| /* |
| * Copyright (c) 2006 ARM Ltd. |
| * Copyright (c) 2010 ST-Ericsson SA |
| * |
| * Author: Peter Pearse <peter.pearse@arm.com> |
| * Author: Linus Walleij <linus.walleij@stericsson.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the Free |
| * Software Foundation; either version 2 of the License, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., 59 |
| * Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * The full GNU General Public License is in this distribution in the |
| * file called COPYING. |
| * |
| * Documentation: ARM DDI 0196G == PL080 |
| * Documentation: ARM DDI 0218E == PL081 |
| * |
| * PL080 & PL081 both have 16 sets of DMA signals that can be routed to |
| * any channel. |
| * |
| * The PL080 has 8 channels available for simultaneous use, and the PL081 |
| * has only two channels. So on these DMA controllers the number of channels |
| * and the number of incoming DMA signals are two totally different things. |
| * It is usually not possible to theoretically handle all physical signals, |
| * so a multiplexing scheme with possible denial of use is necessary. |
| * |
| * The PL080 has a dual bus master, PL081 has a single master. |
| * |
| * Memory to peripheral transfer may be visualized as |
| * Get data from memory to DMAC |
| * Until no data left |
| * On burst request from peripheral |
| * Destination burst from DMAC to peripheral |
| * Clear burst request |
| * Raise terminal count interrupt |
| * |
| * For peripherals with a FIFO: |
| * Source burst size == half the depth of the peripheral FIFO |
| * Destination burst size == the depth of the peripheral FIFO |
| * |
| * (Bursts are irrelevant for mem to mem transfers - there are no burst |
| * signals, the DMA controller will simply facilitate its AHB master.) |
| * |
| * ASSUMES default (little) endianness for DMA transfers |
| * |
| * The PL08x has two flow control settings: |
| * - DMAC flow control: the transfer size defines the number of transfers |
| * which occur for the current LLI entry, and the DMAC raises TC at the |
| * end of every LLI entry. Observed behaviour shows the DMAC listening |
| * to both the BREQ and SREQ signals (contrary to documented), |
| * transferring data if either is active. The LBREQ and LSREQ signals |
| * are ignored. |
| * |
| * - Peripheral flow control: the transfer size is ignored (and should be |
| * zero). The data is transferred from the current LLI entry, until |
| * after the final transfer signalled by LBREQ or LSREQ. The DMAC |
| * will then move to the next LLI entry. |
| * |
| * Only the former works sanely with scatter lists, so we only implement |
| * the DMAC flow control method. However, peripherals which use the LBREQ |
| * and LSREQ signals (eg, MMCI) are unable to use this mode, which through |
| * these hardware restrictions prevents them from using scatter DMA. |
| * |
| * Global TODO: |
| * - Break out common code from arch/arm/mach-s3c64xx and share |
| */ |
| #include <linux/device.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/interrupt.h> |
| #include <linux/slab.h> |
| #include <linux/dmapool.h> |
| #include <linux/amba/bus.h> |
| #include <linux/dmaengine.h> |
| #include <linux/amba/pl08x.h> |
| #include <linux/debugfs.h> |
| #include <linux/seq_file.h> |
| |
| #include <asm/hardware/pl080.h> |
| #include <asm/dma.h> |
| #include <asm/mach/dma.h> |
| #include <asm/processor.h> |
| #include <asm/cacheflush.h> |
| |
| #define DRIVER_NAME "pl08xdmac" |
| |
| /** |
| * struct vendor_data - vendor-specific config parameters |
| * for PL08x derivatives |
| * @name: the name of this specific variant |
| * @channels: the number of channels available in this variant |
| * @dualmaster: whether this version supports dual AHB masters |
| * or not. |
| */ |
| struct vendor_data { |
| char *name; |
| u8 channels; |
| bool dualmaster; |
| }; |
| |
| /* |
| * PL08X private data structures |
| * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit, |
| * start & end do not - their bus bit info is in cctl. |
| */ |
| struct lli { |
| dma_addr_t src; |
| dma_addr_t dst; |
| dma_addr_t next; |
| u32 cctl; |
| }; |
| |
| /** |
| * struct pl08x_driver_data - the local state holder for the PL08x |
| * @slave: slave engine for this instance |
| * @memcpy: memcpy engine for this instance |
| * @base: virtual memory base (remapped) for the PL08x |
| * @adev: the corresponding AMBA (PrimeCell) bus entry |
| * @vd: vendor data for this PL08x variant |
| * @pd: platform data passed in from the platform/machine |
| * @phy_chans: array of data for the physical channels |
| * @pool: a pool for the LLI descriptors |
| * @pool_ctr: counter of LLIs in the pool |
| * @lock: a spinlock for this struct |
| */ |
| struct pl08x_driver_data { |
| struct dma_device slave; |
| struct dma_device memcpy; |
| void __iomem *base; |
| struct amba_device *adev; |
| struct vendor_data *vd; |
| struct pl08x_platform_data *pd; |
| struct pl08x_phy_chan *phy_chans; |
| struct dma_pool *pool; |
| int pool_ctr; |
| spinlock_t lock; |
| }; |
| |
| /* |
| * PL08X specific defines |
| */ |
| |
| /* |
| * Memory boundaries: the manual for PL08x says that the controller |
| * cannot read past a 1KiB boundary, so these defines are used to |
| * create transfer LLIs that do not cross such boundaries. |
| */ |
| #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */ |
| #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT) |
| |
| /* Minimum period between work queue runs */ |
| #define PL08X_WQ_PERIODMIN 20 |
| |
| /* Size (bytes) of each LLI buffer allocated for one transfer */ |
| # define PL08X_LLI_TSFR_SIZE 0x2000 |
| |
| /* Maximum times we call dma_pool_alloc on this pool without freeing */ |
| #define PL08X_MAX_ALLOCS 0x40 |
| #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct lli)) |
| #define PL08X_ALIGN 8 |
| |
| static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan) |
| { |
| return container_of(chan, struct pl08x_dma_chan, chan); |
| } |
| |
| /* |
| * Physical channel handling |
| */ |
| |
| /* Whether a certain channel is busy or not */ |
| static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch) |
| { |
| unsigned int val; |
| |
| val = readl(ch->base + PL080_CH_CONFIG); |
| return val & PL080_CONFIG_ACTIVE; |
| } |
| |
| /* |
| * Set the initial DMA register values i.e. those for the first LLI |
| * The next LLI pointer and the configuration interrupt bit have |
| * been set when the LLIs were constructed |
| */ |
| static void pl08x_set_cregs(struct pl08x_driver_data *pl08x, |
| struct pl08x_phy_chan *ch) |
| { |
| /* Wait for channel inactive */ |
| while (pl08x_phy_channel_busy(ch)) |
| ; |
| |
| dev_vdbg(&pl08x->adev->dev, |
| "WRITE channel %d: csrc=%08x, cdst=%08x, " |
| "cctl=%08x, clli=%08x, ccfg=%08x\n", |
| ch->id, |
| ch->csrc, |
| ch->cdst, |
| ch->cctl, |
| ch->clli, |
| ch->ccfg); |
| |
| writel(ch->csrc, ch->base + PL080_CH_SRC_ADDR); |
| writel(ch->cdst, ch->base + PL080_CH_DST_ADDR); |
| writel(ch->clli, ch->base + PL080_CH_LLI); |
| writel(ch->cctl, ch->base + PL080_CH_CONTROL); |
| writel(ch->ccfg, ch->base + PL080_CH_CONFIG); |
| } |
| |
| static inline void pl08x_config_phychan_for_txd(struct pl08x_dma_chan *plchan) |
| { |
| struct pl08x_channel_data *cd = plchan->cd; |
| struct pl08x_phy_chan *phychan = plchan->phychan; |
| struct pl08x_txd *txd = plchan->at; |
| |
| /* Copy the basic control register calculated at transfer config */ |
| phychan->csrc = txd->csrc; |
| phychan->cdst = txd->cdst; |
| phychan->clli = txd->clli; |
| phychan->cctl = txd->cctl; |
| |
| /* Assign the signal to the proper control registers */ |
| phychan->ccfg = cd->ccfg; |
| phychan->ccfg &= ~PL080_CONFIG_SRC_SEL_MASK; |
| phychan->ccfg &= ~PL080_CONFIG_DST_SEL_MASK; |
| /* If it wasn't set from AMBA, ignore it */ |
| if (txd->direction == DMA_TO_DEVICE) |
| /* Select signal as destination */ |
| phychan->ccfg |= |
| (phychan->signal << PL080_CONFIG_DST_SEL_SHIFT); |
| else if (txd->direction == DMA_FROM_DEVICE) |
| /* Select signal as source */ |
| phychan->ccfg |= |
| (phychan->signal << PL080_CONFIG_SRC_SEL_SHIFT); |
| /* Always enable error interrupts */ |
| phychan->ccfg |= PL080_CONFIG_ERR_IRQ_MASK; |
| /* Always enable terminal interrupts */ |
| phychan->ccfg |= PL080_CONFIG_TC_IRQ_MASK; |
| } |
| |
| /* |
| * Enable the DMA channel |
| * Assumes all other configuration bits have been set |
| * as desired before this code is called |
| */ |
| static void pl08x_enable_phy_chan(struct pl08x_driver_data *pl08x, |
| struct pl08x_phy_chan *ch) |
| { |
| u32 val; |
| |
| /* |
| * Do not access config register until channel shows as disabled |
| */ |
| while (readl(pl08x->base + PL080_EN_CHAN) & (1 << ch->id)) |
| ; |
| |
| /* |
| * Do not access config register until channel shows as inactive |
| */ |
| val = readl(ch->base + PL080_CH_CONFIG); |
| while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE)) |
| val = readl(ch->base + PL080_CH_CONFIG); |
| |
| writel(val | PL080_CONFIG_ENABLE, ch->base + PL080_CH_CONFIG); |
| } |
| |
| /* |
| * Overall DMAC remains enabled always. |
| * |
| * Disabling individual channels could lose data. |
| * |
| * Disable the peripheral DMA after disabling the DMAC |
| * in order to allow the DMAC FIFO to drain, and |
| * hence allow the channel to show inactive |
| * |
| */ |
| static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch) |
| { |
| u32 val; |
| |
| /* Set the HALT bit and wait for the FIFO to drain */ |
| val = readl(ch->base + PL080_CH_CONFIG); |
| val |= PL080_CONFIG_HALT; |
| writel(val, ch->base + PL080_CH_CONFIG); |
| |
| /* Wait for channel inactive */ |
| while (pl08x_phy_channel_busy(ch)) |
| ; |
| } |
| |
| static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch) |
| { |
| u32 val; |
| |
| /* Clear the HALT bit */ |
| val = readl(ch->base + PL080_CH_CONFIG); |
| val &= ~PL080_CONFIG_HALT; |
| writel(val, ch->base + PL080_CH_CONFIG); |
| } |
| |
| |
| /* Stops the channel */ |
| static void pl08x_stop_phy_chan(struct pl08x_phy_chan *ch) |
| { |
| u32 val; |
| |
| pl08x_pause_phy_chan(ch); |
| |
| /* Disable channel */ |
| val = readl(ch->base + PL080_CH_CONFIG); |
| val &= ~PL080_CONFIG_ENABLE; |
| val &= ~PL080_CONFIG_ERR_IRQ_MASK; |
| val &= ~PL080_CONFIG_TC_IRQ_MASK; |
| writel(val, ch->base + PL080_CH_CONFIG); |
| } |
| |
| static inline u32 get_bytes_in_cctl(u32 cctl) |
| { |
| /* The source width defines the number of bytes */ |
| u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK; |
| |
| switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) { |
| case PL080_WIDTH_8BIT: |
| break; |
| case PL080_WIDTH_16BIT: |
| bytes *= 2; |
| break; |
| case PL080_WIDTH_32BIT: |
| bytes *= 4; |
| break; |
| } |
| return bytes; |
| } |
| |
| /* The channel should be paused when calling this */ |
| static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan) |
| { |
| struct pl08x_phy_chan *ch; |
| struct pl08x_txd *txdi = NULL; |
| struct pl08x_txd *txd; |
| unsigned long flags; |
| u32 bytes = 0; |
| |
| spin_lock_irqsave(&plchan->lock, flags); |
| |
| ch = plchan->phychan; |
| txd = plchan->at; |
| |
| /* |
| * Next follow the LLIs to get the number of pending bytes in the |
| * currently active transaction. |
| */ |
| if (ch && txd) { |
| struct lli *llis_va = txd->llis_va; |
| struct lli *llis_bus = (struct lli *) txd->llis_bus; |
| u32 clli = readl(ch->base + PL080_CH_LLI); |
| |
| /* First get the bytes in the current active LLI */ |
| bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL)); |
| |
| if (clli) { |
| int i = 0; |
| |
| /* Forward to the LLI pointed to by clli */ |
| while ((clli != (u32) &(llis_bus[i])) && |
| (i < MAX_NUM_TSFR_LLIS)) |
| i++; |
| |
| while (clli) { |
| bytes += get_bytes_in_cctl(llis_va[i].cctl); |
| /* |
| * A LLI pointer of 0 terminates the LLI list |
| */ |
| clli = llis_va[i].next; |
| i++; |
| } |
| } |
| } |
| |
| /* Sum up all queued transactions */ |
| if (!list_empty(&plchan->desc_list)) { |
| list_for_each_entry(txdi, &plchan->desc_list, node) { |
| bytes += txdi->len; |
| } |
| |
| } |
| |
| spin_unlock_irqrestore(&plchan->lock, flags); |
| |
| return bytes; |
| } |
| |
| /* |
| * Allocate a physical channel for a virtual channel |
| */ |
| static struct pl08x_phy_chan * |
| pl08x_get_phy_channel(struct pl08x_driver_data *pl08x, |
| struct pl08x_dma_chan *virt_chan) |
| { |
| struct pl08x_phy_chan *ch = NULL; |
| unsigned long flags; |
| int i; |
| |
| /* |
| * Try to locate a physical channel to be used for |
| * this transfer. If all are taken return NULL and |
| * the requester will have to cope by using some fallback |
| * PIO mode or retrying later. |
| */ |
| for (i = 0; i < pl08x->vd->channels; i++) { |
| ch = &pl08x->phy_chans[i]; |
| |
| spin_lock_irqsave(&ch->lock, flags); |
| |
| if (!ch->serving) { |
| ch->serving = virt_chan; |
| ch->signal = -1; |
| spin_unlock_irqrestore(&ch->lock, flags); |
| break; |
| } |
| |
| spin_unlock_irqrestore(&ch->lock, flags); |
| } |
| |
| if (i == pl08x->vd->channels) { |
| /* No physical channel available, cope with it */ |
| return NULL; |
| } |
| |
| return ch; |
| } |
| |
| static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x, |
| struct pl08x_phy_chan *ch) |
| { |
| unsigned long flags; |
| |
| /* Stop the channel and clear its interrupts */ |
| pl08x_stop_phy_chan(ch); |
| writel((1 << ch->id), pl08x->base + PL080_ERR_CLEAR); |
| writel((1 << ch->id), pl08x->base + PL080_TC_CLEAR); |
| |
| /* Mark it as free */ |
| spin_lock_irqsave(&ch->lock, flags); |
| ch->serving = NULL; |
| spin_unlock_irqrestore(&ch->lock, flags); |
| } |
| |
| /* |
| * LLI handling |
| */ |
| |
| static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded) |
| { |
| switch (coded) { |
| case PL080_WIDTH_8BIT: |
| return 1; |
| case PL080_WIDTH_16BIT: |
| return 2; |
| case PL080_WIDTH_32BIT: |
| return 4; |
| default: |
| break; |
| } |
| BUG(); |
| return 0; |
| } |
| |
| static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth, |
| u32 tsize) |
| { |
| u32 retbits = cctl; |
| |
| /* Remove all src, dst and transfer size bits */ |
| retbits &= ~PL080_CONTROL_DWIDTH_MASK; |
| retbits &= ~PL080_CONTROL_SWIDTH_MASK; |
| retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK; |
| |
| /* Then set the bits according to the parameters */ |
| switch (srcwidth) { |
| case 1: |
| retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT; |
| break; |
| case 2: |
| retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT; |
| break; |
| case 4: |
| retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT; |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| |
| switch (dstwidth) { |
| case 1: |
| retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT; |
| break; |
| case 2: |
| retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT; |
| break; |
| case 4: |
| retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT; |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| |
| retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT; |
| return retbits; |
| } |
| |
| /* |
| * Autoselect a master bus to use for the transfer |
| * this prefers the destination bus if both available |
| * if fixed address on one bus the other will be chosen |
| */ |
| static void pl08x_choose_master_bus(struct pl08x_bus_data *src_bus, |
| struct pl08x_bus_data *dst_bus, struct pl08x_bus_data **mbus, |
| struct pl08x_bus_data **sbus, u32 cctl) |
| { |
| if (!(cctl & PL080_CONTROL_DST_INCR)) { |
| *mbus = src_bus; |
| *sbus = dst_bus; |
| } else if (!(cctl & PL080_CONTROL_SRC_INCR)) { |
| *mbus = dst_bus; |
| *sbus = src_bus; |
| } else { |
| if (dst_bus->buswidth == 4) { |
| *mbus = dst_bus; |
| *sbus = src_bus; |
| } else if (src_bus->buswidth == 4) { |
| *mbus = src_bus; |
| *sbus = dst_bus; |
| } else if (dst_bus->buswidth == 2) { |
| *mbus = dst_bus; |
| *sbus = src_bus; |
| } else if (src_bus->buswidth == 2) { |
| *mbus = src_bus; |
| *sbus = dst_bus; |
| } else { |
| /* src_bus->buswidth == 1 */ |
| *mbus = dst_bus; |
| *sbus = src_bus; |
| } |
| } |
| } |
| |
| /* |
| * Fills in one LLI for a certain transfer descriptor |
| * and advance the counter |
| */ |
| static int pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x, |
| struct pl08x_txd *txd, int num_llis, int len, |
| u32 cctl, u32 *remainder) |
| { |
| struct lli *llis_va = txd->llis_va; |
| struct lli *llis_bus = (struct lli *) txd->llis_bus; |
| |
| BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS); |
| |
| llis_va[num_llis].cctl = cctl; |
| llis_va[num_llis].src = txd->srcbus.addr; |
| llis_va[num_llis].dst = txd->dstbus.addr; |
| |
| /* |
| * On versions with dual masters, you can optionally AND on |
| * PL080_LLI_LM_AHB2 to the LLI to tell the hardware to read |
| * in new LLIs with that controller, but we always try to |
| * choose AHB1 to point into memory. The idea is to have AHB2 |
| * fixed on the peripheral and AHB1 messing around in the |
| * memory. So we don't manipulate this bit currently. |
| */ |
| |
| llis_va[num_llis].next = |
| (dma_addr_t)((u32) &(llis_bus[num_llis + 1])); |
| |
| if (cctl & PL080_CONTROL_SRC_INCR) |
| txd->srcbus.addr += len; |
| if (cctl & PL080_CONTROL_DST_INCR) |
| txd->dstbus.addr += len; |
| |
| *remainder -= len; |
| |
| return num_llis + 1; |
| } |
| |
| /* |
| * Return number of bytes to fill to boundary, or len |
| */ |
| static inline u32 pl08x_pre_boundary(u32 addr, u32 len) |
| { |
| u32 boundary; |
| |
| boundary = ((addr >> PL08X_BOUNDARY_SHIFT) + 1) |
| << PL08X_BOUNDARY_SHIFT; |
| |
| if (boundary < addr + len) |
| return boundary - addr; |
| else |
| return len; |
| } |
| |
| /* |
| * This fills in the table of LLIs for the transfer descriptor |
| * Note that we assume we never have to change the burst sizes |
| * Return 0 for error |
| */ |
| static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x, |
| struct pl08x_txd *txd) |
| { |
| struct pl08x_channel_data *cd = txd->cd; |
| struct pl08x_bus_data *mbus, *sbus; |
| u32 remainder; |
| int num_llis = 0; |
| u32 cctl; |
| int max_bytes_per_lli; |
| int total_bytes = 0; |
| struct lli *llis_va; |
| struct lli *llis_bus; |
| |
| if (!txd) { |
| dev_err(&pl08x->adev->dev, "%s no descriptor\n", __func__); |
| return 0; |
| } |
| |
| txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, |
| &txd->llis_bus); |
| if (!txd->llis_va) { |
| dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__); |
| return 0; |
| } |
| |
| pl08x->pool_ctr++; |
| |
| /* |
| * Initialize bus values for this transfer |
| * from the passed optimal values |
| */ |
| if (!cd) { |
| dev_err(&pl08x->adev->dev, "%s no channel data\n", __func__); |
| return 0; |
| } |
| |
| /* Get the default CCTL from the platform data */ |
| cctl = cd->cctl; |
| |
| /* |
| * On the PL080 we have two bus masters and we |
| * should select one for source and one for |
| * destination. We try to use AHB2 for the |
| * bus which does not increment (typically the |
| * peripheral) else we just choose something. |
| */ |
| cctl &= ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2); |
| if (pl08x->vd->dualmaster) { |
| if (cctl & PL080_CONTROL_SRC_INCR) |
| /* Source increments, use AHB2 for destination */ |
| cctl |= PL080_CONTROL_DST_AHB2; |
| else if (cctl & PL080_CONTROL_DST_INCR) |
| /* Destination increments, use AHB2 for source */ |
| cctl |= PL080_CONTROL_SRC_AHB2; |
| else |
| /* Just pick something, source AHB1 dest AHB2 */ |
| cctl |= PL080_CONTROL_DST_AHB2; |
| } |
| |
| /* Find maximum width of the source bus */ |
| txd->srcbus.maxwidth = |
| pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >> |
| PL080_CONTROL_SWIDTH_SHIFT); |
| |
| /* Find maximum width of the destination bus */ |
| txd->dstbus.maxwidth = |
| pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >> |
| PL080_CONTROL_DWIDTH_SHIFT); |
| |
| /* Set up the bus widths to the maximum */ |
| txd->srcbus.buswidth = txd->srcbus.maxwidth; |
| txd->dstbus.buswidth = txd->dstbus.maxwidth; |
| dev_vdbg(&pl08x->adev->dev, |
| "%s source bus is %d bytes wide, dest bus is %d bytes wide\n", |
| __func__, txd->srcbus.buswidth, txd->dstbus.buswidth); |
| |
| |
| /* |
| * Bytes transferred == tsize * MIN(buswidths), not max(buswidths) |
| */ |
| max_bytes_per_lli = min(txd->srcbus.buswidth, txd->dstbus.buswidth) * |
| PL080_CONTROL_TRANSFER_SIZE_MASK; |
| dev_vdbg(&pl08x->adev->dev, |
| "%s max bytes per lli = %d\n", |
| __func__, max_bytes_per_lli); |
| |
| /* We need to count this down to zero */ |
| remainder = txd->len; |
| dev_vdbg(&pl08x->adev->dev, |
| "%s remainder = %d\n", |
| __func__, remainder); |
| |
| /* |
| * Choose bus to align to |
| * - prefers destination bus if both available |
| * - if fixed address on one bus chooses other |
| * - modifies cctl to choose an appropriate master |
| */ |
| pl08x_choose_master_bus(&txd->srcbus, &txd->dstbus, |
| &mbus, &sbus, cctl); |
| |
| |
| /* |
| * The lowest bit of the LLI register |
| * is also used to indicate which master to |
| * use for reading the LLIs. |
| */ |
| |
| if (txd->len < mbus->buswidth) { |
| /* |
| * Less than a bus width available |
| * - send as single bytes |
| */ |
| while (remainder) { |
| dev_vdbg(&pl08x->adev->dev, |
| "%s single byte LLIs for a transfer of " |
| "less than a bus width (remain %08x)\n", |
| __func__, remainder); |
| cctl = pl08x_cctl_bits(cctl, 1, 1, 1); |
| num_llis = |
| pl08x_fill_lli_for_desc(pl08x, txd, num_llis, 1, |
| cctl, &remainder); |
| total_bytes++; |
| } |
| } else { |
| /* |
| * Make one byte LLIs until master bus is aligned |
| * - slave will then be aligned also |
| */ |
| while ((mbus->addr) % (mbus->buswidth)) { |
| dev_vdbg(&pl08x->adev->dev, |
| "%s adjustment lli for less than bus width " |
| "(remain %08x)\n", |
| __func__, remainder); |
| cctl = pl08x_cctl_bits(cctl, 1, 1, 1); |
| num_llis = pl08x_fill_lli_for_desc |
| (pl08x, txd, num_llis, 1, cctl, &remainder); |
| total_bytes++; |
| } |
| |
| /* |
| * Master now aligned |
| * - if slave is not then we must set its width down |
| */ |
| if (sbus->addr % sbus->buswidth) { |
| dev_dbg(&pl08x->adev->dev, |
| "%s set down bus width to one byte\n", |
| __func__); |
| |
| sbus->buswidth = 1; |
| } |
| |
| /* |
| * Make largest possible LLIs until less than one bus |
| * width left |
| */ |
| while (remainder > (mbus->buswidth - 1)) { |
| int lli_len, target_len; |
| int tsize; |
| int odd_bytes; |
| |
| /* |
| * If enough left try to send max possible, |
| * otherwise try to send the remainder |
| */ |
| target_len = remainder; |
| if (remainder > max_bytes_per_lli) |
| target_len = max_bytes_per_lli; |
| |
| /* |
| * Set bus lengths for incrementing buses |
| * to number of bytes which fill to next memory |
| * boundary |
| */ |
| if (cctl & PL080_CONTROL_SRC_INCR) |
| txd->srcbus.fill_bytes = |
| pl08x_pre_boundary( |
| txd->srcbus.addr, |
| remainder); |
| else |
| txd->srcbus.fill_bytes = |
| max_bytes_per_lli; |
| |
| if (cctl & PL080_CONTROL_DST_INCR) |
| txd->dstbus.fill_bytes = |
| pl08x_pre_boundary( |
| txd->dstbus.addr, |
| remainder); |
| else |
| txd->dstbus.fill_bytes = |
| max_bytes_per_lli; |
| |
| /* |
| * Find the nearest |
| */ |
| lli_len = min(txd->srcbus.fill_bytes, |
| txd->dstbus.fill_bytes); |
| |
| BUG_ON(lli_len > remainder); |
| |
| if (lli_len <= 0) { |
| dev_err(&pl08x->adev->dev, |
| "%s lli_len is %d, <= 0\n", |
| __func__, lli_len); |
| return 0; |
| } |
| |
| if (lli_len == target_len) { |
| /* |
| * Can send what we wanted |
| */ |
| /* |
| * Maintain alignment |
| */ |
| lli_len = (lli_len/mbus->buswidth) * |
| mbus->buswidth; |
| odd_bytes = 0; |
| } else { |
| /* |
| * So now we know how many bytes to transfer |
| * to get to the nearest boundary |
| * The next LLI will past the boundary |
| * - however we may be working to a boundary |
| * on the slave bus |
| * We need to ensure the master stays aligned |
| */ |
| odd_bytes = lli_len % mbus->buswidth; |
| /* |
| * - and that we are working in multiples |
| * of the bus widths |
| */ |
| lli_len -= odd_bytes; |
| |
| } |
| |
| if (lli_len) { |
| /* |
| * Check against minimum bus alignment: |
| * Calculate actual transfer size in relation |
| * to bus width an get a maximum remainder of |
| * the smallest bus width - 1 |
| */ |
| /* FIXME: use round_down()? */ |
| tsize = lli_len / min(mbus->buswidth, |
| sbus->buswidth); |
| lli_len = tsize * min(mbus->buswidth, |
| sbus->buswidth); |
| |
| if (target_len != lli_len) { |
| dev_vdbg(&pl08x->adev->dev, |
| "%s can't send what we want. Desired %08x, lli of %08x bytes in txd of %08x\n", |
| __func__, target_len, lli_len, txd->len); |
| } |
| |
| cctl = pl08x_cctl_bits(cctl, |
| txd->srcbus.buswidth, |
| txd->dstbus.buswidth, |
| tsize); |
| |
| dev_vdbg(&pl08x->adev->dev, |
| "%s fill lli with single lli chunk of size %08x (remainder %08x)\n", |
| __func__, lli_len, remainder); |
| num_llis = pl08x_fill_lli_for_desc(pl08x, txd, |
| num_llis, lli_len, cctl, |
| &remainder); |
| total_bytes += lli_len; |
| } |
| |
| |
| if (odd_bytes) { |
| /* |
| * Creep past the boundary, |
| * maintaining master alignment |
| */ |
| int j; |
| for (j = 0; (j < mbus->buswidth) |
| && (remainder); j++) { |
| cctl = pl08x_cctl_bits(cctl, 1, 1, 1); |
| dev_vdbg(&pl08x->adev->dev, |
| "%s align with boundary, single byte (remain %08x)\n", |
| __func__, remainder); |
| num_llis = |
| pl08x_fill_lli_for_desc(pl08x, |
| txd, num_llis, 1, |
| cctl, &remainder); |
| total_bytes++; |
| } |
| } |
| } |
| |
| /* |
| * Send any odd bytes |
| */ |
| if (remainder < 0) { |
| dev_err(&pl08x->adev->dev, "%s remainder not fitted 0x%08x bytes\n", |
| __func__, remainder); |
| return 0; |
| } |
| |
| while (remainder) { |
| cctl = pl08x_cctl_bits(cctl, 1, 1, 1); |
| dev_vdbg(&pl08x->adev->dev, |
| "%s align with boundary, single odd byte (remain %d)\n", |
| __func__, remainder); |
| num_llis = pl08x_fill_lli_for_desc(pl08x, txd, num_llis, |
| 1, cctl, &remainder); |
| total_bytes++; |
| } |
| } |
| if (total_bytes != txd->len) { |
| dev_err(&pl08x->adev->dev, |
| "%s size of encoded lli:s don't match total txd, transferred 0x%08x from size 0x%08x\n", |
| __func__, total_bytes, txd->len); |
| return 0; |
| } |
| |
| if (num_llis >= MAX_NUM_TSFR_LLIS) { |
| dev_err(&pl08x->adev->dev, |
| "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n", |
| __func__, (u32) MAX_NUM_TSFR_LLIS); |
| return 0; |
| } |
| /* |
| * Decide whether this is a loop or a terminated transfer |
| */ |
| llis_va = txd->llis_va; |
| llis_bus = (struct lli *) txd->llis_bus; |
| |
| if (cd->circular_buffer) { |
| /* |
| * Loop the circular buffer so that the next element |
| * points back to the beginning of the LLI. |
| */ |
| llis_va[num_llis - 1].next = |
| (dma_addr_t)((unsigned int)&(llis_bus[0])); |
| } else { |
| /* |
| * On non-circular buffers, the final LLI terminates |
| * the LLI. |
| */ |
| llis_va[num_llis - 1].next = 0; |
| /* |
| * The final LLI element shall also fire an interrupt |
| */ |
| llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN; |
| } |
| |
| /* Now store the channel register values */ |
| txd->csrc = llis_va[0].src; |
| txd->cdst = llis_va[0].dst; |
| if (num_llis > 1) |
| txd->clli = llis_va[0].next; |
| else |
| txd->clli = 0; |
| |
| txd->cctl = llis_va[0].cctl; |
| /* ccfg will be set at physical channel allocation time */ |
| |
| #ifdef VERBOSE_DEBUG |
| { |
| int i; |
| |
| for (i = 0; i < num_llis; i++) { |
| dev_vdbg(&pl08x->adev->dev, |
| "lli %d @%p: csrc=%08x, cdst=%08x, cctl=%08x, clli=%08x\n", |
| i, |
| &llis_va[i], |
| llis_va[i].src, |
| llis_va[i].dst, |
| llis_va[i].cctl, |
| llis_va[i].next |
| ); |
| } |
| } |
| #endif |
| |
| return num_llis; |
| } |
| |
| /* You should call this with the struct pl08x lock held */ |
| static void pl08x_free_txd(struct pl08x_driver_data *pl08x, |
| struct pl08x_txd *txd) |
| { |
| if (!txd) |
| dev_err(&pl08x->adev->dev, |
| "%s no descriptor to free\n", |
| __func__); |
| |
| /* Free the LLI */ |
| dma_pool_free(pl08x->pool, txd->llis_va, |
| txd->llis_bus); |
| |
| pl08x->pool_ctr--; |
| |
| kfree(txd); |
| } |
| |
| static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x, |
| struct pl08x_dma_chan *plchan) |
| { |
| struct pl08x_txd *txdi = NULL; |
| struct pl08x_txd *next; |
| |
| if (!list_empty(&plchan->desc_list)) { |
| list_for_each_entry_safe(txdi, |
| next, &plchan->desc_list, node) { |
| list_del(&txdi->node); |
| pl08x_free_txd(pl08x, txdi); |
| } |
| |
| } |
| } |
| |
| /* |
| * The DMA ENGINE API |
| */ |
| static int pl08x_alloc_chan_resources(struct dma_chan *chan) |
| { |
| return 0; |
| } |
| |
| static void pl08x_free_chan_resources(struct dma_chan *chan) |
| { |
| } |
| |
| /* |
| * This should be called with the channel plchan->lock held |
| */ |
| static int prep_phy_channel(struct pl08x_dma_chan *plchan, |
| struct pl08x_txd *txd) |
| { |
| struct pl08x_driver_data *pl08x = plchan->host; |
| struct pl08x_phy_chan *ch; |
| int ret; |
| |
| /* Check if we already have a channel */ |
| if (plchan->phychan) |
| return 0; |
| |
| ch = pl08x_get_phy_channel(pl08x, plchan); |
| if (!ch) { |
| /* No physical channel available, cope with it */ |
| dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name); |
| return -EBUSY; |
| } |
| |
| /* |
| * OK we have a physical channel: for memcpy() this is all we |
| * need, but for slaves the physical signals may be muxed! |
| * Can the platform allow us to use this channel? |
| */ |
| if (plchan->slave && |
| ch->signal < 0 && |
| pl08x->pd->get_signal) { |
| ret = pl08x->pd->get_signal(plchan); |
| if (ret < 0) { |
| dev_dbg(&pl08x->adev->dev, |
| "unable to use physical channel %d for transfer on %s due to platform restrictions\n", |
| ch->id, plchan->name); |
| /* Release physical channel & return */ |
| pl08x_put_phy_channel(pl08x, ch); |
| return -EBUSY; |
| } |
| ch->signal = ret; |
| } |
| |
| dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n", |
| ch->id, |
| ch->signal, |
| plchan->name); |
| |
| plchan->phychan = ch; |
| |
| return 0; |
| } |
| |
| static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx) |
| { |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan); |
| |
| plchan->chan.cookie += 1; |
| if (plchan->chan.cookie < 0) |
| plchan->chan.cookie = 1; |
| tx->cookie = plchan->chan.cookie; |
| /* This unlock follows the lock in the prep() function */ |
| spin_unlock_irqrestore(&plchan->lock, plchan->lockflags); |
| |
| return tx->cookie; |
| } |
| |
| static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt( |
| struct dma_chan *chan, unsigned long flags) |
| { |
| struct dma_async_tx_descriptor *retval = NULL; |
| |
| return retval; |
| } |
| |
| /* |
| * Code accessing dma_async_is_complete() in a tight loop |
| * may give problems - could schedule where indicated. |
| * If slaves are relying on interrupts to signal completion this |
| * function must not be called with interrupts disabled |
| */ |
| static enum dma_status |
| pl08x_dma_tx_status(struct dma_chan *chan, |
| dma_cookie_t cookie, |
| struct dma_tx_state *txstate) |
| { |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| dma_cookie_t last_used; |
| dma_cookie_t last_complete; |
| enum dma_status ret; |
| u32 bytesleft = 0; |
| |
| last_used = plchan->chan.cookie; |
| last_complete = plchan->lc; |
| |
| ret = dma_async_is_complete(cookie, last_complete, last_used); |
| if (ret == DMA_SUCCESS) { |
| dma_set_tx_state(txstate, last_complete, last_used, 0); |
| return ret; |
| } |
| |
| /* |
| * schedule(); could be inserted here |
| */ |
| |
| /* |
| * This cookie not complete yet |
| */ |
| last_used = plchan->chan.cookie; |
| last_complete = plchan->lc; |
| |
| /* Get number of bytes left in the active transactions and queue */ |
| bytesleft = pl08x_getbytes_chan(plchan); |
| |
| dma_set_tx_state(txstate, last_complete, last_used, |
| bytesleft); |
| |
| if (plchan->state == PL08X_CHAN_PAUSED) |
| return DMA_PAUSED; |
| |
| /* Whether waiting or running, we're in progress */ |
| return DMA_IN_PROGRESS; |
| } |
| |
| /* PrimeCell DMA extension */ |
| struct burst_table { |
| int burstwords; |
| u32 reg; |
| }; |
| |
| static const struct burst_table burst_sizes[] = { |
| { |
| .burstwords = 256, |
| .reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) | |
| (PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT), |
| }, |
| { |
| .burstwords = 128, |
| .reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) | |
| (PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT), |
| }, |
| { |
| .burstwords = 64, |
| .reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) | |
| (PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT), |
| }, |
| { |
| .burstwords = 32, |
| .reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) | |
| (PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT), |
| }, |
| { |
| .burstwords = 16, |
| .reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) | |
| (PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT), |
| }, |
| { |
| .burstwords = 8, |
| .reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) | |
| (PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT), |
| }, |
| { |
| .burstwords = 4, |
| .reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) | |
| (PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT), |
| }, |
| { |
| .burstwords = 1, |
| .reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) | |
| (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT), |
| }, |
| }; |
| |
| static void dma_set_runtime_config(struct dma_chan *chan, |
| struct dma_slave_config *config) |
| { |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| struct pl08x_driver_data *pl08x = plchan->host; |
| struct pl08x_channel_data *cd = plchan->cd; |
| enum dma_slave_buswidth addr_width; |
| u32 maxburst; |
| u32 cctl = 0; |
| /* Mask out all except src and dst channel */ |
| u32 ccfg = cd->ccfg & 0x000003DEU; |
| int i; |
| |
| /* Transfer direction */ |
| plchan->runtime_direction = config->direction; |
| if (config->direction == DMA_TO_DEVICE) { |
| plchan->runtime_addr = config->dst_addr; |
| cctl |= PL080_CONTROL_SRC_INCR; |
| ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT; |
| addr_width = config->dst_addr_width; |
| maxburst = config->dst_maxburst; |
| } else if (config->direction == DMA_FROM_DEVICE) { |
| plchan->runtime_addr = config->src_addr; |
| cctl |= PL080_CONTROL_DST_INCR; |
| ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT; |
| addr_width = config->src_addr_width; |
| maxburst = config->src_maxburst; |
| } else { |
| dev_err(&pl08x->adev->dev, |
| "bad runtime_config: alien transfer direction\n"); |
| return; |
| } |
| |
| switch (addr_width) { |
| case DMA_SLAVE_BUSWIDTH_1_BYTE: |
| cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) | |
| (PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT); |
| break; |
| case DMA_SLAVE_BUSWIDTH_2_BYTES: |
| cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) | |
| (PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT); |
| break; |
| case DMA_SLAVE_BUSWIDTH_4_BYTES: |
| cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) | |
| (PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT); |
| break; |
| default: |
| dev_err(&pl08x->adev->dev, |
| "bad runtime_config: alien address width\n"); |
| return; |
| } |
| |
| /* |
| * Now decide on a maxburst: |
| * If this channel will only request single transfers, set this |
| * down to ONE element. Also select one element if no maxburst |
| * is specified. |
| */ |
| if (plchan->cd->single || maxburst == 0) { |
| cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) | |
| (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT); |
| } else { |
| for (i = 0; i < ARRAY_SIZE(burst_sizes); i++) |
| if (burst_sizes[i].burstwords <= maxburst) |
| break; |
| cctl |= burst_sizes[i].reg; |
| } |
| |
| /* Access the cell in privileged mode, non-bufferable, non-cacheable */ |
| cctl &= ~PL080_CONTROL_PROT_MASK; |
| cctl |= PL080_CONTROL_PROT_SYS; |
| |
| /* Modify the default channel data to fit PrimeCell request */ |
| cd->cctl = cctl; |
| cd->ccfg = ccfg; |
| |
| dev_dbg(&pl08x->adev->dev, |
| "configured channel %s (%s) for %s, data width %d, " |
| "maxburst %d words, LE, CCTL=%08x, CCFG=%08x\n", |
| dma_chan_name(chan), plchan->name, |
| (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX", |
| addr_width, |
| maxburst, |
| cctl, ccfg); |
| } |
| |
| /* |
| * Slave transactions callback to the slave device to allow |
| * synchronization of slave DMA signals with the DMAC enable |
| */ |
| static void pl08x_issue_pending(struct dma_chan *chan) |
| { |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| struct pl08x_driver_data *pl08x = plchan->host; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&plchan->lock, flags); |
| /* Something is already active, or we're waiting for a channel... */ |
| if (plchan->at || plchan->state == PL08X_CHAN_WAITING) { |
| spin_unlock_irqrestore(&plchan->lock, flags); |
| return; |
| } |
| |
| /* Take the first element in the queue and execute it */ |
| if (!list_empty(&plchan->desc_list)) { |
| struct pl08x_txd *next; |
| |
| next = list_first_entry(&plchan->desc_list, |
| struct pl08x_txd, |
| node); |
| list_del(&next->node); |
| plchan->at = next; |
| plchan->state = PL08X_CHAN_RUNNING; |
| |
| /* Configure the physical channel for the active txd */ |
| pl08x_config_phychan_for_txd(plchan); |
| pl08x_set_cregs(pl08x, plchan->phychan); |
| pl08x_enable_phy_chan(pl08x, plchan->phychan); |
| } |
| |
| spin_unlock_irqrestore(&plchan->lock, flags); |
| } |
| |
| static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan, |
| struct pl08x_txd *txd) |
| { |
| int num_llis; |
| struct pl08x_driver_data *pl08x = plchan->host; |
| int ret; |
| |
| num_llis = pl08x_fill_llis_for_desc(pl08x, txd); |
| if (!num_llis) { |
| kfree(txd); |
| return -EINVAL; |
| } |
| |
| spin_lock_irqsave(&plchan->lock, plchan->lockflags); |
| |
| /* |
| * If this device is not using a circular buffer then |
| * queue this new descriptor for transfer. |
| * The descriptor for a circular buffer continues |
| * to be used until the channel is freed. |
| */ |
| if (txd->cd->circular_buffer) |
| dev_err(&pl08x->adev->dev, |
| "%s attempting to queue a circular buffer\n", |
| __func__); |
| else |
| list_add_tail(&txd->node, |
| &plchan->desc_list); |
| |
| /* |
| * See if we already have a physical channel allocated, |
| * else this is the time to try to get one. |
| */ |
| ret = prep_phy_channel(plchan, txd); |
| if (ret) { |
| /* |
| * No physical channel available, we will |
| * stack up the memcpy channels until there is a channel |
| * available to handle it whereas slave transfers may |
| * have been denied due to platform channel muxing restrictions |
| * and since there is no guarantee that this will ever be |
| * resolved, and since the signal must be acquired AFTER |
| * acquiring the physical channel, we will let them be NACK:ed |
| * with -EBUSY here. The drivers can alway retry the prep() |
| * call if they are eager on doing this using DMA. |
| */ |
| if (plchan->slave) { |
| pl08x_free_txd_list(pl08x, plchan); |
| spin_unlock_irqrestore(&plchan->lock, plchan->lockflags); |
| return -EBUSY; |
| } |
| /* Do this memcpy whenever there is a channel ready */ |
| plchan->state = PL08X_CHAN_WAITING; |
| plchan->waiting = txd; |
| } else |
| /* |
| * Else we're all set, paused and ready to roll, |
| * status will switch to PL08X_CHAN_RUNNING when |
| * we call issue_pending(). If there is something |
| * running on the channel already we don't change |
| * its state. |
| */ |
| if (plchan->state == PL08X_CHAN_IDLE) |
| plchan->state = PL08X_CHAN_PAUSED; |
| |
| /* |
| * Notice that we leave plchan->lock locked on purpose: |
| * it will be unlocked in the subsequent tx_submit() |
| * call. This is a consequence of the current API. |
| */ |
| |
| return 0; |
| } |
| |
| /* |
| * Initialize a descriptor to be used by memcpy submit |
| */ |
| static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy( |
| struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, |
| size_t len, unsigned long flags) |
| { |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| struct pl08x_driver_data *pl08x = plchan->host; |
| struct pl08x_txd *txd; |
| int ret; |
| |
| txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT); |
| if (!txd) { |
| dev_err(&pl08x->adev->dev, |
| "%s no memory for descriptor\n", __func__); |
| return NULL; |
| } |
| |
| dma_async_tx_descriptor_init(&txd->tx, chan); |
| txd->direction = DMA_NONE; |
| txd->srcbus.addr = src; |
| txd->dstbus.addr = dest; |
| |
| /* Set platform data for m2m */ |
| txd->cd = &pl08x->pd->memcpy_channel; |
| /* Both to be incremented or the code will break */ |
| txd->cd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR; |
| txd->tx.tx_submit = pl08x_tx_submit; |
| txd->tx.callback = NULL; |
| txd->tx.callback_param = NULL; |
| txd->len = len; |
| |
| INIT_LIST_HEAD(&txd->node); |
| ret = pl08x_prep_channel_resources(plchan, txd); |
| if (ret) |
| return NULL; |
| /* |
| * NB: the channel lock is held at this point so tx_submit() |
| * must be called in direct succession. |
| */ |
| |
| return &txd->tx; |
| } |
| |
| static struct dma_async_tx_descriptor *pl08x_prep_slave_sg( |
| struct dma_chan *chan, struct scatterlist *sgl, |
| unsigned int sg_len, enum dma_data_direction direction, |
| unsigned long flags) |
| { |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| struct pl08x_driver_data *pl08x = plchan->host; |
| struct pl08x_txd *txd; |
| int ret; |
| |
| /* |
| * Current implementation ASSUMES only one sg |
| */ |
| if (sg_len != 1) { |
| dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n", |
| __func__); |
| BUG(); |
| } |
| |
| dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n", |
| __func__, sgl->length, plchan->name); |
| |
| txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT); |
| if (!txd) { |
| dev_err(&pl08x->adev->dev, "%s no txd\n", __func__); |
| return NULL; |
| } |
| |
| dma_async_tx_descriptor_init(&txd->tx, chan); |
| |
| if (direction != plchan->runtime_direction) |
| dev_err(&pl08x->adev->dev, "%s DMA setup does not match " |
| "the direction configured for the PrimeCell\n", |
| __func__); |
| |
| /* |
| * Set up addresses, the PrimeCell configured address |
| * will take precedence since this may configure the |
| * channel target address dynamically at runtime. |
| */ |
| txd->direction = direction; |
| if (direction == DMA_TO_DEVICE) { |
| txd->srcbus.addr = sgl->dma_address; |
| if (plchan->runtime_addr) |
| txd->dstbus.addr = plchan->runtime_addr; |
| else |
| txd->dstbus.addr = plchan->cd->addr; |
| } else if (direction == DMA_FROM_DEVICE) { |
| if (plchan->runtime_addr) |
| txd->srcbus.addr = plchan->runtime_addr; |
| else |
| txd->srcbus.addr = plchan->cd->addr; |
| txd->dstbus.addr = sgl->dma_address; |
| } else { |
| dev_err(&pl08x->adev->dev, |
| "%s direction unsupported\n", __func__); |
| return NULL; |
| } |
| txd->cd = plchan->cd; |
| txd->tx.tx_submit = pl08x_tx_submit; |
| txd->tx.callback = NULL; |
| txd->tx.callback_param = NULL; |
| txd->len = sgl->length; |
| INIT_LIST_HEAD(&txd->node); |
| |
| ret = pl08x_prep_channel_resources(plchan, txd); |
| if (ret) |
| return NULL; |
| /* |
| * NB: the channel lock is held at this point so tx_submit() |
| * must be called in direct succession. |
| */ |
| |
| return &txd->tx; |
| } |
| |
| static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, |
| unsigned long arg) |
| { |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| struct pl08x_driver_data *pl08x = plchan->host; |
| unsigned long flags; |
| int ret = 0; |
| |
| /* Controls applicable to inactive channels */ |
| if (cmd == DMA_SLAVE_CONFIG) { |
| dma_set_runtime_config(chan, |
| (struct dma_slave_config *) |
| arg); |
| return 0; |
| } |
| |
| /* |
| * Anything succeeds on channels with no physical allocation and |
| * no queued transfers. |
| */ |
| spin_lock_irqsave(&plchan->lock, flags); |
| if (!plchan->phychan && !plchan->at) { |
| spin_unlock_irqrestore(&plchan->lock, flags); |
| return 0; |
| } |
| |
| switch (cmd) { |
| case DMA_TERMINATE_ALL: |
| plchan->state = PL08X_CHAN_IDLE; |
| |
| if (plchan->phychan) { |
| pl08x_stop_phy_chan(plchan->phychan); |
| |
| /* |
| * Mark physical channel as free and free any slave |
| * signal |
| */ |
| if ((plchan->phychan->signal >= 0) && |
| pl08x->pd->put_signal) { |
| pl08x->pd->put_signal(plchan); |
| plchan->phychan->signal = -1; |
| } |
| pl08x_put_phy_channel(pl08x, plchan->phychan); |
| plchan->phychan = NULL; |
| } |
| /* Dequeue jobs and free LLIs */ |
| if (plchan->at) { |
| pl08x_free_txd(pl08x, plchan->at); |
| plchan->at = NULL; |
| } |
| /* Dequeue jobs not yet fired as well */ |
| pl08x_free_txd_list(pl08x, plchan); |
| break; |
| case DMA_PAUSE: |
| pl08x_pause_phy_chan(plchan->phychan); |
| plchan->state = PL08X_CHAN_PAUSED; |
| break; |
| case DMA_RESUME: |
| pl08x_resume_phy_chan(plchan->phychan); |
| plchan->state = PL08X_CHAN_RUNNING; |
| break; |
| default: |
| /* Unknown command */ |
| ret = -ENXIO; |
| break; |
| } |
| |
| spin_unlock_irqrestore(&plchan->lock, flags); |
| |
| return ret; |
| } |
| |
| bool pl08x_filter_id(struct dma_chan *chan, void *chan_id) |
| { |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| char *name = chan_id; |
| |
| /* Check that the channel is not taken! */ |
| if (!strcmp(plchan->name, name)) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * Just check that the device is there and active |
| * TODO: turn this bit on/off depending on the number of |
| * physical channels actually used, if it is zero... well |
| * shut it off. That will save some power. Cut the clock |
| * at the same time. |
| */ |
| static void pl08x_ensure_on(struct pl08x_driver_data *pl08x) |
| { |
| u32 val; |
| |
| val = readl(pl08x->base + PL080_CONFIG); |
| val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE); |
| /* We implicitly clear bit 1 and that means little-endian mode */ |
| val |= PL080_CONFIG_ENABLE; |
| writel(val, pl08x->base + PL080_CONFIG); |
| } |
| |
| static void pl08x_tasklet(unsigned long data) |
| { |
| struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data; |
| struct pl08x_phy_chan *phychan = plchan->phychan; |
| struct pl08x_driver_data *pl08x = plchan->host; |
| unsigned long flags; |
| |
| if (!plchan) |
| BUG(); |
| |
| spin_lock_irqsave(&plchan->lock, flags); |
| |
| if (plchan->at) { |
| dma_async_tx_callback callback = |
| plchan->at->tx.callback; |
| void *callback_param = |
| plchan->at->tx.callback_param; |
| |
| /* |
| * Update last completed |
| */ |
| plchan->lc = plchan->at->tx.cookie; |
| |
| /* |
| * Callback to signal completion |
| */ |
| if (callback) |
| callback(callback_param); |
| |
| /* |
| * Device callbacks should NOT clear |
| * the current transaction on the channel |
| * Linus: sometimes they should? |
| */ |
| if (!plchan->at) |
| BUG(); |
| |
| /* |
| * Free the descriptor if it's not for a device |
| * using a circular buffer |
| */ |
| if (!plchan->at->cd->circular_buffer) { |
| pl08x_free_txd(pl08x, plchan->at); |
| plchan->at = NULL; |
| } |
| /* |
| * else descriptor for circular |
| * buffers only freed when |
| * client has disabled dma |
| */ |
| } |
| /* |
| * If a new descriptor is queued, set it up |
| * plchan->at is NULL here |
| */ |
| if (!list_empty(&plchan->desc_list)) { |
| struct pl08x_txd *next; |
| |
| next = list_first_entry(&plchan->desc_list, |
| struct pl08x_txd, |
| node); |
| list_del(&next->node); |
| plchan->at = next; |
| /* Configure the physical channel for the next txd */ |
| pl08x_config_phychan_for_txd(plchan); |
| pl08x_set_cregs(pl08x, plchan->phychan); |
| pl08x_enable_phy_chan(pl08x, plchan->phychan); |
| } else { |
| struct pl08x_dma_chan *waiting = NULL; |
| |
| /* |
| * No more jobs, so free up the physical channel |
| * Free any allocated signal on slave transfers too |
| */ |
| if ((phychan->signal >= 0) && pl08x->pd->put_signal) { |
| pl08x->pd->put_signal(plchan); |
| phychan->signal = -1; |
| } |
| pl08x_put_phy_channel(pl08x, phychan); |
| plchan->phychan = NULL; |
| plchan->state = PL08X_CHAN_IDLE; |
| |
| /* |
| * And NOW before anyone else can grab that free:d |
| * up physical channel, see if there is some memcpy |
| * pending that seriously needs to start because of |
| * being stacked up while we were choking the |
| * physical channels with data. |
| */ |
| list_for_each_entry(waiting, &pl08x->memcpy.channels, |
| chan.device_node) { |
| if (waiting->state == PL08X_CHAN_WAITING && |
| waiting->waiting != NULL) { |
| int ret; |
| |
| /* This should REALLY not fail now */ |
| ret = prep_phy_channel(waiting, |
| waiting->waiting); |
| BUG_ON(ret); |
| waiting->state = PL08X_CHAN_RUNNING; |
| waiting->waiting = NULL; |
| pl08x_issue_pending(&waiting->chan); |
| break; |
| } |
| } |
| } |
| |
| spin_unlock_irqrestore(&plchan->lock, flags); |
| } |
| |
| static irqreturn_t pl08x_irq(int irq, void *dev) |
| { |
| struct pl08x_driver_data *pl08x = dev; |
| u32 mask = 0; |
| u32 val; |
| int i; |
| |
| val = readl(pl08x->base + PL080_ERR_STATUS); |
| if (val) { |
| /* |
| * An error interrupt (on one or more channels) |
| */ |
| dev_err(&pl08x->adev->dev, |
| "%s error interrupt, register value 0x%08x\n", |
| __func__, val); |
| /* |
| * Simply clear ALL PL08X error interrupts, |
| * regardless of channel and cause |
| * FIXME: should be 0x00000003 on PL081 really. |
| */ |
| writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR); |
| } |
| val = readl(pl08x->base + PL080_INT_STATUS); |
| for (i = 0; i < pl08x->vd->channels; i++) { |
| if ((1 << i) & val) { |
| /* Locate physical channel */ |
| struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i]; |
| struct pl08x_dma_chan *plchan = phychan->serving; |
| |
| /* Schedule tasklet on this channel */ |
| tasklet_schedule(&plchan->tasklet); |
| |
| mask |= (1 << i); |
| } |
| } |
| /* |
| * Clear only the terminal interrupts on channels we processed |
| */ |
| writel(mask, pl08x->base + PL080_TC_CLEAR); |
| |
| return mask ? IRQ_HANDLED : IRQ_NONE; |
| } |
| |
| /* |
| * Initialise the DMAC memcpy/slave channels. |
| * Make a local wrapper to hold required data |
| */ |
| static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x, |
| struct dma_device *dmadev, |
| unsigned int channels, |
| bool slave) |
| { |
| struct pl08x_dma_chan *chan; |
| int i; |
| |
| INIT_LIST_HEAD(&dmadev->channels); |
| /* |
| * Register as many many memcpy as we have physical channels, |
| * we won't always be able to use all but the code will have |
| * to cope with that situation. |
| */ |
| for (i = 0; i < channels; i++) { |
| chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL); |
| if (!chan) { |
| dev_err(&pl08x->adev->dev, |
| "%s no memory for channel\n", __func__); |
| return -ENOMEM; |
| } |
| |
| chan->host = pl08x; |
| chan->state = PL08X_CHAN_IDLE; |
| |
| if (slave) { |
| chan->slave = true; |
| chan->name = pl08x->pd->slave_channels[i].bus_id; |
| chan->cd = &pl08x->pd->slave_channels[i]; |
| } else { |
| chan->cd = &pl08x->pd->memcpy_channel; |
| chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i); |
| if (!chan->name) { |
| kfree(chan); |
| return -ENOMEM; |
| } |
| } |
| dev_info(&pl08x->adev->dev, |
| "initialize virtual channel \"%s\"\n", |
| chan->name); |
| |
| chan->chan.device = dmadev; |
| chan->chan.cookie = 0; |
| chan->lc = 0; |
| |
| spin_lock_init(&chan->lock); |
| INIT_LIST_HEAD(&chan->desc_list); |
| tasklet_init(&chan->tasklet, pl08x_tasklet, |
| (unsigned long) chan); |
| |
| list_add_tail(&chan->chan.device_node, &dmadev->channels); |
| } |
| dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n", |
| i, slave ? "slave" : "memcpy"); |
| return i; |
| } |
| |
| static void pl08x_free_virtual_channels(struct dma_device *dmadev) |
| { |
| struct pl08x_dma_chan *chan = NULL; |
| struct pl08x_dma_chan *next; |
| |
| list_for_each_entry_safe(chan, |
| next, &dmadev->channels, chan.device_node) { |
| list_del(&chan->chan.device_node); |
| kfree(chan); |
| } |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| static const char *pl08x_state_str(enum pl08x_dma_chan_state state) |
| { |
| switch (state) { |
| case PL08X_CHAN_IDLE: |
| return "idle"; |
| case PL08X_CHAN_RUNNING: |
| return "running"; |
| case PL08X_CHAN_PAUSED: |
| return "paused"; |
| case PL08X_CHAN_WAITING: |
| return "waiting"; |
| default: |
| break; |
| } |
| return "UNKNOWN STATE"; |
| } |
| |
| static int pl08x_debugfs_show(struct seq_file *s, void *data) |
| { |
| struct pl08x_driver_data *pl08x = s->private; |
| struct pl08x_dma_chan *chan; |
| struct pl08x_phy_chan *ch; |
| unsigned long flags; |
| int i; |
| |
| seq_printf(s, "PL08x physical channels:\n"); |
| seq_printf(s, "CHANNEL:\tUSER:\n"); |
| seq_printf(s, "--------\t-----\n"); |
| for (i = 0; i < pl08x->vd->channels; i++) { |
| struct pl08x_dma_chan *virt_chan; |
| |
| ch = &pl08x->phy_chans[i]; |
| |
| spin_lock_irqsave(&ch->lock, flags); |
| virt_chan = ch->serving; |
| |
| seq_printf(s, "%d\t\t%s\n", |
| ch->id, virt_chan ? virt_chan->name : "(none)"); |
| |
| spin_unlock_irqrestore(&ch->lock, flags); |
| } |
| |
| seq_printf(s, "\nPL08x virtual memcpy channels:\n"); |
| seq_printf(s, "CHANNEL:\tSTATE:\n"); |
| seq_printf(s, "--------\t------\n"); |
| list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) { |
| seq_printf(s, "%s\t\t%s\n", chan->name, |
| pl08x_state_str(chan->state)); |
| } |
| |
| seq_printf(s, "\nPL08x virtual slave channels:\n"); |
| seq_printf(s, "CHANNEL:\tSTATE:\n"); |
| seq_printf(s, "--------\t------\n"); |
| list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) { |
| seq_printf(s, "%s\t\t%s\n", chan->name, |
| pl08x_state_str(chan->state)); |
| } |
| |
| return 0; |
| } |
| |
| static int pl08x_debugfs_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, pl08x_debugfs_show, inode->i_private); |
| } |
| |
| static const struct file_operations pl08x_debugfs_operations = { |
| .open = pl08x_debugfs_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) |
| { |
| /* Expose a simple debugfs interface to view all clocks */ |
| (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO, |
| NULL, pl08x, |
| &pl08x_debugfs_operations); |
| } |
| |
| #else |
| static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) |
| { |
| } |
| #endif |
| |
| static int pl08x_probe(struct amba_device *adev, struct amba_id *id) |
| { |
| struct pl08x_driver_data *pl08x; |
| struct vendor_data *vd = id->data; |
| int ret = 0; |
| int i; |
| |
| ret = amba_request_regions(adev, NULL); |
| if (ret) |
| return ret; |
| |
| /* Create the driver state holder */ |
| pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL); |
| if (!pl08x) { |
| ret = -ENOMEM; |
| goto out_no_pl08x; |
| } |
| |
| /* Initialize memcpy engine */ |
| dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask); |
| pl08x->memcpy.dev = &adev->dev; |
| pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources; |
| pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources; |
| pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy; |
| pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt; |
| pl08x->memcpy.device_tx_status = pl08x_dma_tx_status; |
| pl08x->memcpy.device_issue_pending = pl08x_issue_pending; |
| pl08x->memcpy.device_control = pl08x_control; |
| |
| /* Initialize slave engine */ |
| dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask); |
| pl08x->slave.dev = &adev->dev; |
| pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources; |
| pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources; |
| pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt; |
| pl08x->slave.device_tx_status = pl08x_dma_tx_status; |
| pl08x->slave.device_issue_pending = pl08x_issue_pending; |
| pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg; |
| pl08x->slave.device_control = pl08x_control; |
| |
| /* Get the platform data */ |
| pl08x->pd = dev_get_platdata(&adev->dev); |
| if (!pl08x->pd) { |
| dev_err(&adev->dev, "no platform data supplied\n"); |
| goto out_no_platdata; |
| } |
| |
| /* Assign useful pointers to the driver state */ |
| pl08x->adev = adev; |
| pl08x->vd = vd; |
| |
| /* A DMA memory pool for LLIs, align on 1-byte boundary */ |
| pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev, |
| PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0); |
| if (!pl08x->pool) { |
| ret = -ENOMEM; |
| goto out_no_lli_pool; |
| } |
| |
| spin_lock_init(&pl08x->lock); |
| |
| pl08x->base = ioremap(adev->res.start, resource_size(&adev->res)); |
| if (!pl08x->base) { |
| ret = -ENOMEM; |
| goto out_no_ioremap; |
| } |
| |
| /* Turn on the PL08x */ |
| pl08x_ensure_on(pl08x); |
| |
| /* |
| * Attach the interrupt handler |
| */ |
| writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR); |
| writel(0x000000FF, pl08x->base + PL080_TC_CLEAR); |
| |
| ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED, |
| vd->name, pl08x); |
| if (ret) { |
| dev_err(&adev->dev, "%s failed to request interrupt %d\n", |
| __func__, adev->irq[0]); |
| goto out_no_irq; |
| } |
| |
| /* Initialize physical channels */ |
| pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)), |
| GFP_KERNEL); |
| if (!pl08x->phy_chans) { |
| dev_err(&adev->dev, "%s failed to allocate " |
| "physical channel holders\n", |
| __func__); |
| goto out_no_phychans; |
| } |
| |
| for (i = 0; i < vd->channels; i++) { |
| struct pl08x_phy_chan *ch = &pl08x->phy_chans[i]; |
| |
| ch->id = i; |
| ch->base = pl08x->base + PL080_Cx_BASE(i); |
| spin_lock_init(&ch->lock); |
| ch->serving = NULL; |
| ch->signal = -1; |
| dev_info(&adev->dev, |
| "physical channel %d is %s\n", i, |
| pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE"); |
| } |
| |
| /* Register as many memcpy channels as there are physical channels */ |
| ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy, |
| pl08x->vd->channels, false); |
| if (ret <= 0) { |
| dev_warn(&pl08x->adev->dev, |
| "%s failed to enumerate memcpy channels - %d\n", |
| __func__, ret); |
| goto out_no_memcpy; |
| } |
| pl08x->memcpy.chancnt = ret; |
| |
| /* Register slave channels */ |
| ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave, |
| pl08x->pd->num_slave_channels, |
| true); |
| if (ret <= 0) { |
| dev_warn(&pl08x->adev->dev, |
| "%s failed to enumerate slave channels - %d\n", |
| __func__, ret); |
| goto out_no_slave; |
| } |
| pl08x->slave.chancnt = ret; |
| |
| ret = dma_async_device_register(&pl08x->memcpy); |
| if (ret) { |
| dev_warn(&pl08x->adev->dev, |
| "%s failed to register memcpy as an async device - %d\n", |
| __func__, ret); |
| goto out_no_memcpy_reg; |
| } |
| |
| ret = dma_async_device_register(&pl08x->slave); |
| if (ret) { |
| dev_warn(&pl08x->adev->dev, |
| "%s failed to register slave as an async device - %d\n", |
| __func__, ret); |
| goto out_no_slave_reg; |
| } |
| |
| amba_set_drvdata(adev, pl08x); |
| init_pl08x_debugfs(pl08x); |
| dev_info(&pl08x->adev->dev, "ARM(R) %s DMA block initialized @%08x\n", |
| vd->name, adev->res.start); |
| return 0; |
| |
| out_no_slave_reg: |
| dma_async_device_unregister(&pl08x->memcpy); |
| out_no_memcpy_reg: |
| pl08x_free_virtual_channels(&pl08x->slave); |
| out_no_slave: |
| pl08x_free_virtual_channels(&pl08x->memcpy); |
| out_no_memcpy: |
| kfree(pl08x->phy_chans); |
| out_no_phychans: |
| free_irq(adev->irq[0], pl08x); |
| out_no_irq: |
| iounmap(pl08x->base); |
| out_no_ioremap: |
| dma_pool_destroy(pl08x->pool); |
| out_no_lli_pool: |
| out_no_platdata: |
| kfree(pl08x); |
| out_no_pl08x: |
| amba_release_regions(adev); |
| return ret; |
| } |
| |
| /* PL080 has 8 channels and the PL080 have just 2 */ |
| static struct vendor_data vendor_pl080 = { |
| .name = "PL080", |
| .channels = 8, |
| .dualmaster = true, |
| }; |
| |
| static struct vendor_data vendor_pl081 = { |
| .name = "PL081", |
| .channels = 2, |
| .dualmaster = false, |
| }; |
| |
| static struct amba_id pl08x_ids[] = { |
| /* PL080 */ |
| { |
| .id = 0x00041080, |
| .mask = 0x000fffff, |
| .data = &vendor_pl080, |
| }, |
| /* PL081 */ |
| { |
| .id = 0x00041081, |
| .mask = 0x000fffff, |
| .data = &vendor_pl081, |
| }, |
| /* Nomadik 8815 PL080 variant */ |
| { |
| .id = 0x00280880, |
| .mask = 0x00ffffff, |
| .data = &vendor_pl080, |
| }, |
| { 0, 0 }, |
| }; |
| |
| static struct amba_driver pl08x_amba_driver = { |
| .drv.name = DRIVER_NAME, |
| .id_table = pl08x_ids, |
| .probe = pl08x_probe, |
| }; |
| |
| static int __init pl08x_init(void) |
| { |
| int retval; |
| retval = amba_driver_register(&pl08x_amba_driver); |
| if (retval) |
| printk(KERN_WARNING DRIVER_NAME |
| "failed to register as an AMBA device (%d)\n", |
| retval); |
| return retval; |
| } |
| subsys_initcall(pl08x_init); |