| /* |
| * zsmalloc memory allocator |
| * |
| * Copyright (C) 2011 Nitin Gupta |
| * Copyright (C) 2012, 2013 Minchan Kim |
| * |
| * This code is released using a dual license strategy: BSD/GPL |
| * You can choose the license that better fits your requirements. |
| * |
| * Released under the terms of 3-clause BSD License |
| * Released under the terms of GNU General Public License Version 2.0 |
| */ |
| |
| /* |
| * This allocator is designed for use with zram. Thus, the allocator is |
| * supposed to work well under low memory conditions. In particular, it |
| * never attempts higher order page allocation which is very likely to |
| * fail under memory pressure. On the other hand, if we just use single |
| * (0-order) pages, it would suffer from very high fragmentation -- |
| * any object of size PAGE_SIZE/2 or larger would occupy an entire page. |
| * This was one of the major issues with its predecessor (xvmalloc). |
| * |
| * To overcome these issues, zsmalloc allocates a bunch of 0-order pages |
| * and links them together using various 'struct page' fields. These linked |
| * pages act as a single higher-order page i.e. an object can span 0-order |
| * page boundaries. The code refers to these linked pages as a single entity |
| * called zspage. |
| * |
| * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE |
| * since this satisfies the requirements of all its current users (in the |
| * worst case, page is incompressible and is thus stored "as-is" i.e. in |
| * uncompressed form). For allocation requests larger than this size, failure |
| * is returned (see zs_malloc). |
| * |
| * Additionally, zs_malloc() does not return a dereferenceable pointer. |
| * Instead, it returns an opaque handle (unsigned long) which encodes actual |
| * location of the allocated object. The reason for this indirection is that |
| * zsmalloc does not keep zspages permanently mapped since that would cause |
| * issues on 32-bit systems where the VA region for kernel space mappings |
| * is very small. So, before using the allocating memory, the object has to |
| * be mapped using zs_map_object() to get a usable pointer and subsequently |
| * unmapped using zs_unmap_object(). |
| * |
| * Following is how we use various fields and flags of underlying |
| * struct page(s) to form a zspage. |
| * |
| * Usage of struct page fields: |
| * page->first_page: points to the first component (0-order) page |
| * page->index (union with page->freelist): offset of the first object |
| * starting in this page. For the first page, this is |
| * always 0, so we use this field (aka freelist) to point |
| * to the first free object in zspage. |
| * page->lru: links together all component pages (except the first page) |
| * of a zspage |
| * |
| * For _first_ page only: |
| * |
| * page->private (union with page->first_page): refers to the |
| * component page after the first page |
| * page->freelist: points to the first free object in zspage. |
| * Free objects are linked together using in-place |
| * metadata. |
| * page->objects: maximum number of objects we can store in this |
| * zspage (class->zspage_order * PAGE_SIZE / class->size) |
| * page->lru: links together first pages of various zspages. |
| * Basically forming list of zspages in a fullness group. |
| * page->mapping: class index and fullness group of the zspage |
| * |
| * Usage of struct page flags: |
| * PG_private: identifies the first component page |
| * PG_private2: identifies the last component page |
| * |
| */ |
| |
| #ifdef CONFIG_ZSMALLOC_DEBUG |
| #define DEBUG |
| #endif |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/bitops.h> |
| #include <linux/errno.h> |
| #include <linux/highmem.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <asm/tlbflush.h> |
| #include <asm/pgtable.h> |
| #include <linux/cpumask.h> |
| #include <linux/cpu.h> |
| #include <linux/vmalloc.h> |
| #include <linux/hardirq.h> |
| #include <linux/spinlock.h> |
| #include <linux/types.h> |
| #include <linux/zsmalloc.h> |
| |
| /* |
| * This must be power of 2 and greater than of equal to sizeof(link_free). |
| * These two conditions ensure that any 'struct link_free' itself doesn't |
| * span more than 1 page which avoids complex case of mapping 2 pages simply |
| * to restore link_free pointer values. |
| */ |
| #define ZS_ALIGN 8 |
| |
| /* |
| * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) |
| * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. |
| */ |
| #define ZS_MAX_ZSPAGE_ORDER 2 |
| #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) |
| |
| /* |
| * Object location (<PFN>, <obj_idx>) is encoded as |
| * as single (unsigned long) handle value. |
| * |
| * Note that object index <obj_idx> is relative to system |
| * page <PFN> it is stored in, so for each sub-page belonging |
| * to a zspage, obj_idx starts with 0. |
| * |
| * This is made more complicated by various memory models and PAE. |
| */ |
| |
| #ifndef MAX_PHYSMEM_BITS |
| #ifdef CONFIG_HIGHMEM64G |
| #define MAX_PHYSMEM_BITS 36 |
| #else /* !CONFIG_HIGHMEM64G */ |
| /* |
| * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just |
| * be PAGE_SHIFT |
| */ |
| #define MAX_PHYSMEM_BITS BITS_PER_LONG |
| #endif |
| #endif |
| #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) |
| #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS) |
| #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) |
| |
| #define MAX(a, b) ((a) >= (b) ? (a) : (b)) |
| /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ |
| #define ZS_MIN_ALLOC_SIZE \ |
| MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) |
| #define ZS_MAX_ALLOC_SIZE PAGE_SIZE |
| |
| /* |
| * On systems with 4K page size, this gives 255 size classes! There is a |
| * trader-off here: |
| * - Large number of size classes is potentially wasteful as free page are |
| * spread across these classes |
| * - Small number of size classes causes large internal fragmentation |
| * - Probably its better to use specific size classes (empirically |
| * determined). NOTE: all those class sizes must be set as multiple of |
| * ZS_ALIGN to make sure link_free itself never has to span 2 pages. |
| * |
| * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN |
| * (reason above) |
| */ |
| #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8) |
| #define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \ |
| ZS_SIZE_CLASS_DELTA + 1) |
| |
| /* |
| * We do not maintain any list for completely empty or full pages |
| */ |
| enum fullness_group { |
| ZS_ALMOST_FULL, |
| ZS_ALMOST_EMPTY, |
| _ZS_NR_FULLNESS_GROUPS, |
| |
| ZS_EMPTY, |
| ZS_FULL |
| }; |
| |
| /* |
| * We assign a page to ZS_ALMOST_EMPTY fullness group when: |
| * n <= N / f, where |
| * n = number of allocated objects |
| * N = total number of objects zspage can store |
| * f = 1/fullness_threshold_frac |
| * |
| * Similarly, we assign zspage to: |
| * ZS_ALMOST_FULL when n > N / f |
| * ZS_EMPTY when n == 0 |
| * ZS_FULL when n == N |
| * |
| * (see: fix_fullness_group()) |
| */ |
| static const int fullness_threshold_frac = 4; |
| |
| struct size_class { |
| /* |
| * Size of objects stored in this class. Must be multiple |
| * of ZS_ALIGN. |
| */ |
| int size; |
| unsigned int index; |
| |
| /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ |
| int pages_per_zspage; |
| |
| spinlock_t lock; |
| |
| /* stats */ |
| u64 pages_allocated; |
| |
| struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS]; |
| }; |
| |
| /* |
| * Placed within free objects to form a singly linked list. |
| * For every zspage, first_page->freelist gives head of this list. |
| * |
| * This must be power of 2 and less than or equal to ZS_ALIGN |
| */ |
| struct link_free { |
| /* Handle of next free chunk (encodes <PFN, obj_idx>) */ |
| void *next; |
| }; |
| |
| struct zs_pool { |
| struct size_class size_class[ZS_SIZE_CLASSES]; |
| |
| gfp_t flags; /* allocation flags used when growing pool */ |
| }; |
| |
| /* |
| * A zspage's class index and fullness group |
| * are encoded in its (first)page->mapping |
| */ |
| #define CLASS_IDX_BITS 28 |
| #define FULLNESS_BITS 4 |
| #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1) |
| #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1) |
| |
| struct mapping_area { |
| #ifdef CONFIG_PGTABLE_MAPPING |
| struct vm_struct *vm; /* vm area for mapping object that span pages */ |
| #else |
| char *vm_buf; /* copy buffer for objects that span pages */ |
| #endif |
| char *vm_addr; /* address of kmap_atomic()'ed pages */ |
| enum zs_mapmode vm_mm; /* mapping mode */ |
| }; |
| |
| |
| /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ |
| static DEFINE_PER_CPU(struct mapping_area, zs_map_area); |
| |
| static int is_first_page(struct page *page) |
| { |
| return PagePrivate(page); |
| } |
| |
| static int is_last_page(struct page *page) |
| { |
| return PagePrivate2(page); |
| } |
| |
| static void get_zspage_mapping(struct page *page, unsigned int *class_idx, |
| enum fullness_group *fullness) |
| { |
| unsigned long m; |
| BUG_ON(!is_first_page(page)); |
| |
| m = (unsigned long)page->mapping; |
| *fullness = m & FULLNESS_MASK; |
| *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK; |
| } |
| |
| static void set_zspage_mapping(struct page *page, unsigned int class_idx, |
| enum fullness_group fullness) |
| { |
| unsigned long m; |
| BUG_ON(!is_first_page(page)); |
| |
| m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) | |
| (fullness & FULLNESS_MASK); |
| page->mapping = (struct address_space *)m; |
| } |
| |
| /* |
| * zsmalloc divides the pool into various size classes where each |
| * class maintains a list of zspages where each zspage is divided |
| * into equal sized chunks. Each allocation falls into one of these |
| * classes depending on its size. This function returns index of the |
| * size class which has chunk size big enough to hold the give size. |
| */ |
| static int get_size_class_index(int size) |
| { |
| int idx = 0; |
| |
| if (likely(size > ZS_MIN_ALLOC_SIZE)) |
| idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, |
| ZS_SIZE_CLASS_DELTA); |
| |
| return idx; |
| } |
| |
| /* |
| * For each size class, zspages are divided into different groups |
| * depending on how "full" they are. This was done so that we could |
| * easily find empty or nearly empty zspages when we try to shrink |
| * the pool (not yet implemented). This function returns fullness |
| * status of the given page. |
| */ |
| static enum fullness_group get_fullness_group(struct page *page) |
| { |
| int inuse, max_objects; |
| enum fullness_group fg; |
| BUG_ON(!is_first_page(page)); |
| |
| inuse = page->inuse; |
| max_objects = page->objects; |
| |
| if (inuse == 0) |
| fg = ZS_EMPTY; |
| else if (inuse == max_objects) |
| fg = ZS_FULL; |
| else if (inuse <= max_objects / fullness_threshold_frac) |
| fg = ZS_ALMOST_EMPTY; |
| else |
| fg = ZS_ALMOST_FULL; |
| |
| return fg; |
| } |
| |
| /* |
| * Each size class maintains various freelists and zspages are assigned |
| * to one of these freelists based on the number of live objects they |
| * have. This functions inserts the given zspage into the freelist |
| * identified by <class, fullness_group>. |
| */ |
| static void insert_zspage(struct page *page, struct size_class *class, |
| enum fullness_group fullness) |
| { |
| struct page **head; |
| |
| BUG_ON(!is_first_page(page)); |
| |
| if (fullness >= _ZS_NR_FULLNESS_GROUPS) |
| return; |
| |
| head = &class->fullness_list[fullness]; |
| if (*head) |
| list_add_tail(&page->lru, &(*head)->lru); |
| |
| *head = page; |
| } |
| |
| /* |
| * This function removes the given zspage from the freelist identified |
| * by <class, fullness_group>. |
| */ |
| static void remove_zspage(struct page *page, struct size_class *class, |
| enum fullness_group fullness) |
| { |
| struct page **head; |
| |
| BUG_ON(!is_first_page(page)); |
| |
| if (fullness >= _ZS_NR_FULLNESS_GROUPS) |
| return; |
| |
| head = &class->fullness_list[fullness]; |
| BUG_ON(!*head); |
| if (list_empty(&(*head)->lru)) |
| *head = NULL; |
| else if (*head == page) |
| *head = (struct page *)list_entry((*head)->lru.next, |
| struct page, lru); |
| |
| list_del_init(&page->lru); |
| } |
| |
| /* |
| * Each size class maintains zspages in different fullness groups depending |
| * on the number of live objects they contain. When allocating or freeing |
| * objects, the fullness status of the page can change, say, from ALMOST_FULL |
| * to ALMOST_EMPTY when freeing an object. This function checks if such |
| * a status change has occurred for the given page and accordingly moves the |
| * page from the freelist of the old fullness group to that of the new |
| * fullness group. |
| */ |
| static enum fullness_group fix_fullness_group(struct zs_pool *pool, |
| struct page *page) |
| { |
| int class_idx; |
| struct size_class *class; |
| enum fullness_group currfg, newfg; |
| |
| BUG_ON(!is_first_page(page)); |
| |
| get_zspage_mapping(page, &class_idx, &currfg); |
| newfg = get_fullness_group(page); |
| if (newfg == currfg) |
| goto out; |
| |
| class = &pool->size_class[class_idx]; |
| remove_zspage(page, class, currfg); |
| insert_zspage(page, class, newfg); |
| set_zspage_mapping(page, class_idx, newfg); |
| |
| out: |
| return newfg; |
| } |
| |
| /* |
| * We have to decide on how many pages to link together |
| * to form a zspage for each size class. This is important |
| * to reduce wastage due to unusable space left at end of |
| * each zspage which is given as: |
| * wastage = Zp - Zp % size_class |
| * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... |
| * |
| * For example, for size class of 3/8 * PAGE_SIZE, we should |
| * link together 3 PAGE_SIZE sized pages to form a zspage |
| * since then we can perfectly fit in 8 such objects. |
| */ |
| static int get_pages_per_zspage(int class_size) |
| { |
| int i, max_usedpc = 0; |
| /* zspage order which gives maximum used size per KB */ |
| int max_usedpc_order = 1; |
| |
| for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { |
| int zspage_size; |
| int waste, usedpc; |
| |
| zspage_size = i * PAGE_SIZE; |
| waste = zspage_size % class_size; |
| usedpc = (zspage_size - waste) * 100 / zspage_size; |
| |
| if (usedpc > max_usedpc) { |
| max_usedpc = usedpc; |
| max_usedpc_order = i; |
| } |
| } |
| |
| return max_usedpc_order; |
| } |
| |
| /* |
| * A single 'zspage' is composed of many system pages which are |
| * linked together using fields in struct page. This function finds |
| * the first/head page, given any component page of a zspage. |
| */ |
| static struct page *get_first_page(struct page *page) |
| { |
| if (is_first_page(page)) |
| return page; |
| else |
| return page->first_page; |
| } |
| |
| static struct page *get_next_page(struct page *page) |
| { |
| struct page *next; |
| |
| if (is_last_page(page)) |
| next = NULL; |
| else if (is_first_page(page)) |
| next = (struct page *)page_private(page); |
| else |
| next = list_entry(page->lru.next, struct page, lru); |
| |
| return next; |
| } |
| |
| /* |
| * Encode <page, obj_idx> as a single handle value. |
| * On hardware platforms with physical memory starting at 0x0 the pfn |
| * could be 0 so we ensure that the handle will never be 0 by adjusting the |
| * encoded obj_idx value before encoding. |
| */ |
| static void *obj_location_to_handle(struct page *page, unsigned long obj_idx) |
| { |
| unsigned long handle; |
| |
| if (!page) { |
| BUG_ON(obj_idx); |
| return NULL; |
| } |
| |
| handle = page_to_pfn(page) << OBJ_INDEX_BITS; |
| handle |= ((obj_idx + 1) & OBJ_INDEX_MASK); |
| |
| return (void *)handle; |
| } |
| |
| /* |
| * Decode <page, obj_idx> pair from the given object handle. We adjust the |
| * decoded obj_idx back to its original value since it was adjusted in |
| * obj_location_to_handle(). |
| */ |
| static void obj_handle_to_location(unsigned long handle, struct page **page, |
| unsigned long *obj_idx) |
| { |
| *page = pfn_to_page(handle >> OBJ_INDEX_BITS); |
| *obj_idx = (handle & OBJ_INDEX_MASK) - 1; |
| } |
| |
| static unsigned long obj_idx_to_offset(struct page *page, |
| unsigned long obj_idx, int class_size) |
| { |
| unsigned long off = 0; |
| |
| if (!is_first_page(page)) |
| off = page->index; |
| |
| return off + obj_idx * class_size; |
| } |
| |
| static void reset_page(struct page *page) |
| { |
| clear_bit(PG_private, &page->flags); |
| clear_bit(PG_private_2, &page->flags); |
| set_page_private(page, 0); |
| page->mapping = NULL; |
| page->freelist = NULL; |
| page_mapcount_reset(page); |
| } |
| |
| static void free_zspage(struct page *first_page) |
| { |
| struct page *nextp, *tmp, *head_extra; |
| |
| BUG_ON(!is_first_page(first_page)); |
| BUG_ON(first_page->inuse); |
| |
| head_extra = (struct page *)page_private(first_page); |
| |
| reset_page(first_page); |
| __free_page(first_page); |
| |
| /* zspage with only 1 system page */ |
| if (!head_extra) |
| return; |
| |
| list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) { |
| list_del(&nextp->lru); |
| reset_page(nextp); |
| __free_page(nextp); |
| } |
| reset_page(head_extra); |
| __free_page(head_extra); |
| } |
| |
| /* Initialize a newly allocated zspage */ |
| static void init_zspage(struct page *first_page, struct size_class *class) |
| { |
| unsigned long off = 0; |
| struct page *page = first_page; |
| |
| BUG_ON(!is_first_page(first_page)); |
| while (page) { |
| struct page *next_page; |
| struct link_free *link; |
| unsigned int i, objs_on_page; |
| |
| /* |
| * page->index stores offset of first object starting |
| * in the page. For the first page, this is always 0, |
| * so we use first_page->index (aka ->freelist) to store |
| * head of corresponding zspage's freelist. |
| */ |
| if (page != first_page) |
| page->index = off; |
| |
| link = (struct link_free *)kmap_atomic(page) + |
| off / sizeof(*link); |
| objs_on_page = (PAGE_SIZE - off) / class->size; |
| |
| for (i = 1; i <= objs_on_page; i++) { |
| off += class->size; |
| if (off < PAGE_SIZE) { |
| link->next = obj_location_to_handle(page, i); |
| link += class->size / sizeof(*link); |
| } |
| } |
| |
| /* |
| * We now come to the last (full or partial) object on this |
| * page, which must point to the first object on the next |
| * page (if present) |
| */ |
| next_page = get_next_page(page); |
| link->next = obj_location_to_handle(next_page, 0); |
| kunmap_atomic(link); |
| page = next_page; |
| off = (off + class->size) % PAGE_SIZE; |
| } |
| } |
| |
| /* |
| * Allocate a zspage for the given size class |
| */ |
| static struct page *alloc_zspage(struct size_class *class, gfp_t flags) |
| { |
| int i, error; |
| struct page *first_page = NULL, *uninitialized_var(prev_page); |
| |
| /* |
| * Allocate individual pages and link them together as: |
| * 1. first page->private = first sub-page |
| * 2. all sub-pages are linked together using page->lru |
| * 3. each sub-page is linked to the first page using page->first_page |
| * |
| * For each size class, First/Head pages are linked together using |
| * page->lru. Also, we set PG_private to identify the first page |
| * (i.e. no other sub-page has this flag set) and PG_private_2 to |
| * identify the last page. |
| */ |
| error = -ENOMEM; |
| for (i = 0; i < class->pages_per_zspage; i++) { |
| struct page *page; |
| |
| page = alloc_page(flags); |
| if (!page) |
| goto cleanup; |
| |
| INIT_LIST_HEAD(&page->lru); |
| if (i == 0) { /* first page */ |
| SetPagePrivate(page); |
| set_page_private(page, 0); |
| first_page = page; |
| first_page->inuse = 0; |
| } |
| if (i == 1) |
| set_page_private(first_page, (unsigned long)page); |
| if (i >= 1) |
| page->first_page = first_page; |
| if (i >= 2) |
| list_add(&page->lru, &prev_page->lru); |
| if (i == class->pages_per_zspage - 1) /* last page */ |
| SetPagePrivate2(page); |
| prev_page = page; |
| } |
| |
| init_zspage(first_page, class); |
| |
| first_page->freelist = obj_location_to_handle(first_page, 0); |
| /* Maximum number of objects we can store in this zspage */ |
| first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size; |
| |
| error = 0; /* Success */ |
| |
| cleanup: |
| if (unlikely(error) && first_page) { |
| free_zspage(first_page); |
| first_page = NULL; |
| } |
| |
| return first_page; |
| } |
| |
| static struct page *find_get_zspage(struct size_class *class) |
| { |
| int i; |
| struct page *page; |
| |
| for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) { |
| page = class->fullness_list[i]; |
| if (page) |
| break; |
| } |
| |
| return page; |
| } |
| |
| #ifdef CONFIG_PGTABLE_MAPPING |
| static inline int __zs_cpu_up(struct mapping_area *area) |
| { |
| /* |
| * Make sure we don't leak memory if a cpu UP notification |
| * and zs_init() race and both call zs_cpu_up() on the same cpu |
| */ |
| if (area->vm) |
| return 0; |
| area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); |
| if (!area->vm) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static inline void __zs_cpu_down(struct mapping_area *area) |
| { |
| if (area->vm) |
| free_vm_area(area->vm); |
| area->vm = NULL; |
| } |
| |
| static inline void *__zs_map_object(struct mapping_area *area, |
| struct page *pages[2], int off, int size) |
| { |
| BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); |
| area->vm_addr = area->vm->addr; |
| return area->vm_addr + off; |
| } |
| |
| static inline void __zs_unmap_object(struct mapping_area *area, |
| struct page *pages[2], int off, int size) |
| { |
| unsigned long addr = (unsigned long)area->vm_addr; |
| |
| unmap_kernel_range(addr, PAGE_SIZE * 2); |
| } |
| |
| #else /* CONFIG_PGTABLE_MAPPING */ |
| |
| static inline int __zs_cpu_up(struct mapping_area *area) |
| { |
| /* |
| * Make sure we don't leak memory if a cpu UP notification |
| * and zs_init() race and both call zs_cpu_up() on the same cpu |
| */ |
| if (area->vm_buf) |
| return 0; |
| area->vm_buf = (char *)__get_free_page(GFP_KERNEL); |
| if (!area->vm_buf) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static inline void __zs_cpu_down(struct mapping_area *area) |
| { |
| if (area->vm_buf) |
| free_page((unsigned long)area->vm_buf); |
| area->vm_buf = NULL; |
| } |
| |
| static void *__zs_map_object(struct mapping_area *area, |
| struct page *pages[2], int off, int size) |
| { |
| int sizes[2]; |
| void *addr; |
| char *buf = area->vm_buf; |
| |
| /* disable page faults to match kmap_atomic() return conditions */ |
| pagefault_disable(); |
| |
| /* no read fastpath */ |
| if (area->vm_mm == ZS_MM_WO) |
| goto out; |
| |
| sizes[0] = PAGE_SIZE - off; |
| sizes[1] = size - sizes[0]; |
| |
| /* copy object to per-cpu buffer */ |
| addr = kmap_atomic(pages[0]); |
| memcpy(buf, addr + off, sizes[0]); |
| kunmap_atomic(addr); |
| addr = kmap_atomic(pages[1]); |
| memcpy(buf + sizes[0], addr, sizes[1]); |
| kunmap_atomic(addr); |
| out: |
| return area->vm_buf; |
| } |
| |
| static void __zs_unmap_object(struct mapping_area *area, |
| struct page *pages[2], int off, int size) |
| { |
| int sizes[2]; |
| void *addr; |
| char *buf = area->vm_buf; |
| |
| /* no write fastpath */ |
| if (area->vm_mm == ZS_MM_RO) |
| goto out; |
| |
| sizes[0] = PAGE_SIZE - off; |
| sizes[1] = size - sizes[0]; |
| |
| /* copy per-cpu buffer to object */ |
| addr = kmap_atomic(pages[0]); |
| memcpy(addr + off, buf, sizes[0]); |
| kunmap_atomic(addr); |
| addr = kmap_atomic(pages[1]); |
| memcpy(addr, buf + sizes[0], sizes[1]); |
| kunmap_atomic(addr); |
| |
| out: |
| /* enable page faults to match kunmap_atomic() return conditions */ |
| pagefault_enable(); |
| } |
| |
| #endif /* CONFIG_PGTABLE_MAPPING */ |
| |
| static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action, |
| void *pcpu) |
| { |
| int ret, cpu = (long)pcpu; |
| struct mapping_area *area; |
| |
| switch (action) { |
| case CPU_UP_PREPARE: |
| area = &per_cpu(zs_map_area, cpu); |
| ret = __zs_cpu_up(area); |
| if (ret) |
| return notifier_from_errno(ret); |
| break; |
| case CPU_DEAD: |
| case CPU_UP_CANCELED: |
| area = &per_cpu(zs_map_area, cpu); |
| __zs_cpu_down(area); |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block zs_cpu_nb = { |
| .notifier_call = zs_cpu_notifier |
| }; |
| |
| static void zs_exit(void) |
| { |
| int cpu; |
| |
| cpu_notifier_register_begin(); |
| |
| for_each_online_cpu(cpu) |
| zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu); |
| __unregister_cpu_notifier(&zs_cpu_nb); |
| |
| cpu_notifier_register_done(); |
| } |
| |
| static int zs_init(void) |
| { |
| int cpu, ret; |
| |
| cpu_notifier_register_begin(); |
| |
| __register_cpu_notifier(&zs_cpu_nb); |
| for_each_online_cpu(cpu) { |
| ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu); |
| if (notifier_to_errno(ret)) { |
| cpu_notifier_register_done(); |
| goto fail; |
| } |
| } |
| |
| cpu_notifier_register_done(); |
| |
| return 0; |
| fail: |
| zs_exit(); |
| return notifier_to_errno(ret); |
| } |
| |
| /** |
| * zs_create_pool - Creates an allocation pool to work from. |
| * @flags: allocation flags used to allocate pool metadata |
| * |
| * This function must be called before anything when using |
| * the zsmalloc allocator. |
| * |
| * On success, a pointer to the newly created pool is returned, |
| * otherwise NULL. |
| */ |
| struct zs_pool *zs_create_pool(gfp_t flags) |
| { |
| int i, ovhd_size; |
| struct zs_pool *pool; |
| |
| ovhd_size = roundup(sizeof(*pool), PAGE_SIZE); |
| pool = kzalloc(ovhd_size, GFP_KERNEL); |
| if (!pool) |
| return NULL; |
| |
| for (i = 0; i < ZS_SIZE_CLASSES; i++) { |
| int size; |
| struct size_class *class; |
| |
| size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; |
| if (size > ZS_MAX_ALLOC_SIZE) |
| size = ZS_MAX_ALLOC_SIZE; |
| |
| class = &pool->size_class[i]; |
| class->size = size; |
| class->index = i; |
| spin_lock_init(&class->lock); |
| class->pages_per_zspage = get_pages_per_zspage(size); |
| |
| } |
| |
| pool->flags = flags; |
| |
| return pool; |
| } |
| EXPORT_SYMBOL_GPL(zs_create_pool); |
| |
| void zs_destroy_pool(struct zs_pool *pool) |
| { |
| int i; |
| |
| for (i = 0; i < ZS_SIZE_CLASSES; i++) { |
| int fg; |
| struct size_class *class = &pool->size_class[i]; |
| |
| for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) { |
| if (class->fullness_list[fg]) { |
| pr_info("Freeing non-empty class with size %db, fullness group %d\n", |
| class->size, fg); |
| } |
| } |
| } |
| kfree(pool); |
| } |
| EXPORT_SYMBOL_GPL(zs_destroy_pool); |
| |
| /** |
| * zs_malloc - Allocate block of given size from pool. |
| * @pool: pool to allocate from |
| * @size: size of block to allocate |
| * |
| * On success, handle to the allocated object is returned, |
| * otherwise 0. |
| * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. |
| */ |
| unsigned long zs_malloc(struct zs_pool *pool, size_t size) |
| { |
| unsigned long obj; |
| struct link_free *link; |
| int class_idx; |
| struct size_class *class; |
| |
| struct page *first_page, *m_page; |
| unsigned long m_objidx, m_offset; |
| |
| if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) |
| return 0; |
| |
| class_idx = get_size_class_index(size); |
| class = &pool->size_class[class_idx]; |
| BUG_ON(class_idx != class->index); |
| |
| spin_lock(&class->lock); |
| first_page = find_get_zspage(class); |
| |
| if (!first_page) { |
| spin_unlock(&class->lock); |
| first_page = alloc_zspage(class, pool->flags); |
| if (unlikely(!first_page)) |
| return 0; |
| |
| set_zspage_mapping(first_page, class->index, ZS_EMPTY); |
| spin_lock(&class->lock); |
| class->pages_allocated += class->pages_per_zspage; |
| } |
| |
| obj = (unsigned long)first_page->freelist; |
| obj_handle_to_location(obj, &m_page, &m_objidx); |
| m_offset = obj_idx_to_offset(m_page, m_objidx, class->size); |
| |
| link = (struct link_free *)kmap_atomic(m_page) + |
| m_offset / sizeof(*link); |
| first_page->freelist = link->next; |
| memset(link, POISON_INUSE, sizeof(*link)); |
| kunmap_atomic(link); |
| |
| first_page->inuse++; |
| /* Now move the zspage to another fullness group, if required */ |
| fix_fullness_group(pool, first_page); |
| spin_unlock(&class->lock); |
| |
| return obj; |
| } |
| EXPORT_SYMBOL_GPL(zs_malloc); |
| |
| void zs_free(struct zs_pool *pool, unsigned long obj) |
| { |
| struct link_free *link; |
| struct page *first_page, *f_page; |
| unsigned long f_objidx, f_offset; |
| |
| int class_idx; |
| struct size_class *class; |
| enum fullness_group fullness; |
| |
| if (unlikely(!obj)) |
| return; |
| |
| obj_handle_to_location(obj, &f_page, &f_objidx); |
| first_page = get_first_page(f_page); |
| |
| get_zspage_mapping(first_page, &class_idx, &fullness); |
| class = &pool->size_class[class_idx]; |
| f_offset = obj_idx_to_offset(f_page, f_objidx, class->size); |
| |
| spin_lock(&class->lock); |
| |
| /* Insert this object in containing zspage's freelist */ |
| link = (struct link_free *)((unsigned char *)kmap_atomic(f_page) |
| + f_offset); |
| link->next = first_page->freelist; |
| kunmap_atomic(link); |
| first_page->freelist = (void *)obj; |
| |
| first_page->inuse--; |
| fullness = fix_fullness_group(pool, first_page); |
| |
| if (fullness == ZS_EMPTY) |
| class->pages_allocated -= class->pages_per_zspage; |
| |
| spin_unlock(&class->lock); |
| |
| if (fullness == ZS_EMPTY) |
| free_zspage(first_page); |
| } |
| EXPORT_SYMBOL_GPL(zs_free); |
| |
| /** |
| * zs_map_object - get address of allocated object from handle. |
| * @pool: pool from which the object was allocated |
| * @handle: handle returned from zs_malloc |
| * |
| * Before using an object allocated from zs_malloc, it must be mapped using |
| * this function. When done with the object, it must be unmapped using |
| * zs_unmap_object. |
| * |
| * Only one object can be mapped per cpu at a time. There is no protection |
| * against nested mappings. |
| * |
| * This function returns with preemption and page faults disabled. |
| */ |
| void *zs_map_object(struct zs_pool *pool, unsigned long handle, |
| enum zs_mapmode mm) |
| { |
| struct page *page; |
| unsigned long obj_idx, off; |
| |
| unsigned int class_idx; |
| enum fullness_group fg; |
| struct size_class *class; |
| struct mapping_area *area; |
| struct page *pages[2]; |
| |
| BUG_ON(!handle); |
| |
| /* |
| * Because we use per-cpu mapping areas shared among the |
| * pools/users, we can't allow mapping in interrupt context |
| * because it can corrupt another users mappings. |
| */ |
| BUG_ON(in_interrupt()); |
| |
| obj_handle_to_location(handle, &page, &obj_idx); |
| get_zspage_mapping(get_first_page(page), &class_idx, &fg); |
| class = &pool->size_class[class_idx]; |
| off = obj_idx_to_offset(page, obj_idx, class->size); |
| |
| area = &get_cpu_var(zs_map_area); |
| area->vm_mm = mm; |
| if (off + class->size <= PAGE_SIZE) { |
| /* this object is contained entirely within a page */ |
| area->vm_addr = kmap_atomic(page); |
| return area->vm_addr + off; |
| } |
| |
| /* this object spans two pages */ |
| pages[0] = page; |
| pages[1] = get_next_page(page); |
| BUG_ON(!pages[1]); |
| |
| return __zs_map_object(area, pages, off, class->size); |
| } |
| EXPORT_SYMBOL_GPL(zs_map_object); |
| |
| void zs_unmap_object(struct zs_pool *pool, unsigned long handle) |
| { |
| struct page *page; |
| unsigned long obj_idx, off; |
| |
| unsigned int class_idx; |
| enum fullness_group fg; |
| struct size_class *class; |
| struct mapping_area *area; |
| |
| BUG_ON(!handle); |
| |
| obj_handle_to_location(handle, &page, &obj_idx); |
| get_zspage_mapping(get_first_page(page), &class_idx, &fg); |
| class = &pool->size_class[class_idx]; |
| off = obj_idx_to_offset(page, obj_idx, class->size); |
| |
| area = this_cpu_ptr(&zs_map_area); |
| if (off + class->size <= PAGE_SIZE) |
| kunmap_atomic(area->vm_addr); |
| else { |
| struct page *pages[2]; |
| |
| pages[0] = page; |
| pages[1] = get_next_page(page); |
| BUG_ON(!pages[1]); |
| |
| __zs_unmap_object(area, pages, off, class->size); |
| } |
| put_cpu_var(zs_map_area); |
| } |
| EXPORT_SYMBOL_GPL(zs_unmap_object); |
| |
| u64 zs_get_total_size_bytes(struct zs_pool *pool) |
| { |
| int i; |
| u64 npages = 0; |
| |
| for (i = 0; i < ZS_SIZE_CLASSES; i++) |
| npages += pool->size_class[i].pages_allocated; |
| |
| return npages << PAGE_SHIFT; |
| } |
| EXPORT_SYMBOL_GPL(zs_get_total_size_bytes); |
| |
| module_init(zs_init); |
| module_exit(zs_exit); |
| |
| MODULE_LICENSE("Dual BSD/GPL"); |
| MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); |