->options |= OPT_PAGE512_8BIT; |
| } else if (ns->geom.pgsz == 2048) { |
| ns->options |= OPT_PAGE2048; |
| } else if (ns->geom.pgsz == 4096) { |
| ns->options |= OPT_PAGE4096; |
| } else { |
| NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz); |
| return -EIO; |
| } |
| |
| if (ns->options & OPT_SMALLPAGE) { |
| if (ns->geom.totsz <= (32 << 20)) { |
| ns->geom.pgaddrbytes = 3; |
| ns->geom.secaddrbytes = 2; |
| } else { |
| ns->geom.pgaddrbytes = 4; |
| ns->geom.secaddrbytes = 3; |
| } |
| } else { |
| if (ns->geom.totsz <= (128 << 20)) { |
| ns->geom.pgaddrbytes = 4; |
| ns->geom.secaddrbytes = 2; |
| } else { |
| ns->geom.pgaddrbytes = 5; |
| ns->geom.secaddrbytes = 3; |
| } |
| } |
| |
| /* Fill the partition_info structure */ |
| if (parts_num > ARRAY_SIZE(ns->partitions)) { |
| NS_ERR("too many partitions.\n"); |
| ret = -EINVAL; |
| goto error; |
| } |
| remains = ns->geom.totsz; |
| next_offset = 0; |
| for (i = 0; i < parts_num; ++i) { |
| uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz; |
| |
| if (!part_sz || part_sz > remains) { |
| NS_ERR("bad partition size.\n"); |
| ret = -EINVAL; |
| goto error; |
| } |
| ns->partitions[i].name = get_partition_name(i); |
| ns->partitions[i].offset = next_offset; |
| ns->partitions[i].size = part_sz; |
| next_offset += ns->partitions[i].size; |
| remains -= ns->partitions[i].size; |
| } |
| ns->nbparts = parts_num; |
| if (remains) { |
| if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) { |
| NS_ERR("too many partitions.\n"); |
| ret = -EINVAL; |
| goto error; |
| } |
| ns->partitions[i].name = get_partition_name(i); |
| ns->partitions[i].offset = next_offset; |
| ns->partitions[i].size = remains; |
| ns->nbparts += 1; |
| } |
| |
| /* Detect how many ID bytes the NAND chip outputs */ |
| for (i = 0; nand_flash_ids[i].name != NULL; i++) { |
| if (second_id_byte != nand_flash_ids[i].id) |
| continue; |
| } |
| |
| if (ns->busw == 16) |
| NS_WARN("16-bit flashes support wasn't tested\n"); |
| |
| printk("flash size: %llu MiB\n", |
| (unsigned long long)ns->geom.totsz >> 20); |
| printk("page size: %u bytes\n", ns->geom.pgsz); |
| printk("OOB area size: %u bytes\n", ns->geom.oobsz); |
| printk("sector size: %u KiB\n", ns->geom.secsz >> 10); |
| printk("pages number: %u\n", ns->geom.pgnum); |
| printk("pages per sector: %u\n", ns->geom.pgsec); |
| printk("bus width: %u\n", ns->busw); |
| printk("bits in sector size: %u\n", ns->geom.secshift); |
| printk("bits in page size: %u\n", ns->geom.pgshift); |
| printk("bits in OOB size: %u\n", ns->geom.oobshift); |
| printk("flash size with OOB: %llu KiB\n", |
| (unsigned long long)ns->geom.totszoob >> 10); |
| printk("page address bytes: %u\n", ns->geom.pgaddrbytes); |
| printk("sector address bytes: %u\n", ns->geom.secaddrbytes); |
| printk("options: %#x\n", ns->options); |
| |
| if ((ret = alloc_device(ns)) != 0) |
| goto error; |
| |
| /* Allocate / initialize the internal buffer */ |
| ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL); |
| if (!ns->buf.byte) { |
| NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n", |
| ns->geom.pgszoob); |
| ret = -ENOMEM; |
| goto error; |
| } |
| memset(ns->buf.byte, 0xFF, ns->geom.pgszoob); |
| |
| return 0; |
| |
| error: |
| free_device(ns); |
| |
| return ret; |
| } |
| |
| /* |
| * Free the nandsim structure. |
| */ |
| static void free_nandsim(struct nandsim *ns) |
| { |
| kfree(ns->buf.byte); |
| free_device(ns); |
| |
| return; |
| } |
| |
| static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd) |
| { |
| char *w; |
| int zero_ok; |
| unsigned int erase_block_no; |
| loff_t offset; |
| |
| if (!badblocks) |
| return 0; |
| w = badblocks; |
| do { |
| zero_ok = (*w == '0' ? 1 : 0); |
| erase_block_no = simple_strtoul(w, &w, 0); |
| if (!zero_ok && !erase_block_no) { |
| NS_ERR("invalid badblocks.\n"); |
| return -EINVAL; |
| } |
| offset = erase_block_no * ns->geom.secsz; |
| if (mtd_block_markbad(mtd, offset)) { |
| NS_ERR("invalid badblocks.\n"); |
| return -EINVAL; |
| } |
| if (*w == ',') |
| w += 1; |
| } while (*w); |
| return 0; |
| } |
| |
| static int parse_weakblocks(void) |
| { |
| char *w; |
| int zero_ok; |
| unsigned int erase_block_no; |
| unsigned int max_erases; |
| struct weak_block *wb; |
| |
| if (!weakblocks) |
| return 0; |
| w = weakblocks; |
| do { |
| zero_ok = (*w == '0' ? 1 : 0); |
| erase_block_no = simple_strtoul(w, &w, 0); |
| if (!zero_ok && !erase_block_no) { |
| NS_ERR("invalid weakblocks.\n"); |
| return -EINVAL; |
| } |
| max_erases = 3; |
| if (*w == ':') { |
| w += 1; |
| max_erases = simple_strtoul(w, &w, 0); |
| } |
| if (*w == ',') |
| w += 1; |
| wb = kzalloc(sizeof(*wb), GFP_KERNEL); |
| if (!wb) { |
| NS_ERR("unable to allocate memory.\n"); |
| return -ENOMEM; |
| } |
| wb->erase_block_no = erase_block_no; |
| wb->max_erases = max_erases; |
| list_add(&wb->list, &weak_blocks); |
| } while (*w); |
| return 0; |
| } |
| |
| static int erase_error(unsigned int erase_block_no) |
| { |
| struct weak_block *wb; |
| |
| list_for_each_entry(wb, &weak_blocks, list) |
| if (wb->erase_block_no == erase_block_no) { |
| if (wb->erases_done >= wb->max_erases) |
| return 1; |
| wb->erases_done += 1; |
| return 0; |
| } |
| return 0; |
| } |
| |
| static int parse_weakpages(void) |
| { |
| char *w; |
| int zero_ok; |
| unsigned int page_no; |
| unsigned int max_writes; |
| struct weak_page *wp; |
| |
| if (!weakpages) |
| return 0; |
| w = weakpages; |
| do { |
| zero_ok = (*w == '0' ? 1 : 0); |
| page_no = simple_strtoul(w, &w, 0); |
| if (!zero_ok && !page_no) { |
| NS_ERR("invalid weakpagess.\n"); |
| return -EINVAL; |
| } |
| max_writes = 3; |
| if (*w == ':') { |
| w += 1; |
| max_writes = simple_strtoul(w, &w, 0); |
| } |
| if (*w == ',') |
| w += 1; |
| wp = kzalloc(sizeof(*wp), GFP_KERNEL); |
| if (!wp) { |
| NS_ERR("unable to allocate memory.\n"); |
| return -ENOMEM; |
| } |
| wp->page_no = page_no; |
| wp->max_writes = max_writes; |
| list_add(&wp->list, &weak_pages); |
| } while (*w); |
| return 0; |
| } |
| |
| static int write_error(unsigned int page_no) |
| { |
| struct weak_page *wp; |
| |
| list_for_each_entry(wp, &weak_pages, list) |
| if (wp->page_no == page_no) { |
| if (wp->writes_done >= wp->max_writes) |
| return 1; |
| wp->writes_done += 1; |
| return 0; |
| } |
| return 0; |
| } |
| |
| static int parse_gravepages(void) |
| { |
| char *g; |
| int zero_ok; |
| unsigned int page_no; |
| unsigned int max_reads; |
| struct grave_page *gp; |
| |
| if (!gravepages) |
| return 0; |
| g = gravepages; |
| do { |
| zero_ok = (*g == '0' ? 1 : 0); |
| page_no = simple_strtoul(g, &g, 0); |
| if (!zero_ok && !page_no) { |
| NS_ERR("invalid gravepagess.\n"); |
| return -EINVAL; |
| } |
| max_reads = 3; |
| if (*g == ':') { |
| g += 1; |
| max_reads = simple_strtoul(g, &g, 0); |
| } |
| if (*g == ',') |
| g += 1; |
| gp = kzalloc(sizeof(*gp), GFP_KERNEL); |
| if (!gp) { |
| NS_ERR("unable to allocate memory.\n"); |
| return -ENOMEM; |
| } |
| gp->page_no = page_no; |
| gp->max_reads = max_reads; |
| list_add(&gp->list, &grave_pages); |
| } while (*g); |
| return 0; |
| } |
| |
| static int read_error(unsigned int page_no) |
| { |
| struct grave_page *gp; |
| |
| list_for_each_entry(gp, &grave_pages, list) |
| if (gp->page_no == page_no) { |
| if (gp->reads_done >= gp->max_reads) |
| return 1; |
| gp->reads_done += 1; |
| return 0; |
| } |
| return 0; |
| } |
| |
| static void free_lists(void) |
| { |
| struct list_head *pos, *n; |
| list_for_each_safe(pos, n, &weak_blocks) { |
| list_del(pos); |
| kfree(list_entry(pos, struct weak_block, list)); |
| } |
| list_for_each_safe(pos, n, &weak_pages) { |
| list_del(pos); |
| kfree(list_entry(pos, struct weak_page, list)); |
| } |
| list_for_each_safe(pos, n, &grave_pages) { |
| list_del(pos); |
| kfree(list_entry(pos, struct grave_page, list)); |
| } |
| kfree(erase_block_wear); |
| } |
| |
| static int setup_wear_reporting(struct mtd_info *mtd) |
| { |
| size_t mem; |
| |
| if (!rptwear) |
| return 0; |
| wear_eb_count = divide(mtd->size, mtd->erasesize); |
| mem = wear_eb_count * sizeof(unsigned long); |
| if (mem / sizeof(unsigned long) != wear_eb_count) { |
| NS_ERR("Too many erase blocks for wear reporting\n"); |
| return -ENOMEM; |
| } |
| erase_block_wear = kzalloc(mem, GFP_KERNEL); |
| if (!erase_block_wear) { |
| NS_ERR("Too many erase blocks for wear reporting\n"); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static void update_wear(unsigned int erase_block_no) |
| { |
| unsigned long wmin = -1, wmax = 0, avg; |
| unsigned long deciles[10], decile_max[10], tot = 0; |
| unsigned int i; |
| |
| if (!erase_block_wear) |
| return; |
| total_wear += 1; |
| if (total_wear == 0) |
| NS_ERR("Erase counter total overflow\n"); |
| erase_block_wear[erase_block_no] += 1; |
| if (erase_block_wear[erase_block_no] == 0) |
| NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no); |
| rptwear_cnt += 1; |
| if (rptwear_cnt < rptwear) |
| return; |
| rptwear_cnt = 0; |
| /* Calc wear stats */ |
| for (i = 0; i < wear_eb_count; ++i) { |
| unsigned long wear = erase_block_wear[i]; |
| if (wear < wmin) |
| wmin = wear; |
| if (wear > wmax) |
| wmax = wear; |
| tot += wear; |
| } |
| for (i = 0; i < 9; ++i) { |
| deciles[i] = 0; |
| decile_max[i] = (wmax * (i + 1) + 5) / 10; |
| } |
| deciles[9] = 0; |
| decile_max[9] = wmax; |
| for (i = 0; i < wear_eb_count; ++i) { |
| int d; |
| unsigned long wear = erase_block_wear[i]; |
| for (d = 0; d < 10; ++d) |
| if (wear <= decile_max[d]) { |
| deciles[d] += 1; |
| break; |
| } |
| } |
| avg = tot / wear_eb_count; |
| /* Output wear report */ |
| NS_INFO("*** Wear Report ***\n"); |
| NS_INFO("Total numbers of erases: %lu\n", tot); |
| NS_INFO("Number of erase blocks: %u\n", wear_eb_count); |
| NS_INFO("Average number of erases: %lu\n", avg); |
| NS_INFO("Maximum number of erases: %lu\n", wmax); |
| NS_INFO("Minimum number of erases: %lu\n", wmin); |
| for (i = 0; i < 10; ++i) { |
| unsigned long from = (i ? decile_max[i - 1] + 1 : 0); |
| if (from > decile_max[i]) |
| continue; |
| NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n", |
| from, |
| decile_max[i], |
| deciles[i]); |
| } |
| NS_INFO("*** End of Wear Report ***\n"); |
| } |
| |
| /* |
| * Returns the string representation of 'state' state. |
| */ |
| static char *get_state_name(uint32_t state) |
| { |
| switch (NS_STATE(state)) { |
| case STATE_CMD_READ0: |
| return "STATE_CMD_READ0"; |
| case STATE_CMD_READ1: |
| return "STATE_CMD_READ1"; |
| case STATE_CMD_PAGEPROG: |
| return "STATE_CMD_PAGEPROG"; |
| case STATE_CMD_READOOB: |
| return "STATE_CMD_READOOB"; |
| case STATE_CMD_READSTART: |
| return "STATE_CMD_READSTART"; |
| case STATE_CMD_ERASE1: |
| return "STATE_CMD_ERASE1"; |
| case STATE_CMD_STATUS: |
| return "STATE_CMD_STATUS"; |
| case STATE_CMD_STATUS_M: |
| return "STATE_CMD_STATUS_M"; |
| case STATE_CMD_SEQIN: |
| return "STATE_CMD_SEQIN"; |
| case STATE_CMD_READID: |
| return "STATE_CMD_READID"; |
| case STATE_CMD_ERASE2: |
| return "STATE_CMD_ERASE2"; |
| case STATE_CMD_RESET: |
| return "STATE_CMD_RESET"; |
| case STATE_CMD_RNDOUT: |
| return "STATE_CMD_RNDOUT"; |
| case STATE_CMD_RNDOUTSTART: |
| return "STATE_CMD_RNDOUTSTART"; |
| case STATE_ADDR_PAGE: |
| return "STATE_ADDR_PAGE"; |
| case STATE_ADDR_SEC: |
| return "STATE_ADDR_SEC"; |
| case STATE_ADDR_ZERO: |
| return "STATE_ADDR_ZERO"; |
| case STATE_ADDR_COLUMN: |
| return "STATE_ADDR_COLUMN"; |
| case STATE_DATAIN: |
| return "STATE_DATAIN"; |
| case STATE_DATAOUT: |
| return "STATE_DATAOUT"; |
| case STATE_DATAOUT_ID: |
| return "STATE_DATAOUT_ID"; |
| case STATE_DATAOUT_STATUS: |
| return "STATE_DATAOUT_STATUS"; |
| case STATE_DATAOUT_STATUS_M: |
| return "STATE_DATAOUT_STATUS_M"; |
| case STATE_READY: |
| return "STATE_READY"; |
| case STATE_UNKNOWN: |
| return "STATE_UNKNOWN"; |
| } |
| |
| NS_ERR("get_state_name: unknown state, BUG\n"); |
| return NULL; |
| } |
| |
| /* |
| * Check if command is valid. |
| * |
| * RETURNS: 1 if wrong command, 0 if right. |
| */ |
| static int check_command(int cmd) |
| { |
| switch (cmd) { |
| |
| case NAND_CMD_READ0: |
| case NAND_CMD_READ1: |
| case NAND_CMD_READSTART: |
| case NAND_CMD_PAGEPROG: |
| case NAND_CMD_READOOB: |
| case NAND_CMD_ERASE1: |
| case NAND_CMD_STATUS: |
| case NAND_CMD_SEQIN: |
| case NAND_CMD_READID: |
| case NAND_CMD_ERASE2: |
| case NAND_CMD_RESET: |
| case NAND_CMD_RNDOUT: |
| case NAND_CMD_RNDOUTSTART: |
| return 0; |
| |
| case NAND_CMD_STATUS_MULTI: |
| default: |
| return 1; |
| } |
| } |
| |
| /* |
| * Returns state after command is accepted by command number. |
| */ |
| static uint32_t get_state_by_command(unsigned command) |
| { |
| switch (command) { |
| case NAND_CMD_READ0: |
| return STATE_CMD_READ0; |
| case NAND_CMD_READ1: |
| return STATE_CMD_READ1; |
| case NAND_CMD_PAGEPROG: |
| return STATE_CMD_PAGEPROG; |
| case NAND_CMD_READSTART: |
| return STATE_CMD_READSTART; |
| case NAND_CMD_READOOB: |
| return STATE_CMD_READOOB; |
| case NAND_CMD_ERASE1: |
| return STATE_CMD_ERASE1; |
| case NAND_CMD_STATUS: |
| return STATE_CMD_STATUS; |
| case NAND_CMD_STATUS_MULTI: |
| return STATE_CMD_STATUS_M; |
| case NAND_CMD_SEQIN: |
| return STATE_CMD_SEQIN; |
| case NAND_CMD_READID: |
| return STATE_CMD_READID; |
| case NAND_CMD_ERASE2: |
| return STATE_CMD_ERASE2; |
| case NAND_CMD_RESET: |
| return STATE_CMD_RESET; |
| case NAND_CMD_RNDOUT: |
| return STATE_CMD_RNDOUT; |
| case NAND_CMD_RNDOUTSTART: |
| return STATE_CMD_RNDOUTSTART; |
| } |
| |
| NS_ERR("get_state_by_command: unknown command, BUG\n"); |
| return 0; |
| } |
| |
| /* |
| * Move an address byte to the correspondent internal register. |
| */ |
| static inline void accept_addr_byte(struct nandsim *ns, u_char bt) |
| { |
| uint byte = (uint)bt; |
| |
| if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) |
| ns->regs.column |= (byte << 8 * ns->regs.count); |
| else { |
| ns->regs.row |= (byte << 8 * (ns->regs.count - |
| ns->geom.pgaddrbytes + |
| ns->geom.secaddrbytes)); |
| } |
| |
| return; |
| } |
| |
| /* |
| * Switch to STATE_READY state. |
| */ |
| static inline void switch_to_ready_state(struct nandsim *ns, u_char status) |
| { |
| NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY)); |
| |
| ns->state = STATE_READY; |
| ns->nxstate = STATE_UNKNOWN; |
| ns->op = NULL; |
| ns->npstates = 0; |
| ns->stateidx = 0; |
| ns->regs.num = 0; |
| ns->regs.count = 0; |
| ns->regs.off = 0; |
| ns->regs.row = 0; |
| ns->regs.column = 0; |
| ns->regs.status = status; |
| } |
| |
| /* |
| * If the operation isn't known yet, try to find it in the global array |
| * of supported operations. |
| * |
| * Operation can be unknown because of the following. |
| * 1. New command was accepted and this is the first call to find the |
| * correspondent states chain. In this case ns->npstates = 0; |
| * 2. There are several operations which begin with the same command(s) |
| * (for example program from the second half and read from the |
| * second half operations both begin with the READ1 command). In this |
| * case the ns->pstates[] array contains previous states. |
| * |
| * Thus, the function tries to find operation containing the following |
| * states (if the 'flag' parameter is 0): |
| * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state |
| * |
| * If (one and only one) matching operation is found, it is accepted ( |
| * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is |
| * zeroed). |
| * |
| * If there are several matches, the current state is pushed to the |
| * ns->pstates. |
| * |
| * The operation can be unknown only while commands are input to the chip. |
| * As soon as address command is accepted, the operation must be known. |
| * In such situation the function is called with 'flag' != 0, and the |
| * operation is searched using the following pattern: |
| * ns->pstates[0], ... ns->pstates[ns->npstates], <address input> |
| * |
| * It is supposed that this pattern must either match one operation or |
| * none. There can't be ambiguity in that case. |
| * |
| * If no matches found, the function does the following: |
| * 1. if there are saved states present, try to ignore them and search |
| * again only using the last command. If nothing was found, switch |
| * to the STATE_READY state. |
| * 2. if there are no saved states, switch to the STATE_READY state. |
| * |
| * RETURNS: -2 - no matched operations found. |
| * -1 - several matches. |
| * 0 - operation is found. |
| */ |
| static int find_operation(struct nandsim *ns, uint32_t flag) |
| { |
| int opsfound = 0; |
| int i, j, idx = 0; |
| |
| for (i = 0; i < NS_OPER_NUM; i++) { |
| |
| int found = 1; |
| |
| if (!(ns->options & ops[i].reqopts)) |
| /* Ignore operations we can't perform */ |
| continue; |
| |
| if (flag) { |
| if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK)) |
| continue; |
| } else { |
| if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates])) |
| continue; |
| } |
| |
| for (j = 0; j < ns->npstates; j++) |
| if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j]) |
| && (ns->options & ops[idx].reqopts)) { |
| found = 0; |
| break; |
| } |
| |
| if (found) { |
| idx = i; |
| opsfound += 1; |
| } |
| } |
| |
| if (opsfound == 1) { |
| /* Exact match */ |
| ns->op = &ops[idx].states[0]; |
| if (flag) { |
| /* |
| * In this case the find_operation function was |
| * called when address has just began input. But it isn't |
| * yet fully input and the current state must |
| * not be one of STATE_ADDR_*, but the STATE_ADDR_* |
| * state must be the next state (ns->nxstate). |
| */ |
| ns->stateidx = ns->npstates - 1; |
| } else { |
| ns->stateidx = ns->npstates; |
| } |
| ns->npstates = 0; |
| ns->state = ns->op[ns->stateidx]; |
| ns->nxstate = ns->op[ns->stateidx + 1]; |
| NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n", |
| idx, get_state_name(ns->state), get_state_name(ns->nxstate)); |
| return 0; |
| } |
| |
| if (opsfound == 0) { |
| /* Nothing was found. Try to ignore previous commands (if any) and search again */ |
| if (ns->npstates != 0) { |
| NS_DBG("find_operation: no operation found, try again with state %s\n", |
| get_state_name(ns->state)); |
| ns->npstates = 0; |
| return find_operation(ns, 0); |
| |
| } |
| NS_DBG("find_operation: no operations found\n"); |
| switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| return -2; |
| } |
| |
| if (flag) { |
| /* This shouldn't happen */ |
| NS_DBG("find_operation: BUG, operation must be known if address is input\n"); |
| return -2; |
| } |
| |
| NS_DBG("find_operation: there is still ambiguity\n"); |
| |
| ns->pstates[ns->npstates++] = ns->state; |
| |
| return -1; |
| } |
| |
| static void put_pages(struct nandsim *ns) |
| { |
| int i; |
| |
| for (i = 0; i < ns->held_cnt; i++) |
| page_cache_release(ns->held_pages[i]); |
| } |
| |
| /* Get page cache pages in advance to provide NOFS memory allocation */ |
| static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos) |
| { |
| pgoff_t index, start_index, end_index; |
| struct page *page; |
| struct address_space *mapping = file->f_mapping; |
| |
| start_index = pos >> PAGE_CACHE_SHIFT; |
| end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT; |
| if (end_index - start_index + 1 > NS_MAX_HELD_PAGES) |
| return -EINVAL; |
| ns->held_cnt = 0; |
| for (index = start_index; index <= end_index; index++) { |
| page = find_get_page(mapping, index); |
| if (page == NULL) { |
| page = find_or_create_page(mapping, index, GFP_NOFS); |
| if (page == NULL) { |
| write_inode_now(mapping->host, 1); |
| page = find_or_create_page(mapping, index, GFP_NOFS); |
| } |
| if (page == NULL) { |
| put_pages(ns); |
| return -ENOMEM; |
| } |
| unlock_page(page); |
| } |
| ns->held_pages[ns->held_cnt++] = page; |
| } |
| return 0; |
| } |
| |
| static int set_memalloc(void) |
| { |
| if (current->flags & PF_MEMALLOC) |
| return 0; |
| current->flags |= PF_MEMALLOC; |
| return 1; |
| } |
| |
| static void clear_memalloc(int memalloc) |
| { |
| if (memalloc) |
| current->flags &= ~PF_MEMALLOC; |
| } |
| |
| static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos) |
| { |
| mm_segment_t old_fs; |
| ssize_t tx; |
| int err, memalloc; |
| |
| err = get_pages(ns, file, count, *pos); |
| if (err) |
| return err; |
| old_fs = get_fs(); |
| set_fs(get_ds()); |
| memalloc = set_memalloc(); |
| tx = vfs_read(file, (char __user *)buf, count, pos); |
| clear_memalloc(memalloc); |
| set_fs(old_fs); |
| put_pages(ns); |
| return tx; |
| } |
| |
| static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos) |
| { |
| mm_segment_t old_fs; |
| ssize_t tx; |
| int err, memalloc; |
| |
| err = get_pages(ns, file, count, *pos); |
| if (err) |
| return err; |
| old_fs = get_fs(); |
| set_fs(get_ds()); |
| memalloc = set_memalloc(); |
| tx = vfs_write(file, (char __user *)buf, count, pos); |
| clear_memalloc(memalloc); |
| set_fs(old_fs); |
| put_pages(ns); |
| return tx; |
| } |
| |
| /* |
| * Returns a pointer to the current page. |
| */ |
| static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns) |
| { |
| return &(ns->pages[ns->regs.row]); |
| } |
| |
| /* |
| * Retuns a pointer to the current byte, within the current page. |
| */ |
| static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns) |
| { |
| return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off; |
| } |
| |
| int do_read_error(struct nandsim *ns, int num) |
| { |
| unsigned int page_no = ns->regs.row; |
| |
| if (read_error(page_no)) { |
| int i; |
| memset(ns->buf.byte, 0xFF, num); |
| for (i = 0; i < num; ++i) |
| ns->buf.byte[i] = random32(); |
| NS_WARN("simulating read error in page %u\n", page_no); |
| return 1; |
| } |
| return 0; |
| } |
| |
| void do_bit_flips(struct nandsim *ns, int num) |
| { |
| if (bitflips && random32() < (1 << 22)) { |
| int flips = 1; |
| if (bitflips > 1) |
| flips = (random32() % (int) bitflips) + 1; |
| while (flips--) { |
| int pos = random32() % (num * 8); |
| ns->buf.byte[pos / 8] ^= (1 << (pos % 8)); |
| NS_WARN("read_page: flipping bit %d in page %d " |
| "reading from %d ecc: corrected=%u failed=%u\n", |
| pos, ns->regs.row, ns->regs.column + ns->regs.off, |
| nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed); |
| } |
| } |
| } |
| |
| /* |
| * Fill the NAND buffer with data read from the specified page. |
| */ |
| static void read_page(struct nandsim *ns, int num) |
| { |
| union ns_mem *mypage; |
| |
| if (ns->cfile) { |
| if (!ns->pages_written[ns->regs.row]) { |
| NS_DBG("read_page: page %d not written\n", ns->regs.row); |
| memset(ns->buf.byte, 0xFF, num); |
| } else { |
| loff_t pos; |
| ssize_t tx; |
| |
| NS_DBG("read_page: page %d written, reading from %d\n", |
| ns->regs.row, ns->regs.column + ns->regs.off); |
| if (do_read_error(ns, num)) |
| return; |
| pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off; |
| tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos); |
| if (tx != num) { |
| NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); |
| return; |
| } |
| do_bit_flips(ns, num); |
| } |
| return; |
| } |
| |
| mypage = NS_GET_PAGE(ns); |
| if (mypage->byte == NULL) { |
| NS_DBG("read_page: page %d not allocated\n", ns->regs.row); |
| memset(ns->buf.byte, 0xFF, num); |
| } else { |
| NS_DBG("read_page: page %d allocated, reading from %d\n", |
| ns->regs.row, ns->regs.column + ns->regs.off); |
| if (do_read_error(ns, num)) |
| return; |
| memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num); |
| do_bit_flips(ns, num); |
| } |
| } |
| |
| /* |
| * Erase all pages in the specified sector. |
| */ |
| static void erase_sector(struct nandsim *ns) |
| { |
| union ns_mem *mypage; |
| int i; |
| |
| if (ns->cfile) { |
| for (i = 0; i < ns->geom.pgsec; i++) |
| if (ns->pages_written[ns->regs.row + i]) { |
| NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i); |
| ns->pages_written[ns->regs.row + i] = 0; |
| } |
| return; |
| } |
| |
| mypage = NS_GET_PAGE(ns); |
| for (i = 0; i < ns->geom.pgsec; i++) { |
| if (mypage->byte != NULL) { |
| NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i); |
| kmem_cache_free(ns->nand_pages_slab, mypage->byte); |
| mypage->byte = NULL; |
| } |
| mypage++; |
| } |
| } |
| |
| /* |
| * Program the specified page with the contents from the NAND buffer. |
| */ |
| static int prog_page(struct nandsim *ns, int num) |
| { |
| int i; |
| union ns_mem *mypage; |
| u_char *pg_off; |
| |
| if (ns->cfile) { |
| loff_t off, pos; |
| ssize_t tx; |
| int all; |
| |
| NS_DBG("prog_page: writing page %d\n", ns->regs.row); |
| pg_off = ns->file_buf + ns->regs.column + ns->regs.off; |
| off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off; |
| if (!ns->pages_written[ns->regs.row]) { |
| all = 1; |
| memset(ns->file_buf, 0xff, ns->geom.pgszoob); |
| } else { |
| all = 0; |
| pos = off; |
| tx = read_file(ns, ns->cfile, pg_off, num, &pos); |
| if (tx != num) { |
| NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); |
| return -1; |
| } |
| } |
| for (i = 0; i < num; i++) |
| pg_off[i] &= ns->buf.byte[i]; |
| if (all) { |
| pos = (loff_t)ns->regs.row * ns->geom.pgszoob; |
| tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos); |
| if (tx != ns->geom.pgszoob) { |
| NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); |
| return -1; |
| } |
| ns->pages_written[ns->regs.row] = 1; |
| } else { |
| pos = off; |
| tx = write_file(ns, ns->cfile, pg_off, num, &pos); |
| if (tx != num) { |
| NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| mypage = NS_GET_PAGE(ns); |
| if (mypage->byte == NULL) { |
| NS_DBG("prog_page: allocating page %d\n", ns->regs.row); |
| /* |
| * We allocate memory with GFP_NOFS because a flash FS may |
| * utilize this. If it is holding an FS lock, then gets here, |
| * then kernel memory alloc runs writeback which goes to the FS |
| * again and deadlocks. This was seen in practice. |
| */ |
| mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS); |
| if (mypage->byte == NULL) { |
| NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row); |
| return -1; |
| } |
| memset(mypage->byte, 0xFF, ns->geom.pgszoob); |
| } |
| |
| pg_off = NS_PAGE_BYTE_OFF(ns); |
| for (i = 0; i < num; i++) |
| pg_off[i] &= ns->buf.byte[i]; |
| |
| return 0; |
| } |
| |
| /* |
| * If state has any action bit, perform this action. |
| * |
| * RETURNS: 0 if success, -1 if error. |
| */ |
| static int do_state_action(struct nandsim *ns, uint32_t action) |
| { |
| int num; |
| int busdiv = ns->busw == 8 ? 1 : 2; |
| unsigned int erase_block_no, page_no; |
| |
| action &= ACTION_MASK; |
| |
| /* Check that page address input is correct */ |
| if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) { |
| NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row); |
| return -1; |
| } |
| |
| switch (action) { |
| |
| case ACTION_CPY: |
| /* |
| * Copy page data to the internal buffer. |
| */ |
| |
| /* Column shouldn't be very large */ |
| if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) { |
| NS_ERR("do_state_action: column number is too large\n"); |
| break; |
| } |
| num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; |
| read_page(ns, num); |
| |
| NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n", |
| num, NS_RAW_OFFSET(ns) + ns->regs.off); |
| |
| if (ns->regs.off == 0) |
| NS_LOG("read page %d\n", ns->regs.row); |
| else if (ns->regs.off < ns->geom.pgsz) |
| NS_LOG("read page %d (second half)\n", ns->regs.row); |
| else |
| NS_LOG("read OOB of page %d\n", ns->regs.row); |
| |
| NS_UDELAY(access_delay); |
| NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv); |
| |
| break; |
| |
| case ACTION_SECERASE: |
| /* |
| * Erase sector. |
| */ |
| |
| if (ns->lines.wp) { |
| NS_ERR("do_state_action: device is write-protected, ignore sector erase\n"); |
| return -1; |
| } |
| |
| if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec |
| || (ns->regs.row & ~(ns->geom.secsz - 1))) { |
| NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row); |
| return -1; |
| } |
| |
| ns->regs.row = (ns->regs.row << |
| 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column; |
| ns->regs.column = 0; |
| |
| erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift); |
| |
| NS_DBG("do_state_action: erase sector at address %#x, off = %d\n", |
| ns->regs.row, NS_RAW_OFFSET(ns)); |
| NS_LOG("erase sector %u\n", erase_block_no); |
| |
| erase_sector(ns); |
| |
| NS_MDELAY(erase_delay); |
| |
| if (erase_block_wear) |
| update_wear(erase_block_no); |
| |
| if (erase_error(erase_block_no)) { |
| NS_WARN("simulating erase failure in erase block %u\n", erase_block_no); |
| return -1; |
| } |
| |
| break; |
| |
| case ACTION_PRGPAGE: |
| /* |
| * Program page - move internal buffer data to the page. |
| */ |
| |
| if (ns->lines.wp) { |
| NS_WARN("do_state_action: device is write-protected, programm\n"); |
| return -1; |
| } |
| |
| num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; |
| if (num != ns->regs.count) { |
| NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n", |
| ns->regs.count, num); |
| return -1; |
| } |
| |
| if (prog_page(ns, num) == -1) |
| return -1; |
| |
| page_no = ns->regs.row; |
| |
| NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n", |
| num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off); |
| NS_LOG("programm page %d\n", ns->regs.row); |
| |
| NS_UDELAY(programm_delay); |
| NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv); |
| |
| if (write_error(page_no)) { |
| NS_WARN("simulating write failure in page %u\n", page_no); |
| return -1; |
| } |
| |
| break; |
| |
| case ACTION_ZEROOFF: |
| NS_DBG("do_state_action: set internal offset to 0\n"); |
| ns->regs.off = 0; |
| break; |
| |
| case ACTION_HALFOFF: |
| if (!(ns->options & OPT_PAGE512_8BIT)) { |
| NS_ERR("do_state_action: BUG! can't skip half of page for non-512" |
| "byte page size 8x chips\n"); |
| return -1; |
| } |
| NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2); |
| ns->regs.off = ns->geom.pgsz/2; |
| break; |
| |
| case ACTION_OOBOFF: |
| NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz); |
| ns->regs.off = ns->geom.pgsz; |
| break; |
| |
| default: |
| NS_DBG("do_state_action: BUG! unknown action\n"); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Switch simulator's state. |
| */ |
| static void switch_state(struct nandsim *ns) |
| { |
| if (ns->op) { |
| /* |
| * The current operation have already been identified. |
| * Just follow the states chain. |
| */ |
| |
| ns->stateidx += 1; |
| ns->state = ns->nxstate; |
| ns->nxstate = ns->op[ns->stateidx + 1]; |
| |
| NS_DBG("switch_state: operation is known, switch to the next state, " |
| "state: %s, nxstate: %s\n", |
| get_state_name(ns->state), get_state_name(ns->nxstate)); |
| |
| /* See, whether we need to do some action */ |
| if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { |
| switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| return; |
| } |
| |
| } else { |
| /* |
| * We don't yet know which operation we perform. |
| * Try to identify it. |
| */ |
| |
| /* |
| * The only event causing the switch_state function to |
| * be called with yet unknown operation is new command. |
| */ |
| ns->state = get_state_by_command(ns->regs.command); |
| |
| NS_DBG("switch_state: operation is unknown, try to find it\n"); |
| |
| if (find_operation(ns, 0) != 0) |
| return; |
| |
| if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { |
| switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| return; |
| } |
| } |
| |
| /* For 16x devices column means the page offset in words */ |
| if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) { |
| NS_DBG("switch_state: double the column number for 16x device\n"); |
| ns->regs.column <<= 1; |
| } |
| |
| if (NS_STATE(ns->nxstate) == STATE_READY) { |
| /* |
| * The current state is the last. Return to STATE_READY |
| */ |
| |
| u_char status = NS_STATUS_OK(ns); |
| |
| /* In case of data states, see if all bytes were input/output */ |
| if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) |
| && ns->regs.count != ns->regs.num) { |
| NS_WARN("switch_state: not all bytes were processed, %d left\n", |
| ns->regs.num - ns->regs.count); |
| status = NS_STATUS_FAILED(ns); |
| } |
| |
| NS_DBG("switch_state: operation complete, switch to STATE_READY state\n"); |
| |
| switch_to_ready_state(ns, status); |
| |
| return; |
| } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) { |
| /* |
| * If the next state is data input/output, switch to it now |
| */ |
| |
| ns->state = ns->nxstate; |
| ns->nxstate = ns->op[++ns->stateidx + 1]; |
| ns->regs.num = ns->regs.count = 0; |
| |
| NS_DBG("switch_state: the next state is data I/O, switch, " |
| "state: %s, nxstate: %s\n", |
| get_state_name(ns->state), get_state_name(ns->nxstate)); |
| |
| /* |
| * Set the internal register to the count of bytes which |
| * are expected to be input or output |
| */ |
| switch (NS_STATE(ns->state)) { |
| case STATE_DATAIN: |
| case STATE_DATAOUT: |
| ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; |
| break; |
| |
| case STATE_DATAOUT_ID: |
| ns->regs.num = ns->geom.idbytes; |
| break; |
| |
| case STATE_DATAOUT_STATUS: |
| case STATE_DATAOUT_STATUS_M: |
| ns->regs.count = ns->regs.num = 0; |
| break; |
| |
| default: |
| NS_ERR("switch_state: BUG! unknown data state\n"); |
| } |
| |
| } else if (ns->nxstate & STATE_ADDR_MASK) { |
| /* |
| * If the next state is address input, set the internal |
| * register to the number of expected address bytes |
| */ |
| |
| ns->regs.count = 0; |
| |
| switch (NS_STATE(ns->nxstate)) { |
| case STATE_ADDR_PAGE: |
| ns->regs.num = ns->geom.pgaddrbytes; |
| |
| break; |
| case STATE_ADDR_SEC: |
| ns->regs.num = ns->geom.secaddrbytes; |
| break; |
| |
| case STATE_ADDR_ZERO: |
| ns->regs.num = 1; |
| break; |
| |
| case STATE_ADDR_COLUMN: |
| /* Column address is always 2 bytes */ |
| ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes; |
| break; |
| |
| default: |
| NS_ERR("switch_state: BUG! unknown address state\n"); |
| } |
| } else { |
| /* |
| * Just reset internal counters. |
| */ |
| |
| ns->regs.num = 0; |
| ns->regs.count = 0; |
| } |
| } |
| |
| static u_char ns_nand_read_byte(struct mtd_info *mtd) |
| { |
| struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; |
| u_char outb = 0x00; |
| |
| /* Sanity and correctness checks */ |
| if (!ns->lines.ce) { |
| NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb); |
| return outb; |
| } |
| if (ns->lines.ale || ns->lines.cle) { |
| NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb); |
| return outb; |
| } |
| if (!(ns->state & STATE_DATAOUT_MASK)) { |
| NS_WARN("read_byte: unexpected data output cycle, state is %s " |
| "return %#x\n", get_state_name(ns->state), (uint)outb); |
| return outb; |
| } |
| |
| /* Status register may be read as many times as it is wanted */ |
| if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) { |
| NS_DBG("read_byte: return %#x status\n", ns->regs.status); |
| return ns->regs.status; |
| } |
| |
| /* Check if there is any data in the internal buffer which may be read */ |
| if (ns->regs.count == ns->regs.num) { |
| NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb); |
| return outb; |
| } |
| |
| switch (NS_STATE(ns->state)) { |
| case STATE_DATAOUT: |
| if (ns->busw == 8) { |
| outb = ns->buf.byte[ns->regs.count]; |
| ns->regs.count += 1; |
| } else { |
| outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]); |
| ns->regs.count += 2; |
| } |
| break; |
| case STATE_DATAOUT_ID: |
| NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num); |
| outb = ns->ids[ns->regs.count]; |
| ns->regs.count += 1; |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (ns->regs.count == ns->regs.num) { |
| NS_DBG("read_byte: all bytes were read\n"); |
| |
| if (NS_STATE(ns->nxstate) == STATE_READY) |
| switch_state(ns); |
| } |
| |
| return outb; |
| } |
| |
| static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte) |
| { |
| struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; |
| |
| /* Sanity and correctness checks */ |
| if (!ns->lines.ce) { |
| NS_ERR("write_byte: chip is disabled, ignore write\n"); |
| return; |
| } |
| if (ns->lines.ale && ns->lines.cle) { |
| NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n"); |
| return; |
| } |
| |
| if (ns->lines.cle == 1) { |
| /* |
| * The byte written is a command. |
| */ |
| |
| if (byte == NAND_CMD_RESET) { |
| NS_LOG("reset chip\n"); |
| switch_to_ready_state(ns, NS_STATUS_OK(ns)); |
| return; |
| } |
| |
| /* Check that the command byte is correct */ |
| if (check_command(byte)) { |
| NS_ERR("write_byte: unknown command %#x\n", (uint)byte); |
| return; |
| } |
| |
| if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS |
| || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M |
| || NS_STATE(ns->state) == STATE_DATAOUT) { |
| int row = ns->regs.row; |
| |
| switch_state(ns); |
| if (byte == NAND_CMD_RNDOUT) |
| ns->regs.row = row; |
| } |
| |
| /* Check if chip is expecting command */ |
| if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) { |
| /* Do not warn if only 2 id bytes are read */ |
| if (!(ns->regs.command == NAND_CMD_READID && |
| NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) { |
| /* |
| * We are in situation when something else (not command) |
| * was expected but command was input. In this case ignore |
| * previous command(s)/state(s) and accept the last one. |
| */ |
| NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, " |
| "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate)); |
| } |
| switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| } |
| |
| NS_DBG("command byte corresponding to %s state accepted\n", |
| get_state_name(get_state_by_command(byte))); |
| ns->regs.command = byte; |
| switch_state(ns); |
| |
| } else if (ns->lines.ale == 1) { |
| /* |
| * The byte written is an address. |
| */ |
| |
| if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) { |
| |
| NS_DBG("write_byte: operation isn't known yet, identify it\n"); |
| |
| if (find_operation(ns, 1) < 0) |
| return; |
| |
| if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { |
| switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| return; |
| } |
| |
| ns->regs.count = 0; |
| switch (NS_STATE(ns->nxstate)) { |
| case STATE_ADDR_PAGE: |
| ns->regs.num = ns->geom.pgaddrbytes; |
| break; |
| case STATE_ADDR_SEC: |
| ns->regs.num = ns->geom.secaddrbytes; |
| break; |
| case STATE_ADDR_ZERO: |
| ns->regs.num = 1; |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| /* Check that chip is expecting address */ |
| if (!(ns->nxstate & STATE_ADDR_MASK)) { |
| NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, " |
| "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate)); |
| switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| return; |
| } |
| |
| /* Check if this is expected byte */ |
| if (ns->regs.count == ns->regs.num) { |
| NS_ERR("write_byte: no more address bytes expected\n"); |
| switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| return; |
| } |
| |
| accept_addr_byte(ns, byte); |
| |
| ns->regs.count += 1; |
| |
| NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n", |
| (uint)byte, ns->regs.count, ns->regs.num); |
| |
| if (ns->regs.count == ns->regs.num) { |
| NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column); |
| switch_state(ns); |
| } |
| |
| } else { |
| /* |
| * The byte written is an input data. |
| */ |
| |
| /* Check that chip is expecting data input */ |
| if (!(ns->state & STATE_DATAIN_MASK)) { |
| NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, " |
| "switch to %s\n", (uint)byte, |
| get_state_name(ns->state), get_state_name(STATE_READY)); |
| switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| return; |
| } |
| |
| /* Check if this is expected byte */ |
| if (ns->regs.count == ns->regs.num) { |
| NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n", |
| ns->regs.num); |
| return; |
| } |
| |
| if (ns->busw == 8) { |
| ns->buf.byte[ns->regs.count] = byte; |
| ns->regs.count += 1; |
| } else { |
| ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte); |
| ns->regs.count += 2; |
| } |
| } |
| |
| return; |
| } |
| |
| static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask) |
| { |
| struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; |
| |
| ns->lines.cle = bitmask & NAND_CLE ? 1 : 0; |
| ns->lines.ale = bitmask & NAND_ALE ? 1 : 0; |
| ns->lines.ce = bitmask & NAND_NCE ? 1 : 0; |
| |
| if (cmd != NAND_CMD_NONE) |
| ns_nand_write_byte(mtd, cmd); |
| } |
| |
| static int ns_device_ready(struct mtd_info *mtd) |
| { |
| NS_DBG("device_ready\n"); |
| return 1; |
| } |
| |
| static uint16_t ns_nand_read_word(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = (struct nand_chip *)mtd->priv; |
| |
| NS_DBG("read_word\n"); |
| |
| return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8); |
| } |
| |
| static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) |
| { |
| struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; |
| |
| /* Check that chip is expecting data input */ |
| if (!(ns->state & STATE_DATAIN_MASK)) { |
| NS_ERR("write_buf: data input isn't expected, state is %s, " |
| "switch to STATE_READY\n", get_state_name(ns->state)); |
| switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| return; |
| } |
| |
| /* Check if these are expected bytes */ |
| if (ns->regs.count + len > ns->regs.num) { |
| NS_ERR("write_buf: too many input bytes\n"); |
| switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| return; |
| } |
| |
| memcpy(ns->buf.byte + ns->regs.count, buf, len); |
| ns->regs.count += len; |
| |
| if (ns->regs.count == ns->regs.num) { |
| NS_DBG("write_buf: %d bytes were written\n", ns->regs.count); |
| } |
| } |
| |
| static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; |
| |
| /* Sanity and correctness checks */ |
| if (!ns->lines.ce) { |
| NS_ERR("read_buf: chip is disabled\n"); |
| return; |
| } |
| if (ns->lines.ale || ns->lines.cle) { |
| NS_ERR("read_buf: ALE or CLE pin is high\n"); |
| return; |
| } |
| if (!(ns->state & STATE_DATAOUT_MASK)) { |
| NS_WARN("read_buf: unexpected data output cycle, current state is %s\n", |
| get_state_name(ns->state)); |
| return; |
| } |
| |
| if (NS_STATE(ns->state) != STATE_DATAOUT) { |
| int i; |
| |
| for (i = 0; i < len; i++) |
| buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd); |
| |
| return; |
| } |
| |
| /* Check if these are expected bytes */ |
| if (ns->regs.count + len > ns->regs.num) { |
| NS_ERR("read_buf: too many bytes to read\n"); |
| switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| return; |
| } |
| |
| memcpy(buf, ns->buf.byte + ns->regs.count, len); |
| ns->regs.count += len; |
| |
| if (ns->regs.count == ns->regs.num) { |
| if (NS_STATE(ns->nxstate) == STATE_READY) |
| switch_state(ns); |
| } |
| |
| return; |
| } |
| |
| static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) |
| { |
| ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len); |
| |
| if (!memcmp(buf, &ns_verify_buf[0], len)) { |
| NS_DBG("verify_buf: the buffer is OK\n"); |
| return 0; |
| } else { |
| NS_DBG("verify_buf: the buffer is wrong\n"); |
| return -EFAULT; |
| } |
| } |
| |
| /* |
| * Module initialization function |
| */ |
| static int __init ns_init_module(void) |
| { |
| struct nand_chip *chip; |
| struct nandsim *nand; |
| int retval = -ENOMEM, i; |
| |
| if (bus_width != 8 && bus_width != 16) { |
| NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width); |
| return -EINVAL; |
| } |
| |
| /* Allocate and initialize mtd_info, nand_chip and nandsim structures */ |
| nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip) |
| + sizeof(struct nandsim), GFP_KERNEL); |
| if (!nsmtd) { |
| NS_ERR("unable to allocate core structures.\n"); |
| return -ENOMEM; |
| } |
| chip = (struct nand_chip *)(nsmtd + 1); |
| nsmtd->priv = (void *)chip; |
| nand = (struct nandsim *)(chip + 1); |
| chip->priv = (void *)nand; |
| |
| /* |
| * Register simulator's callbacks. |
| */ |
| chip->cmd_ctrl = ns_hwcontrol; |
| chip->read_byte = ns_nand_read_byte; |
| chip->dev_ready = ns_device_ready; |
| chip->write_buf = ns_nand_write_buf; |
| chip->read_buf = ns_nand_read_buf; |
| chip->verify_buf = ns_nand_verify_buf; |
| chip->read_word = ns_nand_read_word; |
| chip->ecc.mode = NAND_ECC_SOFT; |
| /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */ |
| /* and 'badblocks' parameters to work */ |
| chip->options |= NAND_SKIP_BBTSCAN; |
| |
| switch (bbt) { |
| case 2: |
| chip->bbt_options |= NAND_BBT_NO_OOB; |
| case 1: |
| chip->bbt_options |= NAND_BBT_USE_FLASH; |
| case 0: |
| break; |
| default: |
| NS_ERR("bbt has to be 0..2\n"); |
| retval = -EINVAL; |
| goto error; |
| } |
| /* |
| * Perform minimum nandsim structure initialization to handle |
| * the initial ID read command correctly |
| */ |
| if (third_id_byte != 0xFF || fourth_id_byte != 0xFF) |
| nand->geom.idbytes = 4; |
| else |
| nand->geom.idbytes = 2; |
| nand->regs.status = NS_STATUS_OK(nand); |
| nand->nxstate = STATE_UNKNOWN; |
| nand->options |= OPT_PAGE256; /* temporary value */ |
| nand->ids[0] = first_id_byte; |
| nand->ids[1] = second_id_byte; |
| nand->ids[2] = third_id_byte; |
| nand->ids[3] = fourth_id_byte; |
| if (bus_width == 16) { |
| nand->busw = 16; |
| chip->options |= NAND_BUSWIDTH_16; |
| } |
| |
| nsmtd->owner = THIS_MODULE; |
| |
| if ((retval = parse_weakblocks()) != 0) |
| goto error; |
| |
| if ((retval = parse_weakpages()) != 0) |
| goto error; |
| |
| if ((retval = parse_gravepages()) != 0) |
| goto error; |
| |
| retval = nand_scan_ident(nsmtd, 1, NULL); |
| if (retval) { |
| NS_ERR("cannot scan NAND Simulator device\n"); |
| if (retval > 0) |
| retval = -ENXIO; |
| goto error; |
| } |
| |
| if (bch) { |
| unsigned int eccsteps, eccbytes; |
| if (!mtd_nand_has_bch()) { |
| NS_ERR("BCH ECC support is disabled\n"); |
| retval = -EINVAL; |
| goto error; |
| } |
| /* use 512-byte ecc blocks */ |
| eccsteps = nsmtd->writesize/512; |
| eccbytes = (bch*13+7)/8; |
| /* do not bother supporting small page devices */ |
| if ((nsmtd->oobsize < 64) || !eccsteps) { |
| NS_ERR("bch not available on small page devices\n"); |
| retval = -EINVAL; |
| goto error; |
| } |
| if ((eccbytes*eccsteps+2) > nsmtd->oobsize) { |
| NS_ERR("invalid bch value %u\n", bch); |
| retval = -EINVAL; |
| goto error; |
| } |
| chip->ecc.mode = NAND_ECC_SOFT_BCH; |
| chip->ecc.size = 512; |
| chip->ecc.bytes = eccbytes; |
| NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size); |
| } |
| |
| retval = nand_scan_tail(nsmtd); |
| if (retval) { |
| NS_ERR("can't register NAND Simulator\n"); |
| if (retval > 0) |
| retval = -ENXIO; |
| goto error; |
| } |
| |
| if (overridesize) { |
| uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize; |
| if (new_size >> overridesize != nsmtd->erasesize) { |
| NS_ERR("overridesize is too big\n"); |
| goto err_exit; |
| } |
| /* N.B. This relies on nand_scan not doing anything with the size before we change it */ |
| nsmtd->size = new_size; |
| chip->chipsize = new_size; |
| chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1; |
| chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; |
| } |
| |
| if ((retval = setup_wear_reporting(nsmtd)) != 0) |
| goto err_exit; |
| |
| if ((retval = init_nandsim(nsmtd)) != 0) |
| goto err_exit; |
| |
| if ((retval = nand_default_bbt(nsmtd)) != 0) |
| goto err_exit; |
| |
| if ((retval = parse_badblocks(nand, nsmtd)) != 0) |
| goto err_exit; |
| |
| /* Register NAND partitions */ |
| retval = mtd_device_register(nsmtd, &nand->partitions[0], |
| nand->nbparts); |
| if (retval != 0) |
| goto err_exit; |
| |
| return 0; |
| |
| err_exit: |
| free_nandsim(nand); |
| nand_release(nsmtd); |
| for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i) |
| kfree(nand->partitions[i].name); |
| error: |
| kfree(nsmtd); |
| free_lists(); |
| |
| return retval; |
| } |
| |
| module_init(ns_init_module); |
| |
| /* |
| * Module clean-up function |
| */ |
| static void __exit ns_cleanup_module(void) |
| { |
| struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv; |
| int i; |
| |
| free_nandsim(ns); /* Free nandsim private resources */ |
| nand_release(nsmtd); /* Unregister driver */ |
| for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i) |
| kfree(ns->partitions[i].name); |
| kfree(nsmtd); /* Free other structures */ |
| free_lists(); |
| } |
| |
| module_exit(ns_cleanup_module); |
| |
| MODULE_LICENSE ("GPL"); |
| MODULE_AUTHOR ("Artem B. Bityuckiy"); |
| MODULE_DESCRIPTION ("The NAND flash simulator"); |