| /* |
| ********************************************************************** |
| * ecard.c - E-card initialization code |
| * Copyright 1999, 2000 Creative Labs, Inc. |
| * |
| ********************************************************************** |
| * |
| * Date Author Summary of changes |
| * ---- ------ ------------------ |
| * October 20, 1999 Bertrand Lee base code release |
| * |
| ********************************************************************** |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the Free |
| * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, |
| * USA. |
| * |
| ********************************************************************** |
| */ |
| |
| #include "ecard.h" |
| #include "hwaccess.h" |
| |
| /* Private routines */ |
| static void ecard_setadcgain(struct emu10k1_card *, struct ecard_state *, u16); |
| static void ecard_write(struct emu10k1_card *, u32); |
| |
| /************************************************************************** |
| * @func Set the gain of the ECARD's CS3310 Trim/gain controller. The |
| * trim value consists of a 16bit value which is composed of two |
| * 8 bit gain/trim values, one for the left channel and one for the |
| * right channel. The following table maps from the Gain/Attenuation |
| * value in decibels into the corresponding bit pattern for a single |
| * channel. |
| */ |
| |
| static void ecard_setadcgain(struct emu10k1_card *card, struct ecard_state *ecard, u16 gain) |
| { |
| u32 currbit; |
| ecard->adc_gain = gain; |
| |
| /* Enable writing to the TRIM registers */ |
| ecard_write(card, ecard->control_bits & ~EC_TRIM_CSN); |
| |
| /* Do it again to insure that we meet hold time requirements */ |
| ecard_write(card, ecard->control_bits & ~EC_TRIM_CSN); |
| |
| for (currbit = (1L << 15); currbit; currbit >>= 1) { |
| |
| u32 value = ecard->control_bits & ~(EC_TRIM_CSN|EC_TRIM_SDATA); |
| |
| if (gain & currbit) |
| value |= EC_TRIM_SDATA; |
| |
| /* Clock the bit */ |
| ecard_write(card, value); |
| ecard_write(card, value | EC_TRIM_SCLK); |
| ecard_write(card, value); |
| } |
| |
| ecard_write(card, ecard->control_bits); |
| } |
| |
| /************************************************************************** |
| * @func Clock bits into the Ecard's control latch. The Ecard uses a |
| * control latch will is loaded bit-serially by toggling the Modem control |
| * lines from function 2 on the E8010. This function hides these details |
| * and presents the illusion that we are actually writing to a distinct |
| * register. |
| */ |
| static void ecard_write(struct emu10k1_card *card, u32 value) |
| { |
| u16 count; |
| u32 data, hcvalue; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&card->lock, flags); |
| |
| hcvalue = inl(card->iobase + HCFG) & ~(HOOKN_BIT|HANDN_BIT|PULSEN_BIT); |
| |
| outl(card->iobase + HCFG, hcvalue); |
| |
| for (count = 0 ; count < EC_NUM_CONTROL_BITS; count++) { |
| |
| /* Set up the value */ |
| data = ((value & 0x1) ? PULSEN_BIT : 0); |
| value >>= 1; |
| |
| outl(card->iobase + HCFG, hcvalue | data); |
| |
| /* Clock the shift register */ |
| outl(card->iobase + HCFG, hcvalue | data | HANDN_BIT); |
| outl(card->iobase + HCFG, hcvalue | data); |
| } |
| |
| /* Latch the bits */ |
| outl(card->iobase + HCFG, hcvalue | HOOKN_BIT); |
| outl(card->iobase + HCFG, hcvalue); |
| |
| spin_unlock_irqrestore(&card->lock, flags); |
| } |
| |
| void __devinit emu10k1_ecard_init(struct emu10k1_card *card) |
| { |
| u32 hcvalue; |
| struct ecard_state ecard; |
| |
| /* Set up the initial settings */ |
| ecard.mux0_setting = EC_DEFAULT_SPDIF0_SEL; |
| ecard.mux1_setting = EC_DEFAULT_SPDIF1_SEL; |
| ecard.mux2_setting = 0; |
| ecard.adc_gain = EC_DEFAULT_ADC_GAIN; |
| ecard.control_bits = EC_RAW_RUN_MODE | |
| EC_SPDIF0_SELECT(ecard.mux0_setting) | |
| EC_SPDIF1_SELECT(ecard.mux1_setting); |
| |
| |
| /* Step 0: Set the codec type in the hardware control register |
| * and enable audio output */ |
| hcvalue = emu10k1_readfn0(card, HCFG); |
| emu10k1_writefn0(card, HCFG, hcvalue | HCFG_AUDIOENABLE | HCFG_CODECFORMAT_I2S); |
| |
| /* Step 1: Turn off the led and deassert TRIM_CS */ |
| ecard_write(card, EC_ADCCAL | EC_LEDN | EC_TRIM_CSN); |
| |
| /* Step 2: Calibrate the ADC and DAC */ |
| ecard_write(card, EC_DACCAL | EC_LEDN | EC_TRIM_CSN); |
| |
| /* Step 3: Wait for awhile; FIXME: Is this correct? */ |
| |
| current->state = TASK_INTERRUPTIBLE; |
| schedule_timeout(HZ); |
| |
| /* Step 4: Switch off the DAC and ADC calibration. Note |
| * That ADC_CAL is actually an inverted signal, so we assert |
| * it here to stop calibration. */ |
| ecard_write(card, EC_ADCCAL | EC_LEDN | EC_TRIM_CSN); |
| |
| /* Step 4: Switch into run mode */ |
| ecard_write(card, ecard.control_bits); |
| |
| /* Step 5: Set the analog input gain */ |
| ecard_setadcgain(card, &ecard, ecard.adc_gain); |
| } |
| |
| |