blob: ea2240cb1609c89344034a685f9ec9cb90d63afa [file] [log] [blame]
/* Copyright (c) 2002,2007-2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/sched.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/io.h>
#include <soc/qcom/scm.h>
#include <linux/msm-bus-board.h>
#include <linux/msm-bus.h>
#include "kgsl.h"
#include "kgsl_pwrscale.h"
#include "kgsl_sharedmem.h"
#include "kgsl_iommu.h"
#include "kgsl_trace.h"
#include "adreno_llc.h"
#include "adreno.h"
#include "adreno_iommu.h"
#include "adreno_compat.h"
#include "adreno_pm4types.h"
#include "adreno_trace.h"
#include "a3xx_reg.h"
#include "a6xx_reg.h"
#include "adreno_snapshot.h"
/* Include the master list of GPU cores that are supported */
#include "adreno-gpulist.h"
#include "adreno_dispatch.h"
#undef MODULE_PARAM_PREFIX
#define MODULE_PARAM_PREFIX "adreno."
static bool nopreempt;
module_param(nopreempt, bool, 0444);
MODULE_PARM_DESC(nopreempt, "Disable GPU preemption");
static bool swfdetect;
module_param(swfdetect, bool, 0444);
MODULE_PARM_DESC(swfdetect, "Enable soft fault detection");
#define DRIVER_VERSION_MAJOR 3
#define DRIVER_VERSION_MINOR 1
#define KGSL_LOG_LEVEL_DEFAULT 3
static void adreno_input_work(struct work_struct *work);
static unsigned int counter_delta(struct kgsl_device *device,
unsigned int reg, unsigned int *counter);
static struct devfreq_msm_adreno_tz_data adreno_tz_data = {
.bus = {
.max = 350,
},
.device_id = KGSL_DEVICE_3D0,
};
static const struct kgsl_functable adreno_functable;
static struct adreno_device device_3d0 = {
.dev = {
KGSL_DEVICE_COMMON_INIT(device_3d0.dev),
.pwrscale = KGSL_PWRSCALE_INIT(&adreno_tz_data),
.name = DEVICE_3D0_NAME,
.id = KGSL_DEVICE_3D0,
.gmu = {
.load_mode = TCM_BOOT,
},
.pwrctrl = {
.irq_name = "kgsl_3d0_irq",
},
.iomemname = "kgsl_3d0_reg_memory",
.shadermemname = "kgsl_3d0_shader_memory",
.ftbl = &adreno_functable,
.cmd_log = KGSL_LOG_LEVEL_DEFAULT,
.ctxt_log = KGSL_LOG_LEVEL_DEFAULT,
.drv_log = KGSL_LOG_LEVEL_DEFAULT,
.mem_log = KGSL_LOG_LEVEL_DEFAULT,
.pwr_log = KGSL_LOG_LEVEL_DEFAULT,
},
.fw[0] = {
.fwvirt = NULL
},
.fw[1] = {
.fwvirt = NULL
},
.gmem_size = SZ_256K,
.ft_policy = KGSL_FT_DEFAULT_POLICY,
.ft_pf_policy = KGSL_FT_PAGEFAULT_DEFAULT_POLICY,
.long_ib_detect = 1,
.input_work = __WORK_INITIALIZER(device_3d0.input_work,
adreno_input_work),
.pwrctrl_flag = BIT(ADRENO_SPTP_PC_CTRL) | BIT(ADRENO_PPD_CTRL) |
BIT(ADRENO_LM_CTRL) | BIT(ADRENO_HWCG_CTRL) |
BIT(ADRENO_THROTTLING_CTRL),
.profile.enabled = false,
.active_list = LIST_HEAD_INIT(device_3d0.active_list),
.active_list_lock = __SPIN_LOCK_UNLOCKED(device_3d0.active_list_lock),
.gpu_llc_slice_enable = true,
.gpuhtw_llc_slice_enable = true,
.preempt = {
.preempt_level = 1,
.skipsaverestore = 1,
.usesgmem = 1,
},
};
/* Ptr to array for the current set of fault detect registers */
unsigned int *adreno_ft_regs;
/* Total number of fault detect registers */
unsigned int adreno_ft_regs_num;
/* Ptr to array for the current fault detect registers values */
unsigned int *adreno_ft_regs_val;
/* Array of default fault detect registers */
static unsigned int adreno_ft_regs_default[] = {
ADRENO_REG_RBBM_STATUS,
ADRENO_REG_CP_RB_RPTR,
ADRENO_REG_CP_IB1_BASE,
ADRENO_REG_CP_IB1_BUFSZ,
ADRENO_REG_CP_IB2_BASE,
ADRENO_REG_CP_IB2_BUFSZ
};
/* Nice level for the higher priority GPU start thread */
int adreno_wake_nice = -7;
/* Number of milliseconds to stay active active after a wake on touch */
unsigned int adreno_wake_timeout = 100;
/**
* adreno_readreg64() - Read a 64bit register by getting its offset from the
* offset array defined in gpudev node
* @adreno_dev: Pointer to the the adreno device
* @lo: lower 32bit register enum that is to be read
* @hi: higher 32bit register enum that is to be read
* @val: 64 bit Register value read is placed here
*/
void adreno_readreg64(struct adreno_device *adreno_dev,
enum adreno_regs lo, enum adreno_regs hi, uint64_t *val)
{
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
unsigned int val_lo = 0, val_hi = 0;
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
if (adreno_checkreg_off(adreno_dev, lo))
kgsl_regread(device, gpudev->reg_offsets->offsets[lo], &val_lo);
if (adreno_checkreg_off(adreno_dev, hi))
kgsl_regread(device, gpudev->reg_offsets->offsets[hi], &val_hi);
*val = (val_lo | ((uint64_t)val_hi << 32));
}
/**
* adreno_writereg64() - Write a 64bit register by getting its offset from the
* offset array defined in gpudev node
* @adreno_dev: Pointer to the the adreno device
* @lo: lower 32bit register enum that is to be written
* @hi: higher 32bit register enum that is to be written
* @val: 64 bit value to write
*/
void adreno_writereg64(struct adreno_device *adreno_dev,
enum adreno_regs lo, enum adreno_regs hi, uint64_t val)
{
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
if (adreno_checkreg_off(adreno_dev, lo))
kgsl_regwrite(KGSL_DEVICE(adreno_dev),
gpudev->reg_offsets->offsets[lo], lower_32_bits(val));
if (adreno_checkreg_off(adreno_dev, hi))
kgsl_regwrite(KGSL_DEVICE(adreno_dev),
gpudev->reg_offsets->offsets[hi], upper_32_bits(val));
}
/**
* adreno_get_rptr() - Get the current ringbuffer read pointer
* @rb: Pointer the ringbuffer to query
*
* Get the latest rptr
*/
unsigned int adreno_get_rptr(struct adreno_ringbuffer *rb)
{
struct adreno_device *adreno_dev = ADRENO_RB_DEVICE(rb);
unsigned int rptr = 0;
if (adreno_is_a3xx(adreno_dev))
adreno_readreg(adreno_dev, ADRENO_REG_CP_RB_RPTR,
&rptr);
else {
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
kgsl_sharedmem_readl(&device->scratch, &rptr,
SCRATCH_RPTR_OFFSET(rb->id));
}
return rptr;
}
/**
* adreno_of_read_property() - Adreno read property
* @node: Device node
*
* Read a u32 property.
*/
static inline int adreno_of_read_property(struct device_node *node,
const char *prop, unsigned int *ptr)
{
int ret = of_property_read_u32(node, prop, ptr);
if (ret)
KGSL_CORE_ERR("Unable to read '%s'\n", prop);
return ret;
}
static void __iomem *efuse_base;
static size_t efuse_len;
int adreno_efuse_map(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct resource *res;
if (efuse_base != NULL)
return 0;
res = platform_get_resource_byname(device->pdev, IORESOURCE_MEM,
"qfprom_memory");
if (res == NULL)
return -ENODEV;
efuse_base = ioremap(res->start, resource_size(res));
if (efuse_base == NULL)
return -ENODEV;
efuse_len = resource_size(res);
return 0;
}
void adreno_efuse_unmap(struct adreno_device *adreno_dev)
{
if (efuse_base != NULL) {
iounmap(efuse_base);
efuse_base = NULL;
efuse_len = 0;
}
}
int adreno_efuse_read_u32(struct adreno_device *adreno_dev, unsigned int offset,
unsigned int *val)
{
if (efuse_base == NULL)
return -ENODEV;
if (offset >= efuse_len)
return -ERANGE;
if (val != NULL) {
*val = readl_relaxed(efuse_base + offset);
/* Make sure memory is updated before returning */
rmb();
}
return 0;
}
void adreno_efuse_speed_bin_array(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int ret, count, i = 0;
unsigned int val, vector_size = 3;
unsigned int *bin_vector;
/*
* Here count is no of 32 bit elements in the
* speed-bin-vector array. If there are two fuses
* i.e If no of fuses are 2 then no of elements will be
* 2 * 3 = 6(elements of 32 bit each).
*/
count = of_property_count_u32_elems(device->pdev->dev.of_node,
"qcom,gpu-speed-bin-vectors");
if ((count <= 0) || (count % vector_size))
return;
bin_vector = kmalloc_array(count, sizeof(unsigned int), GFP_KERNEL);
if (bin_vector == NULL) {
KGSL_DRV_ERR(device,
"Unable to allocate memory for speed-bin vector\n");
return;
}
if (of_property_read_u32_array(device->pdev->
dev.of_node, "qcom,gpu-speed-bin-vectors",
bin_vector, count)) {
KGSL_DRV_ERR(device,
"Speed-bin-vectors is invalid\n");
kfree(bin_vector);
return;
}
/*
* Final value of adreno_dev->speed_bin is the value formed by
* OR'ing the values read from all the fuses.
*/
while (i < count) {
ret = adreno_efuse_read_u32(adreno_dev, bin_vector[i], &val);
if (ret < 0)
break;
adreno_dev->speed_bin |= (val & bin_vector[i+1])
>> bin_vector[i+2];
i += vector_size;
}
kfree(bin_vector);
}
static int _get_counter(struct adreno_device *adreno_dev,
int group, int countable, unsigned int *lo,
unsigned int *hi)
{
int ret = 0;
if (*lo == 0) {
ret = adreno_perfcounter_get(adreno_dev, group, countable,
lo, hi, PERFCOUNTER_FLAG_KERNEL);
if (ret) {
KGSL_DRV_ERR(KGSL_DEVICE(adreno_dev),
"Unable to allocate fault detect performance counter %d/%d\n",
group, countable);
KGSL_DRV_ERR(KGSL_DEVICE(adreno_dev),
"GPU fault detect will be less reliable\n");
}
}
return ret;
}
static inline void _put_counter(struct adreno_device *adreno_dev,
int group, int countable, unsigned int *lo,
unsigned int *hi)
{
if (*lo != 0)
adreno_perfcounter_put(adreno_dev, group, countable,
PERFCOUNTER_FLAG_KERNEL);
*lo = 0;
*hi = 0;
}
/**
* adreno_fault_detect_start() - Allocate performance counters
* used for fast fault detection
* @adreno_dev: Pointer to an adreno_device structure
*
* Allocate the series of performance counters that should be periodically
* checked to verify that the GPU is still moving
*/
void adreno_fault_detect_start(struct adreno_device *adreno_dev)
{
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
unsigned int i, j = ARRAY_SIZE(adreno_ft_regs_default);
if (!test_bit(ADRENO_DEVICE_SOFT_FAULT_DETECT, &adreno_dev->priv))
return;
if (adreno_dev->fast_hang_detect == 1)
return;
for (i = 0; i < gpudev->ft_perf_counters_count; i++) {
_get_counter(adreno_dev, gpudev->ft_perf_counters[i].counter,
gpudev->ft_perf_counters[i].countable,
&adreno_ft_regs[j + (i * 2)],
&adreno_ft_regs[j + ((i * 2) + 1)]);
}
adreno_dev->fast_hang_detect = 1;
}
/**
* adreno_fault_detect_stop() - Release performance counters
* used for fast fault detection
* @adreno_dev: Pointer to an adreno_device structure
*
* Release the counters allocated in adreno_fault_detect_start
*/
void adreno_fault_detect_stop(struct adreno_device *adreno_dev)
{
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
unsigned int i, j = ARRAY_SIZE(adreno_ft_regs_default);
if (!test_bit(ADRENO_DEVICE_SOFT_FAULT_DETECT, &adreno_dev->priv))
return;
if (!adreno_dev->fast_hang_detect)
return;
for (i = 0; i < gpudev->ft_perf_counters_count; i++) {
_put_counter(adreno_dev, gpudev->ft_perf_counters[i].counter,
gpudev->ft_perf_counters[i].countable,
&adreno_ft_regs[j + (i * 2)],
&adreno_ft_regs[j + ((i * 2) + 1)]);
}
adreno_dev->fast_hang_detect = 0;
}
/*
* A workqueue callback responsible for actually turning on the GPU after a
* touch event. kgsl_pwrctrl_change_state(ACTIVE) is used without any
* active_count protection to avoid the need to maintain state. Either
* somebody will start using the GPU or the idle timer will fire and put the
* GPU back into slumber.
*/
static void adreno_input_work(struct work_struct *work)
{
struct adreno_device *adreno_dev = container_of(work,
struct adreno_device, input_work);
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
mutex_lock(&device->mutex);
device->flags |= KGSL_FLAG_WAKE_ON_TOUCH;
/*
* Don't schedule adreno_start in a high priority workqueue, we are
* already in a workqueue which should be sufficient
*/
kgsl_pwrctrl_change_state(device, KGSL_STATE_ACTIVE);
/*
* When waking up from a touch event we want to stay active long enough
* for the user to send a draw command. The default idle timer timeout
* is shorter than we want so go ahead and push the idle timer out
* further for this special case
*/
mod_timer(&device->idle_timer,
jiffies + msecs_to_jiffies(adreno_wake_timeout));
mutex_unlock(&device->mutex);
}
/*
* Process input events and schedule work if needed. At this point we are only
* interested in groking EV_ABS touchscreen events
*/
static void adreno_input_event(struct input_handle *handle, unsigned int type,
unsigned int code, int value)
{
struct kgsl_device *device = handle->handler->private;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
/* Only consider EV_ABS (touch) events */
if (type != EV_ABS)
return;
/*
* Don't do anything if anything hasn't been rendered since we've been
* here before
*/
if (device->flags & KGSL_FLAG_WAKE_ON_TOUCH)
return;
/*
* If the device is in nap, kick the idle timer to make sure that we
* don't go into slumber before the first render. If the device is
* already in slumber schedule the wake.
*/
if (device->state == KGSL_STATE_NAP) {
/*
* Set the wake on touch bit to keep from coming back here and
* keeping the device in nap without rendering
*/
device->flags |= KGSL_FLAG_WAKE_ON_TOUCH;
mod_timer(&device->idle_timer,
jiffies + device->pwrctrl.interval_timeout);
} else if (device->state == KGSL_STATE_SLUMBER) {
schedule_work(&adreno_dev->input_work);
}
}
#ifdef CONFIG_INPUT
static int adreno_input_connect(struct input_handler *handler,
struct input_dev *dev, const struct input_device_id *id)
{
struct input_handle *handle;
int ret;
handle = kzalloc(sizeof(*handle), GFP_KERNEL);
if (handle == NULL)
return -ENOMEM;
handle->dev = dev;
handle->handler = handler;
handle->name = handler->name;
ret = input_register_handle(handle);
if (ret) {
kfree(handle);
return ret;
}
ret = input_open_device(handle);
if (ret) {
input_unregister_handle(handle);
kfree(handle);
}
return ret;
}
static void adreno_input_disconnect(struct input_handle *handle)
{
input_close_device(handle);
input_unregister_handle(handle);
kfree(handle);
}
#else
static int adreno_input_connect(struct input_handler *handler,
struct input_dev *dev, const struct input_device_id *id)
{
return 0;
}
static void adreno_input_disconnect(struct input_handle *handle) {}
#endif
/*
* We are only interested in EV_ABS events so only register handlers for those
* input devices that have EV_ABS events
*/
static const struct input_device_id adreno_input_ids[] = {
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
.evbit = { BIT_MASK(EV_ABS) },
/* assumption: MT_.._X & MT_.._Y are in the same long */
.absbit = { [BIT_WORD(ABS_MT_POSITION_X)] =
BIT_MASK(ABS_MT_POSITION_X) |
BIT_MASK(ABS_MT_POSITION_Y) },
},
{ },
};
static struct input_handler adreno_input_handler = {
.event = adreno_input_event,
.connect = adreno_input_connect,
.disconnect = adreno_input_disconnect,
.name = "kgsl",
.id_table = adreno_input_ids,
};
/*
* _soft_reset() - Soft reset GPU
* @adreno_dev: Pointer to adreno device
*
* Soft reset the GPU by doing a AHB write of value 1 to RBBM_SW_RESET
* register. This is used when we want to reset the GPU without
* turning off GFX power rail. The reset when asserted resets
* all the HW logic, restores GPU registers to default state and
* flushes out pending VBIF transactions.
*/
static int _soft_reset(struct adreno_device *adreno_dev)
{
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
unsigned int reg;
/*
* On a530 v1 RBBM cannot be reset in soft reset.
* Reset all blocks except RBBM for a530v1.
*/
if (adreno_is_a530v1(adreno_dev)) {
adreno_writereg(adreno_dev, ADRENO_REG_RBBM_BLOCK_SW_RESET_CMD,
0xFFDFFC0);
adreno_writereg(adreno_dev, ADRENO_REG_RBBM_BLOCK_SW_RESET_CMD2,
0x1FFFFFFF);
} else {
adreno_writereg(adreno_dev, ADRENO_REG_RBBM_SW_RESET_CMD, 1);
/*
* Do a dummy read to get a brief read cycle delay for the
* reset to take effect
*/
adreno_readreg(adreno_dev, ADRENO_REG_RBBM_SW_RESET_CMD, &reg);
adreno_writereg(adreno_dev, ADRENO_REG_RBBM_SW_RESET_CMD, 0);
}
/* The SP/TP regulator gets turned off after a soft reset */
if (gpudev->regulator_enable)
gpudev->regulator_enable(adreno_dev);
return 0;
}
/**
* adreno_irqctrl() - Enables/disables the RBBM interrupt mask
* @adreno_dev: Pointer to an adreno_device
* @state: 1 for masked or 0 for unmasked
* Power: The caller of this function must make sure to use OOBs
* so that we know that the GPU is powered on
*/
void adreno_irqctrl(struct adreno_device *adreno_dev, int state)
{
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
unsigned int mask = state ? gpudev->irq->mask : 0;
adreno_writereg(adreno_dev, ADRENO_REG_RBBM_INT_0_MASK, mask);
}
/*
* adreno_hang_int_callback() - Isr for fatal interrupts that hang GPU
* @adreno_dev: Pointer to device
* @bit: Interrupt bit
*/
void adreno_hang_int_callback(struct adreno_device *adreno_dev, int bit)
{
KGSL_DRV_CRIT_RATELIMIT(KGSL_DEVICE(adreno_dev),
"MISC: GPU hang detected\n");
adreno_irqctrl(adreno_dev, 0);
/* Trigger a fault in the dispatcher - this will effect a restart */
adreno_set_gpu_fault(adreno_dev, ADRENO_HARD_FAULT);
adreno_dispatcher_schedule(KGSL_DEVICE(adreno_dev));
}
/*
* adreno_cp_callback() - CP interrupt handler
* @adreno_dev: Adreno device pointer
* @irq: irq number
*
* Handle the cp interrupt generated by GPU.
*/
void adreno_cp_callback(struct adreno_device *adreno_dev, int bit)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
adreno_dispatcher_schedule(device);
}
static irqreturn_t adreno_irq_handler(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
struct adreno_irq *irq_params = gpudev->irq;
irqreturn_t ret = IRQ_NONE;
unsigned int status = 0, fence = 0, fence_retries = 0, tmp, int_bit;
unsigned int shadow_status = 0;
int i;
atomic_inc(&adreno_dev->pending_irq_refcnt);
/* Ensure this increment is done before the IRQ status is updated */
smp_mb__after_atomic();
/*
* On A6xx, the GPU can power down once the INT_0_STATUS is read
* below. But there still might be some register reads required
* so force the GMU/GPU into KEEPALIVE mode until done with the ISR.
*/
if (gpudev->gpu_keepalive)
gpudev->gpu_keepalive(adreno_dev, true);
/*
* If the AHB fence is not in ALLOW mode when we receive an RBBM
* interrupt, something went wrong. This means that we cannot proceed
* since the IRQ status and clear registers are not accessible.
* This is usually harmless because the GMU will abort power collapse
* and change the fence back to ALLOW. Poll so that this can happen.
*/
if (kgsl_gmu_isenabled(device)) {
adreno_readreg(adreno_dev,
ADRENO_REG_GMU_AO_AHB_FENCE_CTRL,
&fence);
while (fence != 0) {
/* Wait for small time before trying again */
udelay(1);
adreno_readreg(adreno_dev,
ADRENO_REG_GMU_AO_AHB_FENCE_CTRL,
&fence);
if (fence_retries == FENCE_RETRY_MAX && fence != 0) {
adreno_readreg(adreno_dev,
ADRENO_REG_GMU_RBBM_INT_UNMASKED_STATUS,
&shadow_status);
KGSL_DRV_CRIT_RATELIMIT(device,
"AHB fence stuck in ISR: Shadow INT status=%8.8X\n",
shadow_status & irq_params->mask);
goto done;
}
fence_retries++;
}
}
adreno_readreg(adreno_dev, ADRENO_REG_RBBM_INT_0_STATUS, &status);
/*
* Clear all the interrupt bits but ADRENO_INT_RBBM_AHB_ERROR. Because
* even if we clear it here, it will stay high until it is cleared
* in its respective handler. Otherwise, the interrupt handler will
* fire again.
*/
int_bit = ADRENO_INT_BIT(adreno_dev, ADRENO_INT_RBBM_AHB_ERROR);
adreno_writereg(adreno_dev, ADRENO_REG_RBBM_INT_CLEAR_CMD,
status & ~int_bit);
/* Loop through all set interrupts and call respective handlers */
for (tmp = status; tmp != 0;) {
i = fls(tmp) - 1;
if (irq_params->funcs[i].func != NULL) {
if (irq_params->mask & BIT(i))
irq_params->funcs[i].func(adreno_dev, i);
} else
KGSL_DRV_CRIT_RATELIMIT(device,
"Unhandled interrupt bit %x\n", i);
ret = IRQ_HANDLED;
tmp &= ~BIT(i);
}
gpudev->irq_trace(adreno_dev, status);
/*
* Clear ADRENO_INT_RBBM_AHB_ERROR bit after this interrupt has been
* cleared in its respective handler
*/
if (status & int_bit)
adreno_writereg(adreno_dev, ADRENO_REG_RBBM_INT_CLEAR_CMD,
int_bit);
done:
/* Turn off the KEEPALIVE vote from earlier unless hard fault set */
if (gpudev->gpu_keepalive) {
/* If hard fault, then let snapshot turn off the keepalive */
if (!(adreno_gpu_fault(adreno_dev) & ADRENO_HARD_FAULT))
gpudev->gpu_keepalive(adreno_dev, false);
}
/* Make sure the regwrites are done before the decrement */
smp_mb__before_atomic();
atomic_dec(&adreno_dev->pending_irq_refcnt);
/* Ensure other CPUs see the decrement */
smp_mb__after_atomic();
return ret;
}
static inline bool _rev_match(unsigned int id, unsigned int entry)
{
return (entry == ANY_ID || entry == id);
}
static inline const struct adreno_gpu_core *_get_gpu_core(unsigned int chipid)
{
unsigned int core = ADRENO_CHIPID_CORE(chipid);
unsigned int major = ADRENO_CHIPID_MAJOR(chipid);
unsigned int minor = ADRENO_CHIPID_MINOR(chipid);
unsigned int patchid = ADRENO_CHIPID_PATCH(chipid);
int i;
for (i = 0; i < ARRAY_SIZE(adreno_gpulist); i++) {
if (core == adreno_gpulist[i].core &&
_rev_match(major, adreno_gpulist[i].major) &&
_rev_match(minor, adreno_gpulist[i].minor) &&
_rev_match(patchid, adreno_gpulist[i].patchid))
return &adreno_gpulist[i];
}
return NULL;
}
static struct {
unsigned int quirk;
const char *prop;
} adreno_quirks[] = {
{ ADRENO_QUIRK_TWO_PASS_USE_WFI, "qcom,gpu-quirk-two-pass-use-wfi" },
{ ADRENO_QUIRK_IOMMU_SYNC, "qcom,gpu-quirk-iommu-sync" },
{ ADRENO_QUIRK_CRITICAL_PACKETS, "qcom,gpu-quirk-critical-packets" },
{ ADRENO_QUIRK_FAULT_DETECT_MASK, "qcom,gpu-quirk-fault-detect-mask" },
{ ADRENO_QUIRK_DISABLE_RB_DP2CLOCKGATING,
"qcom,gpu-quirk-dp2clockgating-disable" },
{ ADRENO_QUIRK_DISABLE_LMLOADKILL,
"qcom,gpu-quirk-lmloadkill-disable" },
{ ADRENO_QUIRK_HFI_USE_REG, "qcom,gpu-quirk-hfi-use-reg" },
{ ADRENO_QUIRK_SECVID_SET_ONCE, "qcom,gpu-quirk-secvid-set-once" },
{ ADRENO_QUIRK_LIMIT_UCHE_GBIF_RW,
"qcom,gpu-quirk-limit-uche-gbif-rw" },
{ ADRENO_QUIRK_MMU_SECURE_CB_ALT, "qcom,gpu-quirk-mmu-secure-cb-alt" },
};
static struct device_node *
adreno_get_soc_hw_revision_node(struct adreno_device *adreno_dev,
struct platform_device *pdev)
{
struct device_node *node, *child;
unsigned int rev;
node = of_find_node_by_name(pdev->dev.of_node, "qcom,soc-hw-revisions");
if (node == NULL)
return NULL;
for_each_child_of_node(node, child) {
if (of_property_read_u32(child, "qcom,soc-hw-revision", &rev))
continue;
if (rev == adreno_dev->soc_hw_rev)
return child;
}
KGSL_DRV_WARN(KGSL_DEVICE(adreno_dev),
"No matching SOC HW revision found for efused HW rev=%u\n",
adreno_dev->soc_hw_rev);
return NULL;
}
static int adreno_update_soc_hw_revision_quirks(
struct adreno_device *adreno_dev, struct platform_device *pdev)
{
struct device_node *node;
int i;
node = adreno_get_soc_hw_revision_node(adreno_dev, pdev);
if (node == NULL)
node = pdev->dev.of_node;
/* get chip id, fall back to parent if revision node does not have it */
if (of_property_read_u32(node, "qcom,chipid", &adreno_dev->chipid))
if (of_property_read_u32(pdev->dev.of_node,
"qcom,chipid", &adreno_dev->chipid))
KGSL_DRV_FATAL(KGSL_DEVICE(adreno_dev),
"No GPU chip ID was specified\n");
/* update quirk */
for (i = 0; i < ARRAY_SIZE(adreno_quirks); i++) {
if (of_property_read_bool(node, adreno_quirks[i].prop))
adreno_dev->quirks |= adreno_quirks[i].quirk;
}
return 0;
}
static void
adreno_identify_gpu(struct adreno_device *adreno_dev)
{
const struct adreno_reg_offsets *reg_offsets;
struct adreno_gpudev *gpudev;
int i;
adreno_dev->gpucore = _get_gpu_core(adreno_dev->chipid);
if (adreno_dev->gpucore == NULL)
KGSL_DRV_FATAL(KGSL_DEVICE(adreno_dev),
"Unknown GPU chip ID %8.8X\n", adreno_dev->chipid);
/*
* The gmem size might be dynamic when ocmem is involved so copy it out
* of the gpu device
*/
adreno_dev->gmem_size = adreno_dev->gpucore->gmem_size;
/*
* Initialize uninitialzed gpu registers, only needs to be done once
* Make all offsets that are not initialized to ADRENO_REG_UNUSED
*/
gpudev = ADRENO_GPU_DEVICE(adreno_dev);
reg_offsets = gpudev->reg_offsets;
for (i = 0; i < ADRENO_REG_REGISTER_MAX; i++) {
if (reg_offsets->offset_0 != i && !reg_offsets->offsets[i])
reg_offsets->offsets[i] = ADRENO_REG_UNUSED;
}
/* Do target specific identification */
if (gpudev->platform_setup != NULL)
gpudev->platform_setup(adreno_dev);
}
static const struct platform_device_id adreno_id_table[] = {
{ DEVICE_3D0_NAME, (unsigned long) &device_3d0, },
{},
};
MODULE_DEVICE_TABLE(platform, adreno_id_table);
static const struct of_device_id adreno_match_table[] = {
{ .compatible = "qcom,kgsl-3d0", .data = &device_3d0 },
{}
};
static void adreno_of_get_ca_target_pwrlevel(struct adreno_device *adreno_dev,
struct device_node *node)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
unsigned int ca_target_pwrlevel = 1;
of_property_read_u32(node, "qcom,ca-target-pwrlevel",
&ca_target_pwrlevel);
if (ca_target_pwrlevel > device->pwrctrl.num_pwrlevels - 2)
ca_target_pwrlevel = 1;
device->pwrscale.ctxt_aware_target_pwrlevel = ca_target_pwrlevel;
}
static void adreno_of_get_ca_aware_properties(struct adreno_device *adreno_dev,
struct device_node *parent)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct kgsl_pwrscale *pwrscale = &device->pwrscale;
struct device_node *node, *child;
unsigned int bin = 0;
pwrscale->ctxt_aware_enable =
of_property_read_bool(parent, "qcom,enable-ca-jump");
if (pwrscale->ctxt_aware_enable) {
if (of_property_read_u32(parent, "qcom,ca-busy-penalty",
&pwrscale->ctxt_aware_busy_penalty))
pwrscale->ctxt_aware_busy_penalty = 12000;
node = of_find_node_by_name(parent, "qcom,gpu-pwrlevel-bins");
if (node == NULL) {
adreno_of_get_ca_target_pwrlevel(adreno_dev, parent);
return;
}
for_each_child_of_node(node, child) {
if (of_property_read_u32(child, "qcom,speed-bin", &bin))
continue;
if (bin == adreno_dev->speed_bin) {
adreno_of_get_ca_target_pwrlevel(adreno_dev,
child);
return;
}
}
pwrscale->ctxt_aware_target_pwrlevel = 1;
}
}
static int adreno_of_parse_pwrlevels(struct adreno_device *adreno_dev,
struct device_node *node)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
struct device_node *child;
pwr->num_pwrlevels = 0;
for_each_child_of_node(node, child) {
unsigned int index;
struct kgsl_pwrlevel *level;
if (adreno_of_read_property(child, "reg", &index))
return -EINVAL;
if (index >= KGSL_MAX_PWRLEVELS) {
KGSL_CORE_ERR("Pwrlevel index %d is out of range\n",
index);
continue;
}
if (index >= pwr->num_pwrlevels)
pwr->num_pwrlevels = index + 1;
level = &pwr->pwrlevels[index];
if (adreno_of_read_property(child, "qcom,gpu-freq",
&level->gpu_freq))
return -EINVAL;
if (adreno_of_read_property(child, "qcom,bus-freq",
&level->bus_freq))
return -EINVAL;
if (of_property_read_u32(child, "qcom,bus-min",
&level->bus_min))
level->bus_min = level->bus_freq;
if (of_property_read_u32(child, "qcom,bus-max",
&level->bus_max))
level->bus_max = level->bus_freq;
}
return 0;
}
static void adreno_of_get_initial_pwrlevel(struct adreno_device *adreno_dev,
struct device_node *node)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
int init_level = 1;
of_property_read_u32(node, "qcom,initial-pwrlevel", &init_level);
if (init_level < 0 || init_level > pwr->num_pwrlevels)
init_level = 1;
pwr->active_pwrlevel = init_level;
pwr->default_pwrlevel = init_level;
}
static int adreno_of_get_legacy_pwrlevels(struct adreno_device *adreno_dev,
struct device_node *parent)
{
struct device_node *node;
int ret;
node = of_find_node_by_name(parent, "qcom,gpu-pwrlevels");
if (node == NULL) {
KGSL_CORE_ERR("Unable to find 'qcom,gpu-pwrlevels'\n");
return -EINVAL;
}
ret = adreno_of_parse_pwrlevels(adreno_dev, node);
if (ret == 0)
adreno_of_get_initial_pwrlevel(adreno_dev, parent);
return ret;
}
static int adreno_of_get_pwrlevels(struct adreno_device *adreno_dev,
struct device_node *parent)
{
struct device_node *node, *child;
unsigned int bin = 0;
node = of_find_node_by_name(parent, "qcom,gpu-pwrlevel-bins");
if (node == NULL)
return adreno_of_get_legacy_pwrlevels(adreno_dev, parent);
for_each_child_of_node(node, child) {
if (of_property_read_u32(child, "qcom,speed-bin", &bin))
continue;
if (bin == adreno_dev->speed_bin) {
int ret;
ret = adreno_of_parse_pwrlevels(adreno_dev, child);
if (ret == 0)
adreno_of_get_initial_pwrlevel(adreno_dev,
child);
return ret;
}
}
KGSL_CORE_ERR("GPU speed_bin:%d mismatch for efused bin:%d\n",
adreno_dev->speed_bin, bin);
return -ENODEV;
}
static void
l3_pwrlevel_probe(struct kgsl_device *device, struct device_node *node)
{
struct device_node *pwrlevel_node, *child;
pwrlevel_node = of_find_node_by_name(node, "qcom,l3-pwrlevels");
if (pwrlevel_node == NULL)
return;
device->num_l3_pwrlevels = 0;
for_each_child_of_node(pwrlevel_node, child) {
unsigned int index;
if (of_property_read_u32(child, "reg", &index))
return;
if (index >= MAX_L3_LEVELS) {
dev_err(&device->pdev->dev, "L3 pwrlevel %d is out of range\n",
index);
continue;
}
if (index >= device->num_l3_pwrlevels)
device->num_l3_pwrlevels = index + 1;
if (of_property_read_u32(child, "qcom,l3-freq",
&device->l3_freq[index]))
return;
}
device->l3_clk = devm_clk_get(&device->pdev->dev, "l3_vote");
if (IS_ERR_OR_NULL(device->l3_clk)) {
dev_err(&device->pdev->dev, "Unable to get the l3_vote clock\n");
return;
}
}
static inline struct adreno_device *adreno_get_dev(struct platform_device *pdev)
{
const struct of_device_id *of_id =
of_match_device(adreno_match_table, &pdev->dev);
return of_id ? (struct adreno_device *) of_id->data : NULL;
}
static int adreno_of_get_power(struct adreno_device *adreno_dev,
struct platform_device *pdev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct device_node *node = pdev->dev.of_node;
struct resource *res;
unsigned int timeout;
if (of_property_read_string(node, "label", &pdev->name)) {
KGSL_CORE_ERR("Unable to read 'label'\n");
return -EINVAL;
}
if (adreno_of_read_property(node, "qcom,id", &pdev->id))
return -EINVAL;
/* Get starting physical address of device registers */
res = platform_get_resource_byname(device->pdev, IORESOURCE_MEM,
device->iomemname);
if (res == NULL) {
KGSL_DRV_ERR(device, "platform_get_resource_byname failed\n");
return -EINVAL;
}
if (res->start == 0 || resource_size(res) == 0) {
KGSL_DRV_ERR(device, "dev %d invalid register region\n",
device->id);
return -EINVAL;
}
device->reg_phys = res->start;
device->reg_len = resource_size(res);
if (adreno_of_get_pwrlevels(adreno_dev, node))
return -EINVAL;
/* Get context aware DCVS properties */
adreno_of_get_ca_aware_properties(adreno_dev, node);
l3_pwrlevel_probe(device, node);
/* get pm-qos-active-latency, set it to default if not found */
if (of_property_read_u32(node, "qcom,pm-qos-active-latency",
&device->pwrctrl.pm_qos_active_latency))
device->pwrctrl.pm_qos_active_latency = 501;
/* get pm-qos-cpu-mask-latency, set it to default if not found */
if (of_property_read_u32(node, "qcom,l2pc-cpu-mask-latency",
&device->pwrctrl.pm_qos_cpu_mask_latency))
device->pwrctrl.pm_qos_cpu_mask_latency = 501;
/* get pm-qos-wakeup-latency, set it to default if not found */
if (of_property_read_u32(node, "qcom,pm-qos-wakeup-latency",
&device->pwrctrl.pm_qos_wakeup_latency))
device->pwrctrl.pm_qos_wakeup_latency = 101;
if (of_property_read_u32(node, "qcom,idle-timeout", &timeout))
timeout = 80;
device->pwrctrl.interval_timeout = msecs_to_jiffies(timeout);
device->pwrctrl.bus_control = of_property_read_bool(node,
"qcom,bus-control");
device->pwrctrl.input_disable = of_property_read_bool(node,
"qcom,disable-wake-on-touch");
return 0;
}
#ifdef CONFIG_QCOM_OCMEM
static int
adreno_ocmem_malloc(struct adreno_device *adreno_dev)
{
if (!ADRENO_FEATURE(adreno_dev, ADRENO_USES_OCMEM))
return 0;
if (adreno_dev->ocmem_hdl == NULL) {
adreno_dev->ocmem_hdl =
ocmem_allocate(OCMEM_GRAPHICS, adreno_dev->gmem_size);
if (IS_ERR_OR_NULL(adreno_dev->ocmem_hdl)) {
adreno_dev->ocmem_hdl = NULL;
return -ENOMEM;
}
adreno_dev->gmem_size = adreno_dev->ocmem_hdl->len;
adreno_dev->gmem_base = adreno_dev->ocmem_hdl->addr;
}
return 0;
}
static void
adreno_ocmem_free(struct adreno_device *adreno_dev)
{
if (adreno_dev->ocmem_hdl != NULL) {
ocmem_free(OCMEM_GRAPHICS, adreno_dev->ocmem_hdl);
adreno_dev->ocmem_hdl = NULL;
}
}
#else
static int
adreno_ocmem_malloc(struct adreno_device *adreno_dev)
{
return 0;
}
static void
adreno_ocmem_free(struct adreno_device *adreno_dev)
{
}
#endif
static void adreno_cx_dbgc_probe(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct resource *res;
res = platform_get_resource_byname(device->pdev, IORESOURCE_MEM,
"kgsl_3d0_cx_dbgc_memory");
if (res == NULL)
return;
adreno_dev->cx_dbgc_base = res->start - device->reg_phys;
adreno_dev->cx_dbgc_len = resource_size(res);
adreno_dev->cx_dbgc_virt = devm_ioremap(device->dev,
device->reg_phys +
adreno_dev->cx_dbgc_base,
adreno_dev->cx_dbgc_len);
if (adreno_dev->cx_dbgc_virt == NULL)
KGSL_DRV_WARN(device, "cx_dbgc ioremap failed\n");
}
static void adreno_cx_misc_probe(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct resource *res;
res = platform_get_resource_byname(device->pdev, IORESOURCE_MEM,
"cx_misc");
if (res == NULL)
return;
adreno_dev->cx_misc_len = resource_size(res);
adreno_dev->cx_misc_virt = devm_ioremap(device->dev,
res->start, adreno_dev->cx_misc_len);
}
static void adreno_efuse_read_soc_hw_rev(struct adreno_device *adreno_dev)
{
unsigned int val;
unsigned int soc_hw_rev[3];
int ret;
if (of_property_read_u32_array(
KGSL_DEVICE(adreno_dev)->pdev->dev.of_node,
"qcom,soc-hw-rev-efuse", soc_hw_rev, 3))
return;
ret = adreno_efuse_map(adreno_dev);
if (ret) {
KGSL_CORE_ERR(
"Unable to map hardware revision fuse: ret=%d\n", ret);
return;
}
ret = adreno_efuse_read_u32(adreno_dev, soc_hw_rev[0], &val);
adreno_efuse_unmap(adreno_dev);
if (ret) {
KGSL_CORE_ERR(
"Unable to read hardware revision fuse: ret=%d\n", ret);
return;
}
adreno_dev->soc_hw_rev = (val >> soc_hw_rev[1]) & soc_hw_rev[2];
}
static bool adreno_is_gpu_disabled(struct adreno_device *adreno_dev)
{
unsigned int row0;
unsigned int pte_row0_msb[3];
int ret;
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
if (of_property_read_u32_array(device->pdev->dev.of_node,
"qcom,gpu-disable-fuse", pte_row0_msb, 3))
return false;
/*
* Read the fuse value to disable GPU driver if fuse
* is blown. By default(fuse value is 0) GPU is enabled.
*/
if (adreno_efuse_map(adreno_dev))
return false;
ret = adreno_efuse_read_u32(adreno_dev, pte_row0_msb[0], &row0);
adreno_efuse_unmap(adreno_dev);
if (ret)
return false;
return (row0 >> pte_row0_msb[2]) &
pte_row0_msb[1] ? true : false;
}
static int adreno_probe(struct platform_device *pdev)
{
struct kgsl_device *device;
struct adreno_device *adreno_dev;
int status;
adreno_dev = adreno_get_dev(pdev);
if (adreno_dev == NULL) {
pr_err("adreno: qcom,kgsl-3d0 does not exist in the device tree");
return -ENODEV;
}
device = KGSL_DEVICE(adreno_dev);
device->pdev = pdev;
if (adreno_is_gpu_disabled(adreno_dev)) {
pr_err("adreno: GPU is disabled on this device");
return -ENODEV;
}
/* Identify SOC hardware revision to be used */
adreno_efuse_read_soc_hw_rev(adreno_dev);
adreno_update_soc_hw_revision_quirks(adreno_dev, pdev);
/* Get the chip ID from the DT and set up target specific parameters */
adreno_identify_gpu(adreno_dev);
status = adreno_of_get_power(adreno_dev, pdev);
if (status) {
device->pdev = NULL;
return status;
}
/*
* Probe/init GMU after initial gpu power probe
* Another part of GPU power probe in platform_probe
* needs GMU initialized.
*/
status = gmu_probe(device);
if (status != 0 && status != -ENXIO) {
device->pdev = NULL;
return status;
}
/*
* The SMMU APIs use unsigned long for virtual addresses which means
* that we cannot use 64 bit virtual addresses on a 32 bit kernel even
* though the hardware and the rest of the KGSL driver supports it.
*/
if (adreno_support_64bit(adreno_dev))
device->mmu.features |= KGSL_MMU_64BIT;
status = kgsl_device_platform_probe(device);
if (status) {
device->pdev = NULL;
return status;
}
/* Probe for the optional CX_DBGC block */
adreno_cx_dbgc_probe(device);
/* Probe for the optional CX_MISC block */
adreno_cx_misc_probe(device);
/*
* qcom,iommu-secure-id is used to identify MMUs that can handle secure
* content but that is only part of the story - the GPU also has to be
* able to handle secure content. Unfortunately in a classic catch-22
* we cannot identify the GPU until after the DT is parsed. tl;dr -
* check the GPU capabilities here and modify mmu->secured accordingly
*/
if (!ADRENO_FEATURE(adreno_dev, ADRENO_CONTENT_PROTECTION))
device->mmu.secured = false;
if (ADRENO_FEATURE(adreno_dev, ADRENO_IOCOHERENT))
device->mmu.features |= KGSL_MMU_IO_COHERENT;
status = adreno_ringbuffer_probe(adreno_dev, nopreempt);
if (status)
goto out;
status = adreno_dispatcher_init(adreno_dev);
if (status)
goto out;
adreno_debugfs_init(adreno_dev);
adreno_profile_init(adreno_dev);
adreno_sysfs_init(adreno_dev);
kgsl_pwrscale_init(&pdev->dev, CONFIG_QCOM_ADRENO_DEFAULT_GOVERNOR);
/* Initialize coresight for the target */
adreno_coresight_init(adreno_dev);
/* Get the system cache slice descriptor for GPU */
adreno_dev->gpu_llc_slice = adreno_llc_getd(&pdev->dev, "gpu");
if (IS_ERR(adreno_dev->gpu_llc_slice)) {
KGSL_DRV_WARN(device,
"Failed to get GPU LLC slice descriptor (%ld)\n",
PTR_ERR(adreno_dev->gpu_llc_slice));
adreno_dev->gpu_llc_slice = NULL;
}
/* Get the system cache slice descriptor for GPU pagetables */
adreno_dev->gpuhtw_llc_slice = adreno_llc_getd(&pdev->dev, "gpuhtw");
if (IS_ERR(adreno_dev->gpuhtw_llc_slice)) {
KGSL_DRV_WARN(device,
"Failed to get gpuhtw LLC slice descriptor (%ld)\n",
PTR_ERR(adreno_dev->gpuhtw_llc_slice));
adreno_dev->gpuhtw_llc_slice = NULL;
}
#ifdef CONFIG_INPUT
if (!device->pwrctrl.input_disable) {
adreno_input_handler.private = device;
/*
* It isn't fatal if we cannot register the input handler. Sad,
* perhaps, but not fatal
*/
if (input_register_handler(&adreno_input_handler)) {
adreno_input_handler.private = NULL;
KGSL_DRV_ERR(device,
"Unable to register the input handler\n");
}
}
#endif
out:
if (status) {
adreno_ringbuffer_close(adreno_dev);
kgsl_device_platform_remove(device);
device->pdev = NULL;
}
return status;
}
static void _adreno_free_memories(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct adreno_firmware *pfp_fw = ADRENO_FW(adreno_dev, ADRENO_FW_PFP);
struct adreno_firmware *pm4_fw = ADRENO_FW(adreno_dev, ADRENO_FW_PM4);
if (test_bit(ADRENO_DEVICE_DRAWOBJ_PROFILE, &adreno_dev->priv))
kgsl_free_global(device, &adreno_dev->profile_buffer);
/* Free local copies of firmware and other command streams */
kfree(pfp_fw->fwvirt);
pfp_fw->fwvirt = NULL;
kfree(pm4_fw->fwvirt);
pm4_fw->fwvirt = NULL;
kfree(adreno_dev->gpmu_cmds);
adreno_dev->gpmu_cmds = NULL;
kgsl_free_global(device, &pfp_fw->memdesc);
kgsl_free_global(device, &pm4_fw->memdesc);
}
static int adreno_remove(struct platform_device *pdev)
{
struct adreno_device *adreno_dev = adreno_get_dev(pdev);
struct adreno_gpudev *gpudev;
struct kgsl_device *device;
if (adreno_dev == NULL)
return 0;
device = KGSL_DEVICE(adreno_dev);
gpudev = ADRENO_GPU_DEVICE(adreno_dev);
if (gpudev->remove != NULL)
gpudev->remove(adreno_dev);
/* The memory is fading */
_adreno_free_memories(adreno_dev);
#ifdef CONFIG_INPUT
if (adreno_input_handler.private)
input_unregister_handler(&adreno_input_handler);
#endif
adreno_sysfs_close(adreno_dev);
adreno_coresight_remove(adreno_dev);
adreno_profile_close(adreno_dev);
/* Release the system cache slice descriptor */
if (adreno_dev->gpu_llc_slice)
adreno_llc_putd(adreno_dev->gpu_llc_slice);
if (adreno_dev->gpuhtw_llc_slice)
adreno_llc_putd(adreno_dev->gpuhtw_llc_slice);
kgsl_pwrscale_close(device);
adreno_dispatcher_close(adreno_dev);
adreno_ringbuffer_close(adreno_dev);
adreno_fault_detect_stop(adreno_dev);
kfree(adreno_ft_regs);
adreno_ft_regs = NULL;
kfree(adreno_ft_regs_val);
adreno_ft_regs_val = NULL;
if (efuse_base != NULL)
iounmap(efuse_base);
adreno_perfcounter_close(adreno_dev);
kgsl_device_platform_remove(device);
gmu_remove(device);
if (test_bit(ADRENO_DEVICE_PWRON_FIXUP, &adreno_dev->priv)) {
kgsl_free_global(device, &adreno_dev->pwron_fixup);
clear_bit(ADRENO_DEVICE_PWRON_FIXUP, &adreno_dev->priv);
}
clear_bit(ADRENO_DEVICE_INITIALIZED, &adreno_dev->priv);
return 0;
}
static void adreno_fault_detect_init(struct adreno_device *adreno_dev)
{
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
int i;
if (!(swfdetect ||
ADRENO_FEATURE(adreno_dev, ADRENO_SOFT_FAULT_DETECT)))
return;
/* Disable the fast hang detect bit until we know its a go */
adreno_dev->fast_hang_detect = 0;
adreno_ft_regs_num = (ARRAY_SIZE(adreno_ft_regs_default) +
gpudev->ft_perf_counters_count*2);
adreno_ft_regs = kcalloc(adreno_ft_regs_num, sizeof(unsigned int),
GFP_KERNEL);
adreno_ft_regs_val = kcalloc(adreno_ft_regs_num, sizeof(unsigned int),
GFP_KERNEL);
if (adreno_ft_regs == NULL || adreno_ft_regs_val == NULL) {
kfree(adreno_ft_regs);
kfree(adreno_ft_regs_val);
adreno_ft_regs = NULL;
adreno_ft_regs_val = NULL;
return;
}
for (i = 0; i < ARRAY_SIZE(adreno_ft_regs_default); i++)
adreno_ft_regs[i] = adreno_getreg(adreno_dev,
adreno_ft_regs_default[i]);
set_bit(ADRENO_DEVICE_SOFT_FAULT_DETECT, &adreno_dev->priv);
adreno_fault_detect_start(adreno_dev);
}
static int adreno_init(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
int ret;
if (!adreno_is_a3xx(adreno_dev))
kgsl_sharedmem_set(device, &device->scratch, 0, 0,
device->scratch.size);
ret = kgsl_pwrctrl_change_state(device, KGSL_STATE_INIT);
if (ret)
return ret;
/*
* initialization only needs to be done once initially until
* device is shutdown
*/
if (test_bit(ADRENO_DEVICE_INITIALIZED, &adreno_dev->priv))
return 0;
/*
* Either the microcode read failed because the usermodehelper isn't
* available or the microcode was corrupted. Fail the init and force
* the user to try the open() again
*/
ret = gpudev->microcode_read(adreno_dev);
if (ret)
return ret;
/* Put the GPU in a responsive state */
if (ADRENO_GPUREV(adreno_dev) < 600) {
/* No need for newer generation architectures */
ret = kgsl_pwrctrl_change_state(device, KGSL_STATE_AWARE);
if (ret)
return ret;
}
ret = adreno_iommu_init(adreno_dev);
if (ret)
return ret;
adreno_perfcounter_init(adreno_dev);
adreno_fault_detect_init(adreno_dev);
/* Power down the device */
if (ADRENO_GPUREV(adreno_dev) < 600)
kgsl_pwrctrl_change_state(device, KGSL_STATE_SLUMBER);
if (gpudev->init != NULL)
gpudev->init(adreno_dev);
set_bit(ADRENO_DEVICE_INITIALIZED, &adreno_dev->priv);
/* Use shader offset and length defined in gpudev */
if (adreno_dev->gpucore->shader_offset &&
adreno_dev->gpucore->shader_size) {
if (device->shader_mem_phys || device->shader_mem_virt)
KGSL_DRV_ERR(device,
"Shader memory already specified in device tree\n");
else {
device->shader_mem_phys = device->reg_phys +
adreno_dev->gpucore->shader_offset;
device->shader_mem_virt = device->reg_virt +
adreno_dev->gpucore->shader_offset;
device->shader_mem_len =
adreno_dev->gpucore->shader_size;
}
}
/*
* Allocate a small chunk of memory for precise drawobj profiling for
* those targets that have the always on timer
*/
if (!adreno_is_a3xx(adreno_dev)) {
int r = kgsl_allocate_global(device,
&adreno_dev->profile_buffer, PAGE_SIZE,
0, 0, "alwayson");
adreno_dev->profile_index = 0;
if (r == 0) {
set_bit(ADRENO_DEVICE_DRAWOBJ_PROFILE,
&adreno_dev->priv);
kgsl_sharedmem_set(device,
&adreno_dev->profile_buffer, 0, 0,
PAGE_SIZE);
}
}
if (nopreempt == false &&
ADRENO_FEATURE(adreno_dev, ADRENO_PREEMPTION)) {
int r = 0;
if (gpudev->preemption_init)
r = gpudev->preemption_init(adreno_dev);
if (r == 0)
set_bit(ADRENO_DEVICE_PREEMPTION, &adreno_dev->priv);
else
WARN(1, "adreno: GPU preemption is disabled\n");
}
return 0;
}
static bool regulators_left_on(struct kgsl_device *device)
{
int i;
if (kgsl_gmu_isenabled(device))
return false;
for (i = 0; i < KGSL_MAX_REGULATORS; i++) {
struct kgsl_regulator *regulator =
&device->pwrctrl.regulators[i];
if (IS_ERR_OR_NULL(regulator->reg))
break;
if (regulator_is_enabled(regulator->reg))
return true;
}
return false;
}
static void _set_secvid(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
static bool set;
/* Program GPU contect protection init values */
if (device->mmu.secured && !set) {
if (adreno_is_a4xx(adreno_dev))
adreno_writereg(adreno_dev,
ADRENO_REG_RBBM_SECVID_TRUST_CONFIG, 0x2);
adreno_writereg(adreno_dev,
ADRENO_REG_RBBM_SECVID_TSB_CONTROL, 0x0);
adreno_writereg64(adreno_dev,
ADRENO_REG_RBBM_SECVID_TSB_TRUSTED_BASE,
ADRENO_REG_RBBM_SECVID_TSB_TRUSTED_BASE_HI,
KGSL_IOMMU_SECURE_BASE(&device->mmu));
adreno_writereg(adreno_dev,
ADRENO_REG_RBBM_SECVID_TSB_TRUSTED_SIZE,
KGSL_IOMMU_SECURE_SIZE);
if (ADRENO_QUIRK(adreno_dev, ADRENO_QUIRK_SECVID_SET_ONCE))
set = true;
}
}
static int adreno_switch_to_unsecure_mode(struct adreno_device *adreno_dev,
struct adreno_ringbuffer *rb)
{
unsigned int *cmds;
int ret;
cmds = adreno_ringbuffer_allocspace(rb, 2);
if (IS_ERR(cmds))
return PTR_ERR(cmds);
if (cmds == NULL)
return -ENOSPC;
cmds += cp_secure_mode(adreno_dev, cmds, 0);
ret = adreno_ringbuffer_submit_spin(rb, NULL, 2000);
if (ret)
adreno_spin_idle_debug(adreno_dev,
"Switch to unsecure failed to idle\n");
return ret;
}
int adreno_set_unsecured_mode(struct adreno_device *adreno_dev,
struct adreno_ringbuffer *rb)
{
int ret = 0;
if (!adreno_is_a5xx(adreno_dev) && !adreno_is_a6xx(adreno_dev))
return -EINVAL;
if (ADRENO_QUIRK(adreno_dev, ADRENO_QUIRK_CRITICAL_PACKETS) &&
adreno_is_a5xx(adreno_dev)) {
ret = a5xx_critical_packet_submit(adreno_dev, rb);
if (ret)
return ret;
}
/* GPU comes up in secured mode, make it unsecured by default */
if (adreno_dev->zap_loaded)
ret = adreno_switch_to_unsecure_mode(adreno_dev, rb);
else
adreno_writereg(adreno_dev,
ADRENO_REG_RBBM_SECVID_TRUST_CONTROL, 0x0);
return ret;
}
static void adreno_set_active_ctxs_null(struct adreno_device *adreno_dev)
{
int i;
struct adreno_ringbuffer *rb;
FOR_EACH_RINGBUFFER(adreno_dev, rb, i) {
if (rb->drawctxt_active)
kgsl_context_put(&(rb->drawctxt_active->base));
rb->drawctxt_active = NULL;
kgsl_sharedmem_writel(KGSL_DEVICE(adreno_dev),
&rb->pagetable_desc, PT_INFO_OFFSET(current_rb_ptname),
0);
}
}
/**
* _adreno_start - Power up the GPU and prepare to accept commands
* @adreno_dev: Pointer to an adreno_device structure
*
* The core function that powers up and initalizes the GPU. This function is
* called at init and after coming out of SLUMBER
*/
static int _adreno_start(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
int status = -EINVAL, ret;
unsigned int state = device->state;
bool regulator_left_on;
unsigned int pmqos_wakeup_vote = device->pwrctrl.pm_qos_wakeup_latency;
unsigned int pmqos_active_vote = device->pwrctrl.pm_qos_active_latency;
/* make sure ADRENO_DEVICE_STARTED is not set here */
BUG_ON(test_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv));
/* disallow l2pc during wake up to improve GPU wake up time */
kgsl_pwrctrl_update_l2pc(&adreno_dev->dev,
KGSL_L2PC_WAKEUP_TIMEOUT);
pm_qos_update_request(&device->pwrctrl.pm_qos_req_dma,
pmqos_wakeup_vote);
regulator_left_on = regulators_left_on(device);
/* Clear any GPU faults that might have been left over */
adreno_clear_gpu_fault(adreno_dev);
/* Put the GPU in a responsive state */
status = kgsl_pwrctrl_change_state(device, KGSL_STATE_AWARE);
if (status)
goto error_pwr_off;
/* Set any stale active contexts to NULL */
adreno_set_active_ctxs_null(adreno_dev);
/* Set the bit to indicate that we've just powered on */
set_bit(ADRENO_DEVICE_PWRON, &adreno_dev->priv);
/* Soft reset the GPU if a regulator is stuck on*/
if (regulator_left_on)
_soft_reset(adreno_dev);
adreno_ringbuffer_set_global(adreno_dev, 0);
status = kgsl_mmu_start(device);
if (status)
goto error_boot_oob_clear;
_set_secvid(device);
status = adreno_ocmem_malloc(adreno_dev);
if (status) {
KGSL_DRV_ERR(device, "OCMEM malloc failed\n");
goto error_mmu_off;
}
/* Send OOB request to turn on the GX */
if (gpudev->oob_set) {
status = gpudev->oob_set(adreno_dev, OOB_GPU_SET_MASK,
OOB_GPU_CHECK_MASK,
OOB_GPU_CLEAR_MASK);
if (status)
goto error_mmu_off;
}
/* Enable 64 bit gpu addr if feature is set */
if (gpudev->enable_64bit &&
adreno_support_64bit(adreno_dev))
gpudev->enable_64bit(adreno_dev);
if (adreno_dev->perfctr_pwr_lo == 0) {
ret = adreno_perfcounter_get(adreno_dev,
KGSL_PERFCOUNTER_GROUP_PWR, 1,
&adreno_dev->perfctr_pwr_lo, NULL,
PERFCOUNTER_FLAG_KERNEL);
if (ret) {
WARN_ONCE(1, "Unable to get perf counters for DCVS\n");
adreno_dev->perfctr_pwr_lo = 0;
}
}
if (device->pwrctrl.bus_control) {
/* VBIF waiting for RAM */
if (adreno_dev->starved_ram_lo == 0) {
ret = adreno_perfcounter_get(adreno_dev,
KGSL_PERFCOUNTER_GROUP_VBIF_PWR, 0,
&adreno_dev->starved_ram_lo, NULL,
PERFCOUNTER_FLAG_KERNEL);
if (ret) {
KGSL_DRV_ERR(device,
"Unable to get perf counters for bus DCVS\n");
adreno_dev->starved_ram_lo = 0;
}
}
if (adreno_has_gbif(adreno_dev)) {
if (adreno_dev->starved_ram_lo_ch1 == 0) {
ret = adreno_perfcounter_get(adreno_dev,
KGSL_PERFCOUNTER_GROUP_VBIF_PWR, 1,
&adreno_dev->starved_ram_lo_ch1, NULL,
PERFCOUNTER_FLAG_KERNEL);
if (ret) {
KGSL_DRV_ERR(device,
"Unable to get perf counters for bus DCVS\n");
adreno_dev->starved_ram_lo_ch1 = 0;
}
}
if (adreno_dev->ram_cycles_lo == 0) {
ret = adreno_perfcounter_get(adreno_dev,
KGSL_PERFCOUNTER_GROUP_VBIF,
GBIF_AXI0_READ_DATA_TOTAL_BEATS,
&adreno_dev->ram_cycles_lo, NULL,
PERFCOUNTER_FLAG_KERNEL);
if (ret) {
KGSL_DRV_ERR(device,
"Unable to get perf counters for bus DCVS\n");
adreno_dev->ram_cycles_lo = 0;
}
}
if (adreno_dev->ram_cycles_lo_ch1_read == 0) {
ret = adreno_perfcounter_get(adreno_dev,
KGSL_PERFCOUNTER_GROUP_VBIF,
GBIF_AXI1_READ_DATA_TOTAL_BEATS,
&adreno_dev->ram_cycles_lo_ch1_read,
NULL,
PERFCOUNTER_FLAG_KERNEL);
if (ret) {
KGSL_DRV_ERR(device,
"Unable to get perf counters for bus DCVS\n");
adreno_dev->ram_cycles_lo_ch1_read = 0;
}
}
if (adreno_dev->ram_cycles_lo_ch0_write == 0) {
ret = adreno_perfcounter_get(adreno_dev,
KGSL_PERFCOUNTER_GROUP_VBIF,
GBIF_AXI0_WRITE_DATA_TOTAL_BEATS,
&adreno_dev->ram_cycles_lo_ch0_write,
NULL,
PERFCOUNTER_FLAG_KERNEL);
if (ret) {
KGSL_DRV_ERR(device,
"Unable to get perf counters for bus DCVS\n");
adreno_dev->ram_cycles_lo_ch0_write = 0;
}
}
if (adreno_dev->ram_cycles_lo_ch1_write == 0) {
ret = adreno_perfcounter_get(adreno_dev,
KGSL_PERFCOUNTER_GROUP_VBIF,
GBIF_AXI1_WRITE_DATA_TOTAL_BEATS,
&adreno_dev->ram_cycles_lo_ch1_write,
NULL,
PERFCOUNTER_FLAG_KERNEL);
if (ret) {
KGSL_DRV_ERR(device,
"Unable to get perf counters for bus DCVS\n");
adreno_dev->ram_cycles_lo_ch1_write = 0;
}
}
} else {
/* VBIF DDR cycles */
if (adreno_dev->ram_cycles_lo == 0) {
ret = adreno_perfcounter_get(adreno_dev,
KGSL_PERFCOUNTER_GROUP_VBIF,
VBIF_AXI_TOTAL_BEATS,
&adreno_dev->ram_cycles_lo, NULL,
PERFCOUNTER_FLAG_KERNEL);
if (ret) {
KGSL_DRV_ERR(device,
"Unable to get perf counters for bus DCVS\n");
adreno_dev->ram_cycles_lo = 0;
}
}
}
}
if (kgsl_gmu_isenabled(device) && adreno_dev->perfctr_ifpc_lo == 0) {
ret = adreno_perfcounter_get(adreno_dev,
KGSL_PERFCOUNTER_GROUP_GPMU_PWR, 4,
&adreno_dev->perfctr_ifpc_lo, NULL,
PERFCOUNTER_FLAG_KERNEL);
if (ret) {
WARN_ONCE(1, "Unable to get perf counter for IFPC\n");
adreno_dev->perfctr_ifpc_lo = 0;
}
}
/* Clear the busy_data stats - we're starting over from scratch */
adreno_dev->busy_data.gpu_busy = 0;
adreno_dev->busy_data.bif_ram_cycles = 0;
adreno_dev->busy_data.bif_ram_cycles_read_ch1 = 0;
adreno_dev->busy_data.bif_ram_cycles_write_ch0 = 0;
adreno_dev->busy_data.bif_ram_cycles_write_ch1 = 0;
adreno_dev->busy_data.bif_starved_ram = 0;
adreno_dev->busy_data.bif_starved_ram_ch1 = 0;
adreno_dev->busy_data.num_ifpc = 0;
/* Restore performance counter registers with saved values */
adreno_perfcounter_restore(adreno_dev);
/* Start the GPU */
gpudev->start(adreno_dev);
/*
* The system cache control registers
* live on the CX rail. Hence need
* reprogramming everytime the GPU
* comes out of power collapse.
*/
adreno_llc_setup(device);
/* Re-initialize the coresight registers if applicable */
adreno_coresight_start(adreno_dev);
adreno_irqctrl(adreno_dev, 1);
adreno_perfcounter_start(adreno_dev);
/* Clear FSR here in case it is set from a previous pagefault */
kgsl_mmu_clear_fsr(&device->mmu);
status = adreno_ringbuffer_start(adreno_dev, ADRENO_START_COLD);
if (status)
goto error_oob_clear;
/* Start the dispatcher */
adreno_dispatcher_start(device);
device->reset_counter++;
set_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv);
if (pmqos_active_vote != pmqos_wakeup_vote)
pm_qos_update_request(&device->pwrctrl.pm_qos_req_dma,
pmqos_active_vote);
/* Send OOB request to allow IFPC */
if (gpudev->oob_clear) {
gpudev->oob_clear(adreno_dev, OOB_GPU_CLEAR_MASK);
/* If we made it this far, the BOOT OOB was sent to the GMU */
if (ADRENO_QUIRK(adreno_dev, ADRENO_QUIRK_HFI_USE_REG))
gpudev->oob_clear(adreno_dev,
OOB_BOOT_SLUMBER_CLEAR_MASK);
}
return 0;
error_oob_clear:
if (gpudev->oob_clear)
gpudev->oob_clear(adreno_dev, OOB_GPU_CLEAR_MASK);
error_mmu_off:
kgsl_mmu_stop(&device->mmu);
error_boot_oob_clear:
if (gpudev->oob_clear &&
ADRENO_QUIRK(adreno_dev, ADRENO_QUIRK_HFI_USE_REG))
gpudev->oob_clear(adreno_dev,
OOB_BOOT_SLUMBER_CLEAR_MASK);
error_pwr_off:
/* set the state back to original state */
kgsl_pwrctrl_change_state(device, state);
if (pmqos_active_vote != pmqos_wakeup_vote)
pm_qos_update_request(&device->pwrctrl.pm_qos_req_dma,
pmqos_active_vote);
return status;
}
/**
* adreno_start() - Power up and initialize the GPU
* @device: Pointer to the KGSL device to power up
* @priority: Boolean flag to specify of the start should be scheduled in a low
* latency work queue
*
* Power up the GPU and initialize it. If priority is specified then elevate
* the thread priority for the duration of the start operation
*/
int adreno_start(struct kgsl_device *device, int priority)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
int nice = task_nice(current);
int ret;
if (priority && (adreno_wake_nice < nice))
set_user_nice(current, adreno_wake_nice);
ret = _adreno_start(adreno_dev);
if (priority)
set_user_nice(current, nice);
return ret;
}
static int adreno_stop(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
int error = 0;
if (!test_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv))
return 0;
/* Turn the power on one last time before stopping */
if (gpudev->oob_set) {
error = gpudev->oob_set(adreno_dev, OOB_GPU_SET_MASK,
OOB_GPU_CHECK_MASK,
OOB_GPU_CLEAR_MASK);
if (error) {
struct gmu_device *gmu = &device->gmu;
gpudev->oob_clear(adreno_dev, OOB_GPU_CLEAR_MASK);
if (gmu->gx_gdsc &&
regulator_is_enabled(gmu->gx_gdsc)) {
/* GPU is on. Try recovery */
set_bit(GMU_FAULT, &gmu->flags);
gmu_snapshot(device);
error = -EINVAL;
} else {
return error;
}
}
}
adreno_dispatcher_stop(adreno_dev);
adreno_ringbuffer_stop(adreno_dev);
kgsl_pwrscale_update_stats(device);
adreno_irqctrl(adreno_dev, 0);
adreno_ocmem_free(adreno_dev);
if (adreno_dev->gpu_llc_slice)
adreno_llc_deactivate_slice(adreno_dev->gpu_llc_slice);
if (adreno_dev->gpuhtw_llc_slice)
adreno_llc_deactivate_slice(adreno_dev->gpuhtw_llc_slice);
/* Save active coresight registers if applicable */
adreno_coresight_stop(adreno_dev);
/* Save physical performance counter values before GPU power down*/
adreno_perfcounter_save(adreno_dev);
if (gpudev->oob_clear)
gpudev->oob_clear(adreno_dev, OOB_GPU_CLEAR_MASK);
/*
* Saving perfcounters will use an OOB to put the GMU into
* active state. Before continuing, we should wait for the
* GMU to return to the lowest idle level. This is
* because some idle level transitions require VBIF and MMU.
*/
if (!error && gpudev->wait_for_lowest_idle &&
gpudev->wait_for_lowest_idle(adreno_dev)) {
struct gmu_device *gmu = &device->gmu;
set_bit(GMU_FAULT, &gmu->flags);
gmu_snapshot(device);
/*
* Assume GMU hang after 10ms without responding.
* It shall be relative safe to clear vbif and stop
* MMU later. Early return in adreno_stop function
* will result in kernel panic in adreno_start
*/
error = -EINVAL;
}
adreno_vbif_clear_pending_transactions(device);
kgsl_mmu_stop(&device->mmu);
/*
* At this point, MMU is turned off so we can safely
* destroy any pending contexts and their pagetables
*/
adreno_set_active_ctxs_null(adreno_dev);
clear_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv);
return error;
}
static inline bool adreno_try_soft_reset(struct kgsl_device *device, int fault)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
/*
* Do not do soft reset for a IOMMU fault (because the IOMMU hardware
* needs a reset too) or for the A304 because it can't do SMMU
* programming of any kind after a soft reset
*/
if ((fault & ADRENO_IOMMU_PAGE_FAULT) || adreno_is_a304(adreno_dev))
return false;
return true;
}
/**
* adreno_reset() - Helper function to reset the GPU
* @device: Pointer to the KGSL device structure for the GPU
* @fault: Type of fault. Needed to skip soft reset for MMU fault
*
* Try to reset the GPU to recover from a fault. First, try to do a low latency
* soft reset. If the soft reset fails for some reason, then bring out the big
* guns and toggle the footswitch.
*/
int adreno_reset(struct kgsl_device *device, int fault)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
int ret = -EINVAL;
int i = 0;
/* Try soft reset first */
if (adreno_try_soft_reset(device, fault)) {
/* Make sure VBIF is cleared before resetting */
ret = adreno_vbif_clear_pending_transactions(device);
if (ret == 0) {
ret = adreno_soft_reset(device);
if (ret)
KGSL_DEV_ERR_ONCE(device,
"Device soft reset failed\n");
}
}
if (ret) {
/* If soft reset failed/skipped, then pull the power */
kgsl_pwrctrl_change_state(device, KGSL_STATE_INIT);
/* since device is officially off now clear start bit */
clear_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv);
/* Keep trying to start the device until it works */
for (i = 0; i < NUM_TIMES_RESET_RETRY; i++) {
ret = adreno_start(device, 0);
if (!ret)
break;
msleep(20);
}
}
if (ret)
return ret;
if (i != 0)
KGSL_DRV_WARN(device, "Device hard reset tried %d tries\n", i);
/*
* If active_cnt is non-zero then the system was active before
* going into a reset - put it back in that state
*/
if (atomic_read(&device->active_cnt))
kgsl_pwrctrl_change_state(device, KGSL_STATE_ACTIVE);
else
kgsl_pwrctrl_change_state(device, KGSL_STATE_NAP);
return ret;
}
static int adreno_getproperty(struct kgsl_device *device,
unsigned int type,
void __user *value,
size_t sizebytes)
{
int status = -EINVAL;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
switch (type) {
case KGSL_PROP_DEVICE_INFO:
{
struct kgsl_devinfo devinfo;
if (sizebytes != sizeof(devinfo)) {
status = -EINVAL;
break;
}
memset(&devinfo, 0, sizeof(devinfo));
devinfo.device_id = device->id+1;
devinfo.chip_id = adreno_dev->chipid;
devinfo.mmu_enabled =
MMU_FEATURE(&device->mmu, KGSL_MMU_PAGED);
devinfo.gmem_gpubaseaddr = adreno_dev->gmem_base;
devinfo.gmem_sizebytes = adreno_dev->gmem_size;
if (copy_to_user(value, &devinfo, sizeof(devinfo)) !=
0) {
status = -EFAULT;
break;
}
status = 0;
}
break;
case KGSL_PROP_DEVICE_SHADOW:
{
struct kgsl_shadowprop shadowprop;
if (sizebytes != sizeof(shadowprop)) {
status = -EINVAL;
break;
}
memset(&shadowprop, 0, sizeof(shadowprop));
if (device->memstore.hostptr) {
/*NOTE: with mmu enabled, gpuaddr doesn't mean
* anything to mmap().
*/
shadowprop.gpuaddr =
(unsigned long)device->memstore.gpuaddr;
shadowprop.size = device->memstore.size;
/* GSL needs this to be set, even if it
* appears to be meaningless
*/
shadowprop.flags = KGSL_FLAGS_INITIALIZED |
KGSL_FLAGS_PER_CONTEXT_TIMESTAMPS;
}
if (copy_to_user(value, &shadowprop,
sizeof(shadowprop))) {
status = -EFAULT;
break;
}
status = 0;
}
break;
case KGSL_PROP_DEVICE_QDSS_STM:
{
struct kgsl_qdss_stm_prop qdssprop = {0};
struct kgsl_memdesc *qdss_desc =
kgsl_mmu_get_qdss_global_entry(device);
if (sizebytes != sizeof(qdssprop)) {
status = -EINVAL;
break;
}
if (qdss_desc) {
qdssprop.gpuaddr = qdss_desc->gpuaddr;
qdssprop.size = qdss_desc->size;
}
if (copy_to_user(value, &qdssprop,
sizeof(qdssprop))) {
status = -EFAULT;
break;
}
status = 0;
}
break;
case KGSL_PROP_DEVICE_QTIMER:
{
struct kgsl_qtimer_prop qtimerprop = {0};
struct kgsl_memdesc *qtimer_desc =
kgsl_mmu_get_qtimer_global_entry(device);
if (sizebytes != sizeof(qtimerprop)) {
status = -EINVAL;
break;
}
if (qtimer_desc) {
qtimerprop.gpuaddr = qtimer_desc->gpuaddr;
qtimerprop.size = qtimer_desc->size;
}
if (copy_to_user(value, &qtimerprop,
sizeof(qtimerprop))) {
status = -EFAULT;
break;
}
status = 0;
}
break;
case KGSL_PROP_MMU_ENABLE:
{
/* Report MMU only if we can handle paged memory */
int mmu_prop = MMU_FEATURE(&device->mmu,
KGSL_MMU_PAGED);
if (sizebytes < sizeof(mmu_prop)) {
status = -EINVAL;
break;
}
if (copy_to_user(value, &mmu_prop, sizeof(mmu_prop))) {
status = -EFAULT;
break;
}
status = 0;
}
break;
case KGSL_PROP_INTERRUPT_WAITS:
{
int int_waits = 1;
if (sizebytes != sizeof(int)) {
status = -EINVAL;
break;
}
if (copy_to_user(value, &int_waits, sizeof(int))) {
status = -EFAULT;
break;
}
status = 0;
}
break;
case KGSL_PROP_UCHE_GMEM_VADDR:
{
uint64_t gmem_vaddr = 0;
if (adreno_is_a5xx(adreno_dev) ||
adreno_is_a6xx(adreno_dev))
gmem_vaddr = ADRENO_UCHE_GMEM_BASE;
if (sizebytes != sizeof(uint64_t)) {
status = -EINVAL;
break;
}
if (copy_to_user(value, &gmem_vaddr,
sizeof(uint64_t))) {
status = -EFAULT;
break;
}
status = 0;
}
break;
case KGSL_PROP_SP_GENERIC_MEM:
{
struct kgsl_sp_generic_mem sp_mem;
if (sizebytes != sizeof(sp_mem)) {
status = -EINVAL;
break;
}
memset(&sp_mem, 0, sizeof(sp_mem));
sp_mem.local = adreno_dev->sp_local_gpuaddr;
sp_mem.pvt = adreno_dev->sp_pvt_gpuaddr;
if (copy_to_user(value, &sp_mem, sizeof(sp_mem))) {
status = -EFAULT;
break;
}
status = 0;
}
break;
case KGSL_PROP_UCODE_VERSION:
{
struct kgsl_ucode_version ucode;
if (sizebytes != sizeof(ucode)) {
status = -EINVAL;
break;
}
memset(&ucode, 0, sizeof(ucode));
ucode.pfp = adreno_dev->fw[ADRENO_FW_PFP].version;
ucode.pm4 = adreno_dev->fw[ADRENO_FW_PM4].version;
if (copy_to_user(value, &ucode, sizeof(ucode))) {
status = -EFAULT;
break;
}
status = 0;
}
break;
case KGSL_PROP_GPMU_VERSION:
{
struct kgsl_gpmu_version gpmu;
if (adreno_dev->gpucore == NULL) {
status = -EINVAL;
break;
}
if (!ADRENO_FEATURE(adreno_dev, ADRENO_GPMU)) {
status = -EOPNOTSUPP;
break;
}
if (sizebytes != sizeof(gpmu)) {
status = -EINVAL;
break;
}
memset(&gpmu, 0, sizeof(gpmu));
gpmu.major = adreno_dev->gpucore->gpmu_major;
gpmu.minor = adreno_dev->gpucore->gpmu_minor;
gpmu.features = adreno_dev->gpucore->gpmu_features;
if (copy_to_user(value, &gpmu, sizeof(gpmu))) {
status = -EFAULT;
break;
}
status = 0;
}
break;
case KGSL_PROP_HIGHEST_BANK_BIT:
{
unsigned int bit;
if (sizebytes < sizeof(unsigned int)) {
status = -EINVAL;
break;
}
if (of_property_read_u32(device->pdev->dev.of_node,
"qcom,highest-bank-bit", &bit)) {
status = -EINVAL;
break;
}
if (copy_to_user(value, &bit, sizeof(bit))) {
status = -EFAULT;
break;
}
}
status = 0;
break;
case KGSL_PROP_MIN_ACCESS_LENGTH:
{
unsigned int mal;
if (sizebytes < sizeof(unsigned int)) {
status = -EINVAL;
break;
}
if (of_property_read_u32(device->pdev->dev.of_node,
"qcom,min-access-length", &mal)) {
mal = 0;
}
if (copy_to_user(value, &mal, sizeof(mal))) {
status = -EFAULT;
break;
}
}
status = 0;
break;
case KGSL_PROP_UBWC_MODE:
{
unsigned int mode;
if (sizebytes < sizeof(unsigned int)) {
status = -EINVAL;
break;
}
if (of_property_read_u32(device->pdev->dev.of_node,
"qcom,ubwc-mode", &mode))
mode = 0;
if (copy_to_user(value, &mode, sizeof(mode))) {
status = -EFAULT;
break;
}
}
status = 0;
break;
case KGSL_PROP_DEVICE_BITNESS:
{
unsigned int bitness = 32;
if (sizebytes != sizeof(unsigned int)) {
status = -EINVAL;
break;
}
/* No of bits used by the GPU */
if (adreno_support_64bit(adreno_dev))
bitness = 48;
if (copy_to_user(value, &bitness,
sizeof(unsigned int))) {
status = -EFAULT;
break;
}
status = 0;
}
break;
default:
status = -EINVAL;
}
return status;
}
int adreno_set_constraint(struct kgsl_device *device,
struct kgsl_context *context,
struct kgsl_device_constraint *constraint)
{
int status = 0;
switch (constraint->type) {
case KGSL_CONSTRAINT_PWRLEVEL: {
struct kgsl_device_constraint_pwrlevel pwr;
if (constraint->size != sizeof(pwr)) {
status = -EINVAL;
break;
}
if (copy_from_user(&pwr,
(void __user *)constraint->data,
sizeof(pwr))) {
status = -EFAULT;
break;
}
if (pwr.level >= KGSL_CONSTRAINT_PWR_MAXLEVELS) {
status = -EINVAL;
break;
}
context->pwr_constraint.type =
KGSL_CONSTRAINT_PWRLEVEL;
context->pwr_constraint.sub_type = pwr.level;
trace_kgsl_user_pwrlevel_constraint(device,
context->id,
context->pwr_constraint.type,
context->pwr_constraint.sub_type);
}
break;
case KGSL_CONSTRAINT_NONE:
if (context->pwr_constraint.type == KGSL_CONSTRAINT_PWRLEVEL)
trace_kgsl_user_pwrlevel_constraint(device,
context->id,
KGSL_CONSTRAINT_NONE,
context->pwr_constraint.sub_type);
context->pwr_constraint.type = KGSL_CONSTRAINT_NONE;
break;
case KGSL_CONSTRAINT_L3_PWRLEVEL: {
struct kgsl_device_constraint_pwrlevel pwr;
if (constraint->size != sizeof(pwr)) {
status = -EINVAL;
break;
}
if (copy_from_user(&pwr, (void __user *)constraint->data,
sizeof(pwr))) {
status = -EFAULT;
break;
}
if (pwr.level >= KGSL_CONSTRAINT_PWR_MAXLEVELS)
pwr.level = KGSL_CONSTRAINT_PWR_MAXLEVELS-1;
context->l3_pwr_constraint.type = KGSL_CONSTRAINT_L3_PWRLEVEL;
context->l3_pwr_constraint.sub_type = pwr.level;
trace_kgsl_user_pwrlevel_constraint(device, context->id,
context->l3_pwr_constraint.type,
context->l3_pwr_constraint.sub_type);
}
break;
case KGSL_CONSTRAINT_L3_NONE: {
unsigned int type = context->l3_pwr_constraint.type;
if (type == KGSL_CONSTRAINT_L3_PWRLEVEL)
trace_kgsl_user_pwrlevel_constraint(device, context->id,
KGSL_CONSTRAINT_L3_NONE,
context->l3_pwr_constraint.sub_type);
context->l3_pwr_constraint.type = KGSL_CONSTRAINT_L3_NONE;
}
break;
default:
status = -EINVAL;
break;
}
/* If a new constraint has been set for a context, cancel the old one */
if ((status == 0) &&
(context->id == device->pwrctrl.constraint.owner_id)) {
trace_kgsl_constraint(device, device->pwrctrl.constraint.type,
device->pwrctrl.active_pwrlevel, 0);
device->pwrctrl.constraint.type = KGSL_CONSTRAINT_NONE;
}
return status;
}
static int adreno_setproperty(struct kgsl_device_private *dev_priv,
unsigned int type,
void __user *value,
unsigned int sizebytes)
{
int status = -EINVAL;
struct kgsl_device *device = dev_priv->device;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
switch (type) {
case KGSL_PROP_PWRCTRL: {
unsigned int enable;
if (sizebytes != sizeof(enable))
break;
if (copy_from_user(&enable, value, sizeof(enable))) {
status = -EFAULT;
break;
}
mutex_lock(&device->mutex);
if (enable) {
device->pwrctrl.ctrl_flags = 0;
if (!kgsl_active_count_get(device)) {
adreno_fault_detect_start(adreno_dev);
kgsl_active_count_put(device);
}
kgsl_pwrscale_enable(device);
} else {
kgsl_pwrctrl_change_state(device,
KGSL_STATE_ACTIVE);
device->pwrctrl.ctrl_flags = KGSL_PWR_ON;
adreno_fault_detect_stop(adreno_dev);
kgsl_pwrscale_disable(device, true);
}
mutex_unlock(&device->mutex);
status = 0;
}
break;
case KGSL_PROP_PWR_CONSTRAINT: {
struct kgsl_device_constraint constraint;
struct kgsl_context *context;
if (sizebytes != sizeof(constraint))
break;
if (copy_from_user(&constraint, value,
sizeof(constraint))) {
status = -EFAULT;
break;
}
context = kgsl_context_get_owner(dev_priv,
constraint.context_id);
if (context == NULL)
break;
status = adreno_set_constraint(device, context,
&constraint);
kgsl_context_put(context);
}
break;
case KGSL_PROP_L3_PWR_CONSTRAINT: {
struct kgsl_device_constraint constraint;
struct kgsl_context *context;
if (sizebytes != sizeof(constraint))
break;
if (copy_from_user(&constraint, value,
sizeof(constraint))) {
status = -EFAULT;
break;
}
context = kgsl_context_get_owner(dev_priv,
constraint.context_id);
if (context == NULL)
break;
status = adreno_set_constraint(device, context,
&constraint);
kgsl_context_put(context);
}
break;
default:
break;
}
return status;
}
/*
* adreno_irq_pending() - Checks if interrupt is generated by h/w
* @adreno_dev: Pointer to device whose interrupts are checked
*
* Returns true if interrupts are pending from device else 0.
*/
inline unsigned int adreno_irq_pending(struct adreno_device *adreno_dev)
{
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
unsigned int status;
adreno_readreg(adreno_dev, ADRENO_REG_RBBM_INT_0_STATUS, &status);
/*
* IRQ handler clears the RBBM INT0 status register immediately
* entering the ISR before actually serving the interrupt because
* of this we can't rely only on RBBM INT0 status only.
* Use pending_irq_refcnt along with RBBM INT0 to correctly
* determine whether any IRQ is pending or not.
*/
if ((status & gpudev->irq->mask) ||
atomic_read(&adreno_dev->pending_irq_refcnt))
return 1;
else
return 0;
}
/**
* adreno_hw_isidle() - Check if the GPU core is idle
* @adreno_dev: Pointer to the Adreno device structure for the GPU
*
* Return true if the RBBM status register for the GPU type indicates that the
* hardware is idle
*/
bool adreno_hw_isidle(struct adreno_device *adreno_dev)
{
const struct adreno_gpu_core *gpucore = adreno_dev->gpucore;
unsigned int reg_rbbm_status;
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
/* if hw driver implements idle check - use it */
if (gpudev->hw_isidle)
return gpudev->hw_isidle(adreno_dev);
if (adreno_is_a540(adreno_dev))
/**
* Due to CRC idle throttling GPU
* idle hysteresys can take up to
* 3usec for expire - account for it
*/
udelay(5);
adreno_readreg(adreno_dev, ADRENO_REG_RBBM_STATUS,
&reg_rbbm_status);
if (reg_rbbm_status & gpucore->busy_mask)
return false;
/* Don't consider ourselves idle if there is an IRQ pending */
if (adreno_irq_pending(adreno_dev))
return false;
return true;
}
/**
* adreno_soft_reset() - Do a soft reset of the GPU hardware
* @device: KGSL device to soft reset
*
* "soft reset" the GPU hardware - this is a fast path GPU reset
* The GPU hardware is reset but we never pull power so we can skip
* a lot of the standard adreno_stop/adreno_start sequence
*/
int adreno_soft_reset(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
int ret;
if (gpudev->oob_set) {
ret = gpudev->oob_set(adreno_dev, OOB_GPU_SET_MASK,
OOB_GPU_CHECK_MASK,
OOB_GPU_CLEAR_MASK);
if (ret)
return ret;
}
kgsl_pwrctrl_change_state(device, KGSL_STATE_AWARE);
adreno_set_active_ctxs_null(adreno_dev);
adreno_irqctrl(adreno_dev, 0);
adreno_clear_gpu_fault(adreno_dev);
/* since device is oficially off now clear start bit */
clear_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv);
/* save physical performance counter values before GPU soft reset */
adreno_perfcounter_save(adreno_dev);
/* Reset the GPU */
if (gpudev->soft_reset)
ret = gpudev->soft_reset(adreno_dev);
else
ret = _soft_reset(adreno_dev);
if (ret) {
if (gpudev->oob_clear)
gpudev->oob_clear(adreno_dev, OOB_GPU_CLEAR_MASK);
return ret;
}
/* Clear the busy_data stats - we're starting over from scratch */
adreno_dev->busy_data.gpu_busy = 0;
adreno_dev->busy_data.bif_ram_cycles = 0;
adreno_dev->busy_data.bif_ram_cycles_read_ch1 = 0;
adreno_dev->busy_data.bif_ram_cycles_write_ch0 = 0;
adreno_dev->busy_data.bif_ram_cycles_write_ch1 = 0;
adreno_dev->busy_data.bif_starved_ram = 0;
adreno_dev->busy_data.bif_starved_ram_ch1 = 0;
/* Set the page table back to the default page table */
adreno_ringbuffer_set_global(adreno_dev, 0);
kgsl_mmu_set_pt(&device->mmu, device->mmu.defaultpagetable);
_set_secvid(device);
/* Enable 64 bit gpu addr if feature is set */
if (gpudev->enable_64bit &&
adreno_support_64bit(adreno_dev))
gpudev->enable_64bit(adreno_dev);
/* Reinitialize the GPU */
gpudev->start(adreno_dev);
/* Re-initialize the coresight registers if applicable */
adreno_coresight_start(adreno_dev);
/* Enable IRQ */
adreno_irqctrl(adreno_dev, 1);
/* stop all ringbuffers to cancel RB events */
adreno_ringbuffer_stop(adreno_dev);
/*
* If we have offsets for the jump tables we can try to do a warm start,
* otherwise do a full ringbuffer restart
*/
if (ADRENO_FEATURE(adreno_dev, ADRENO_WARM_START))
ret = adreno_ringbuffer_start(adreno_dev, ADRENO_START_WARM);
else
ret = adreno_ringbuffer_start(adreno_dev, ADRENO_START_COLD);
if (ret == 0) {
device->reset_counter++;
set_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv);
}
/* Restore physical performance counter values after soft reset */
adreno_perfcounter_restore(adreno_dev);
if (gpudev->oob_clear)
gpudev->oob_clear(adreno_dev, OOB_GPU_CLEAR_MASK);
return ret;
}
/*
* adreno_isidle() - return true if the GPU hardware is idle
* @device: Pointer to the KGSL device structure for the GPU
*
* Return true if the GPU hardware is idle and there are no commands pending in
* the ringbuffer
*/
bool adreno_isidle(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_ringbuffer *rb;
int i;
if (!kgsl_state_is_awake(device))
return true;
/*
* wptr is updated when we add commands to ringbuffer, add a barrier
* to make sure updated wptr is compared to rptr
*/
smp_mb();
/*
* ringbuffer is truly idle when all ringbuffers read and write
* pointers are equal
*/
FOR_EACH_RINGBUFFER(adreno_dev, rb, i) {
if (!adreno_rb_empty(rb))
return false;
}
return adreno_hw_isidle(adreno_dev);
}
/* Print some key registers if a spin-for-idle times out */
void adreno_spin_idle_debug(struct adreno_device *adreno_dev,
const char *str)
{
struct kgsl_device *device = &adreno_dev->dev;
unsigned int rptr, wptr;
unsigned int status, status3, intstatus;
unsigned int hwfault;
dev_err(device->dev, str);
adreno_readreg(adreno_dev, ADRENO_REG_CP_RB_RPTR, &rptr);
adreno_readreg(adreno_dev, ADRENO_REG_CP_RB_WPTR, &wptr);
adreno_readreg(adreno_dev, ADRENO_REG_RBBM_STATUS, &status);
adreno_readreg(adreno_dev, ADRENO_REG_RBBM_STATUS3, &status3);
adreno_readreg(adreno_dev, ADRENO_REG_RBBM_INT_0_STATUS, &intstatus);
adreno_readreg(adreno_dev, ADRENO_REG_CP_HW_FAULT, &hwfault);
dev_err(device->dev,
"rb=%d pos=%X/%X rbbm_status=%8.8X/%8.8X int_0_status=%8.8X\n",
adreno_dev->cur_rb->id, rptr, wptr, status, status3, intstatus);
dev_err(device->dev, " hwfault=%8.8X\n", hwfault);
kgsl_device_snapshot(device, NULL, adreno_gmu_gpu_fault(adreno_dev));
}
/**
* adreno_spin_idle() - Spin wait for the GPU to idle
* @adreno_dev: Pointer to an adreno device
* @timeout: milliseconds to wait before returning error
*
* Spin the CPU waiting for the RBBM status to return idle
*/
int adreno_spin_idle(struct adreno_device *adreno_dev, unsigned int timeout)
{
unsigned long wait = jiffies + msecs_to_jiffies(timeout);
do {
/*
* If we fault, stop waiting and return an error. The dispatcher
* will clean up the fault from the work queue, but we need to
* make sure we don't block it by waiting for an idle that
* will never come.
*/
if (adreno_gpu_fault(adreno_dev) != 0)
return -EDEADLK;
if (adreno_isidle(KGSL_DEVICE(adreno_dev)))
return 0;
} while (time_before(jiffies, wait));
/*
* Under rare conditions, preemption can cause the while loop to exit
* without checking if the gpu is idle. check one last time before we
* return failure.
*/
if (adreno_gpu_fault(adreno_dev) != 0)
return -EDEADLK;
if (adreno_isidle(KGSL_DEVICE(adreno_dev)))
return 0;
return -ETIMEDOUT;
}
/**
* adreno_idle() - wait for the GPU hardware to go idle
* @device: Pointer to the KGSL device structure for the GPU
*
* Wait up to ADRENO_IDLE_TIMEOUT milliseconds for the GPU hardware to go quiet.
* Caller must hold the device mutex, and must not hold the dispatcher mutex.
*/
int adreno_idle(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
int ret;
/*
* Make sure the device mutex is held so the dispatcher can't send any
* more commands to the hardware
*/
if (WARN_ON(!mutex_is_locked(&device->mutex)))
return -EDEADLK;
/* Check if we are already idle before idling dispatcher */
if (adreno_isidle(device))
return 0;
/*
* Wait for dispatcher to finish completing commands
* already submitted
*/
ret = adreno_dispatcher_idle(adreno_dev);
if (ret)
return ret;
return adreno_spin_idle(adreno_dev, ADRENO_IDLE_TIMEOUT);
}
/**
* adreno_drain() - Drain the dispatch queue
* @device: Pointer to the KGSL device structure for the GPU
*
* Drain the dispatcher of existing drawobjs. This halts
* additional commands from being issued until the gate is completed.
*/
static int adreno_drain(struct kgsl_device *device)
{
reinit_completion(&device->halt_gate);
return 0;
}
/* Caller must hold the device mutex. */
static int adreno_suspend_context(struct kgsl_device *device)
{
/* process any profiling results that are available */
adreno_profile_process_results(ADRENO_DEVICE(device));
/* Wait for the device to go idle */
return adreno_idle(device);
}
/**
* adreno_read - General read function to read adreno device memory
* @device - Pointer to the GPU device struct (for adreno device)
* @base - Base address (kernel virtual) where the device memory is mapped
* @offsetwords - Offset in words from the base address, of the memory that
* is to be read
* @value - Value read from the device memory
* @mem_len - Length of the device memory mapped to the kernel
*/
static void adreno_read(struct kgsl_device *device, void __iomem *base,
unsigned int offsetwords, unsigned int *value,
unsigned int mem_len)
{
void __iomem *reg;
/* Make sure we're not reading from invalid memory */
if (WARN(offsetwords * sizeof(uint32_t) >= mem_len,
"Out of bounds register read: 0x%x/0x%x\n",
offsetwords, mem_len >> 2))
return;
reg = (base + (offsetwords << 2));
if (!in_interrupt())
kgsl_pre_hwaccess(device);
*value = __raw_readl(reg);
/*
* ensure this read finishes before the next one.
* i.e. act like normal readl()
*/
rmb();
}
/**
* adreno_regread - Used to read adreno device registers
* @offsetwords - Word (4 Bytes) offset to the register to be read
* @value - Value read from device register
*/
static void adreno_regread(struct kgsl_device *device, unsigned int offsetwords,
unsigned int *value)
{
adreno_read(device, device->reg_virt, offsetwords, value,
device->reg_len);
}
/**
* adreno_shadermem_regread - Used to read GPU (adreno) shader memory
* @device - GPU device whose shader memory is to be read
* @offsetwords - Offset in words, of the shader memory address to be read
* @value - Pointer to where the read shader mem value is to be stored
*/
void adreno_shadermem_regread(struct kgsl_device *device,
unsigned int offsetwords, unsigned int *value)
{
adreno_read(device, device->shader_mem_virt, offsetwords, value,
device->shader_mem_len);
}
static void adreno_regwrite(struct kgsl_device *device,
unsigned int offsetwords,
unsigned int value)
{
void __iomem *reg;
/* Make sure we're not writing to an invalid register */
if (WARN(offsetwords * sizeof(uint32_t) >= device->reg_len,
"Out of bounds register write: 0x%x/0x%x\n",
offsetwords, device->reg_len >> 2))
return;
if (!in_interrupt())
kgsl_pre_hwaccess(device);
trace_kgsl_regwrite(device, offsetwords, value);
reg = (device->reg_virt + (offsetwords << 2));
/*
* ensure previous writes post before this one,
* i.e. act like normal writel()
*/
wmb();
__raw_writel(value, reg);
}
static void adreno_gmu_regwrite(struct kgsl_device *device,
unsigned int offsetwords,
unsigned int value)
{
void __iomem *reg;
struct gmu_device *gmu = &device->gmu;
trace_kgsl_regwrite(device, offsetwords, value);
offsetwords -= gmu->gmu2gpu_offset;
reg = gmu->reg_virt + (offsetwords << 2);
/*
* ensure previous writes post before this one,
* i.e. act like normal writel()
*/
wmb();
__raw_writel(value, reg);
}
static void adreno_gmu_regread(struct kgsl_device *device,
unsigned int offsetwords,
unsigned int *value)
{
void __iomem *reg;
struct gmu_device *gmu = &device->gmu;
offsetwords -= gmu->gmu2gpu_offset;
reg = gmu->reg_virt + (offsetwords << 2);
*value = __raw_readl(reg);
/*
* ensure this read finishes before the next one.
* i.e. act like normal readl()
*/
rmb();
}
bool adreno_is_cx_dbgc_register(struct kgsl_device *device,
unsigned int offsetwords)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
return adreno_dev->cx_dbgc_virt &&
(offsetwords >= (adreno_dev->cx_dbgc_base >> 2)) &&
(offsetwords < (adreno_dev->cx_dbgc_base +
adreno_dev->cx_dbgc_len) >> 2);
}
void adreno_cx_dbgc_regread(struct kgsl_device *device,
unsigned int offsetwords, unsigned int *value)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
unsigned int cx_dbgc_offset;
if (!adreno_is_cx_dbgc_register(device, offsetwords))
return;
cx_dbgc_offset = (offsetwords << 2) - adreno_dev->cx_dbgc_base;
*value = __raw_readl(adreno_dev->cx_dbgc_virt + cx_dbgc_offset);
/*
* ensure this read finishes before the next one.
* i.e. act like normal readl()
*/
rmb();
}
void adreno_cx_dbgc_regwrite(struct kgsl_device *device,
unsigned int offsetwords, unsigned int value)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
unsigned int cx_dbgc_offset;
if (!adreno_is_cx_dbgc_register(device, offsetwords))
return;
cx_dbgc_offset = (offsetwords << 2) - adreno_dev->cx_dbgc_base;
trace_kgsl_regwrite(device, offsetwords, value);
/*
* ensure previous writes post before this one,
* i.e. act like normal writel()
*/
wmb();
__raw_writel(value, adreno_dev->cx_dbgc_virt + cx_dbgc_offset);
}
void adreno_cx_misc_regread(struct adreno_device *adreno_dev,
unsigned int offsetwords, unsigned int *value)
{
unsigned int cx_misc_offset;
cx_misc_offset = (offsetwords << 2);
if (!adreno_dev->cx_misc_virt ||
(cx_misc_offset >= adreno_dev->cx_misc_len))
return;
*value = __raw_readl(adreno_dev->cx_misc_virt + cx_misc_offset);
/*
* ensure this read finishes before the next one.
* i.e. act like normal readl()
*/
rmb();
}
void adreno_cx_misc_regwrite(struct adreno_device *adreno_dev,
unsigned int offsetwords, unsigned int value)
{
unsigned int cx_misc_offset;
cx_misc_offset = (offsetwords << 2);
if (!adreno_dev->cx_misc_virt ||
(cx_misc_offset >= adreno_dev->cx_misc_len))
return;
/*
* ensure previous writes post before this one,
* i.e. act like normal writel()
*/
wmb();
__raw_writel(value, adreno_dev->cx_misc_virt + cx_misc_offset);
}
void adreno_cx_misc_regrmw(struct adreno_device *adreno_dev,
unsigned int offsetwords,
unsigned int mask, unsigned int bits)
{
unsigned int val = 0;
adreno_cx_misc_regread(adreno_dev, offsetwords, &val);
val &= ~mask;
adreno_cx_misc_regwrite(adreno_dev, offsetwords, val | bits);
}
/**
* adreno_waittimestamp - sleep while waiting for the specified timestamp
* @device - pointer to a KGSL device structure
* @context - pointer to the active kgsl context
* @timestamp - GPU timestamp to wait for
* @msecs - amount of time to wait (in milliseconds)
*
* Wait up to 'msecs' milliseconds for the specified timestamp to expire.
*/
static int adreno_waittimestamp(struct kgsl_device *device,
struct kgsl_context *context,
unsigned int timestamp,
unsigned int msecs)
{
int ret;
if (context == NULL) {
/* If they are doing then complain once */
dev_WARN_ONCE(device->dev, 1,
"IOCTL_KGSL_DEVICE_WAITTIMESTAMP is deprecated\n");
return -ENOTTY;
}
/* Return -ENOENT if the context has been detached */
if (kgsl_context_detached(context))
return -ENOENT;
ret = adreno_drawctxt_wait(ADRENO_DEVICE(device), context,
timestamp, msecs);
/* If the context got invalidated then return a specific error */
if (kgsl_context_invalid(context))
ret = -EDEADLK;
/*
* Return -EPROTO if the device has faulted since the last time we
* checked. Userspace uses this as a marker for performing post
* fault activities
*/
if (!ret && test_and_clear_bit(ADRENO_CONTEXT_FAULT, &context->priv))
ret = -EPROTO;
return ret;
}
/**
* __adreno_readtimestamp() - Reads the timestamp from memstore memory
* @adreno_dev: Pointer to an adreno device
* @index: Index into the memstore memory
* @type: Type of timestamp to read
* @timestamp: The out parameter where the timestamp is read
*/
static int __adreno_readtimestamp(struct adreno_device *adreno_dev, int index,
int type, unsigned int *timestamp)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int status = 0;
switch (type) {
case KGSL_TIMESTAMP_CONSUMED:
kgsl_sharedmem_readl(&device->memstore, timestamp,
KGSL_MEMSTORE_OFFSET(index, soptimestamp));
break;
case KGSL_TIMESTAMP_RETIRED:
kgsl_sharedmem_readl(&device->memstore, timestamp,
KGSL_MEMSTORE_OFFSET(index, eoptimestamp));
break;
default:
status = -EINVAL;
*timestamp = 0;
break;
}
return status;
}
/**
* adreno_rb_readtimestamp(): Return the value of given type of timestamp
* for a RB
* @adreno_dev: adreno device whose timestamp values are being queried
* @priv: The object being queried for a timestamp (expected to be a rb pointer)
* @type: The type of timestamp (one of 3) to be read
* @timestamp: Pointer to where the read timestamp is to be written to
*
* CONSUMED and RETIRED type timestamps are sorted by id and are constantly
* updated by the GPU through shared memstore memory. QUEUED type timestamps
* are read directly from context struct.
* The function returns 0 on success and timestamp value at the *timestamp
* address and returns -EINVAL on any read error/invalid type and timestamp = 0.
*/
int adreno_rb_readtimestamp(struct adreno_device *adreno_dev,
void *priv, enum kgsl_timestamp_type type,
unsigned int *timestamp)
{
int status = 0;
struct adreno_ringbuffer *rb = priv;
if (type == KGSL_TIMESTAMP_QUEUED)
*timestamp = rb->timestamp;
else
status = __adreno_readtimestamp(adreno_dev,
rb->id + KGSL_MEMSTORE_MAX,
type, timestamp);
return status;
}
/**
* adreno_readtimestamp(): Return the value of given type of timestamp
* @device: GPU device whose timestamp values are being queried
* @priv: The object being queried for a timestamp (expected to be a context)
* @type: The type of timestamp (one of 3) to be read
* @timestamp: Pointer to where the read timestamp is to be written to
*
* CONSUMED and RETIRED type timestamps are sorted by id and are constantly
* updated by the GPU through shared memstore memory. QUEUED type timestamps
* are read directly from context struct.
* The function returns 0 on success and timestamp value at the *timestamp
* address and returns -EINVAL on any read error/invalid type and timestamp = 0.
*/
static int adreno_readtimestamp(struct kgsl_device *device,
void *priv, enum kgsl_timestamp_type type,
unsigned int *timestamp)
{
int status = 0;
struct kgsl_context *context = priv;
if (type == KGSL_TIMESTAMP_QUEUED) {
struct adreno_context *ctxt = ADRENO_CONTEXT(context);
*timestamp = ctxt->timestamp;
} else
status = __adreno_readtimestamp(ADRENO_DEVICE(device),
context->id, type, timestamp);
return status;
}
/**
* adreno_device_private_create(): Allocate an adreno_device_private structure
*/
static struct kgsl_device_private *adreno_device_private_create(void)
{
struct adreno_device_private *adreno_priv =
kzalloc(sizeof(*adreno_priv), GFP_KERNEL);
if (adreno_priv) {
INIT_LIST_HEAD(&adreno_priv->perfcounter_list);
return &adreno_priv->dev_priv;
}
return NULL;
}
/**
* adreno_device_private_destroy(): Destroy an adreno_device_private structure
* and release the perfcounters held by the kgsl fd.
* @dev_priv: The kgsl device private structure
*/
static void adreno_device_private_destroy(struct kgsl_device_private *dev_priv)
{
struct kgsl_device *device = dev_priv->device;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_device_private *adreno_priv =
container_of(dev_priv, struct adreno_device_private,
dev_priv);
struct adreno_perfcounter_list_node *p, *tmp;
mutex_lock(&device->mutex);
list_for_each_entry_safe(p, tmp, &adreno_priv->perfcounter_list, node) {
adreno_perfcounter_put(adreno_dev, p->groupid,
p->countable, PERFCOUNTER_FLAG_NONE);
list_del(&p->node);
kfree(p);
}
mutex_unlock(&device->mutex);
kfree(adreno_priv);
}
static inline s64 adreno_ticks_to_us(u32 ticks, u32 freq)
{
freq /= 1000000;
return ticks / freq;
}
/**
* adreno_power_stats() - Reads the counters needed for freq decisions
* @device: Pointer to device whose counters are read
* @stats: Pointer to stats set that needs updating
* Power: The caller is expected to be in a clock enabled state as this
* function does reg reads
*/
static void adreno_power_stats(struct kgsl_device *device,
struct kgsl_power_stats *stats)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
struct adreno_busy_data *busy = &adreno_dev->busy_data;
uint64_t adj = 0;
memset(stats, 0, sizeof(*stats));
/* Get the busy cycles counted since the counter was last reset */
if (adreno_dev->perfctr_pwr_lo != 0) {
uint64_t gpu_busy;
gpu_busy = counter_delta(device, adreno_dev->perfctr_pwr_lo,
&busy->gpu_busy);
if (gpudev->read_throttling_counters) {
adj = gpudev->read_throttling_counters(adreno_dev);
gpu_busy += adj;
}
if (adreno_is_a6xx(adreno_dev)) {
/* clock sourced from XO */
stats->busy_time = gpu_busy * 10;
do_div(stats->busy_time, 192);
} else {
/* clock sourced from GFX3D */
stats->busy_time = adreno_ticks_to_us(gpu_busy,
kgsl_pwrctrl_active_freq(pwr));
}
}
if (device->pwrctrl.bus_control) {
uint64_t ram_cycles = 0, starved_ram = 0;
if (adreno_dev->ram_cycles_lo != 0)
ram_cycles = counter_delta(device,
adreno_dev->ram_cycles_lo,
&busy->bif_ram_cycles);
if (adreno_has_gbif(adreno_dev)) {
if (adreno_dev->ram_cycles_lo_ch1_read != 0)
ram_cycles += counter_delta(device,
adreno_dev->ram_cycles_lo_ch1_read,
&busy->bif_ram_cycles_read_ch1);
if (adreno_dev->ram_cycles_lo_ch0_write != 0)
ram_cycles += counter_delta(device,
adreno_dev->ram_cycles_lo_ch0_write,
&busy->bif_ram_cycles_write_ch0);
if (adreno_dev->ram_cycles_lo_ch1_write != 0)
ram_cycles += counter_delta(device,
adreno_dev->ram_cycles_lo_ch1_write,
&busy->bif_ram_cycles_write_ch1);
}
if (adreno_dev->starved_ram_lo != 0)
starved_ram = counter_delta(device,
adreno_dev->starved_ram_lo,
&busy->bif_starved_ram);
if (adreno_has_gbif(adreno_dev)) {
if (adreno_dev->starved_ram_lo_ch1 != 0)
starved_ram += counter_delta(device,
adreno_dev->starved_ram_lo_ch1,
&busy->bif_starved_ram_ch1);
}
stats->ram_time = ram_cycles;
stats->ram_wait = starved_ram;
}
if (adreno_dev->perfctr_ifpc_lo != 0) {
uint32_t num_ifpc;
num_ifpc = counter_delta(device, adreno_dev->perfctr_ifpc_lo,
&busy->num_ifpc);
adreno_dev->ifpc_count += num_ifpc;
if (num_ifpc > 0)
trace_adreno_ifpc_count(adreno_dev->ifpc_count);
}
if (adreno_dev->lm_threshold_count &&
gpudev->count_throttles)
gpudev->count_throttles(adreno_dev, adj);
}
static unsigned int adreno_gpuid(struct kgsl_device *device,
unsigned int *chipid)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
/*
* Some applications need to know the chip ID too, so pass
* that as a parameter
*/
if (chipid != NULL)
*chipid = adreno_dev->chipid;
/*
* Standard KGSL gpuid format:
* top word is 0x0002 for 2D or 0x0003 for 3D
* Bottom word is core specific identifer
*/
return (0x0003 << 16) | ADRENO_GPUREV(adreno_dev);
}
static int adreno_regulator_enable(struct kgsl_device *device)
{
int ret = 0;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
if (gpudev->regulator_enable &&
!test_bit(ADRENO_DEVICE_GPU_REGULATOR_ENABLED,
&adreno_dev->priv)) {
ret = gpudev->regulator_enable(adreno_dev);
if (!ret)
set_bit(ADRENO_DEVICE_GPU_REGULATOR_ENABLED,
&adreno_dev->priv);
}
return ret;
}
static bool adreno_is_hw_collapsible(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
/*
* Skip power collapse for A304, if power ctrl flag is set to
* non zero. As A304 soft_reset will not work, power collapse
* needs to disable to avoid soft_reset.
*/
if (adreno_is_a304(adreno_dev) &&
device->pwrctrl.ctrl_flags)
return false;
return adreno_isidle(device) && (gpudev->is_sptp_idle ?
gpudev->is_sptp_idle(adreno_dev) : true);
}
static void adreno_regulator_disable(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
if (gpudev->regulator_disable &&
test_bit(ADRENO_DEVICE_GPU_REGULATOR_ENABLED,
&adreno_dev->priv)) {
gpudev->regulator_disable(adreno_dev);
clear_bit(ADRENO_DEVICE_GPU_REGULATOR_ENABLED,
&adreno_dev->priv);
}
}
static void adreno_pwrlevel_change_settings(struct kgsl_device *device,
unsigned int prelevel, unsigned int postlevel, bool post)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
if (gpudev->pwrlevel_change_settings)
gpudev->pwrlevel_change_settings(adreno_dev, prelevel,
postlevel, post);
}
static void adreno_clk_set_options(struct kgsl_device *device, const char *name,
struct clk *clk, bool on)
{
if (ADRENO_GPU_DEVICE(ADRENO_DEVICE(device))->clk_set_options)
ADRENO_GPU_DEVICE(ADRENO_DEVICE(device))->clk_set_options(
ADRENO_DEVICE(device), name, clk, on);
}
static void adreno_iommu_sync(struct kgsl_device *device, bool sync)
{
struct scm_desc desc = {0};
int ret;
if (sync == true) {
mutex_lock(&kgsl_mmu_sync);
desc.args[0] = true;
desc.arginfo = SCM_ARGS(1);
ret = scm_call2_atomic(SCM_SIP_FNID(SCM_SVC_PWR, 0x8), &desc);
if (ret)
KGSL_DRV_ERR(device,
"MMU sync with Hypervisor off %x\n", ret);
} else {
desc.args[0] = false;
desc.arginfo = SCM_ARGS(1);
scm_call2_atomic(SCM_SIP_FNID(SCM_SVC_PWR, 0x8), &desc);
mutex_unlock(&kgsl_mmu_sync);
}
}
static void _regulator_disable(struct kgsl_regulator *regulator, bool poll)
{
unsigned long wait_time = jiffies + msecs_to_jiffies(200);
if (IS_ERR_OR_NULL(regulator->reg))
return;
regulator_disable(regulator->reg);
if (poll == false)
return;
while (!time_after(jiffies, wait_time)) {
if (!regulator_is_enabled(regulator->reg))
return;
cpu_relax();
}
KGSL_CORE_ERR("regulator '%s' still on after 200ms\n", regulator->name);
}
static void adreno_regulator_disable_poll(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
int i;
/* Fast path - hopefully we don't need this quirk */
if (!ADRENO_QUIRK(adreno_dev, ADRENO_QUIRK_IOMMU_SYNC)) {
for (i = KGSL_MAX_REGULATORS - 1; i >= 0; i--)
_regulator_disable(&pwr->regulators[i], false);
return;
}
adreno_iommu_sync(device, true);
for (i = 0; i < KGSL_MAX_REGULATORS; i++)
_regulator_disable(&pwr->regulators[i], true);
adreno_iommu_sync(device, false);
}
static void adreno_gpu_model(struct kgsl_device *device, char *str,
size_t bufsz)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
snprintf(str, bufsz, "Adreno%d%d%dv%d",
ADRENO_CHIPID_CORE(adreno_dev->chipid),
ADRENO_CHIPID_MAJOR(adreno_dev->chipid),
ADRENO_CHIPID_MINOR(adreno_dev->chipid),
ADRENO_CHIPID_PATCH(adreno_dev->chipid) + 1);
}
static const struct kgsl_functable adreno_functable = {
/* Mandatory functions */
.regread = adreno_regread,
.regwrite = adreno_regwrite,
.gmu_regread = adreno_gmu_regread,
.gmu_regwrite = adreno_gmu_regwrite,
.idle = adreno_idle,
.isidle = adreno_isidle,
.suspend_context = adreno_suspend_context,
.init = adreno_init,
.start = adreno_start,
.stop = adreno_stop,
.getproperty = adreno_getproperty,
.getproperty_compat = adreno_getproperty_compat,
.waittimestamp = adreno_waittimestamp,
.readtimestamp = adreno_readtimestamp,
.queue_cmds = adreno_dispatcher_queue_cmds,
.ioctl = adreno_ioctl,
.compat_ioctl = adreno_compat_ioctl,
.power_stats = adreno_power_stats,
.gpuid = adreno_gpuid,
.snapshot = adreno_snapshot,
.irq_handler = adreno_irq_handler,
.drain = adreno_drain,
.device_private_create = adreno_device_private_create,
.device_private_destroy = adreno_device_private_destroy,
/* Optional functions */
.drawctxt_create = adreno_drawctxt_create,
.drawctxt_detach = adreno_drawctxt_detach,
.drawctxt_destroy = adreno_drawctxt_destroy,
.drawctxt_dump = adreno_drawctxt_dump,
.setproperty = adreno_setproperty,
.setproperty_compat = adreno_setproperty_compat,
.drawctxt_sched = adreno_drawctxt_sched,
.resume = adreno_dispatcher_start,
.regulator_enable = adreno_regulator_enable,
.is_hw_collapsible = adreno_is_hw_collapsible,
.regulator_disable = adreno_regulator_disable,
.pwrlevel_change_settings = adreno_pwrlevel_change_settings,
.regulator_disable_poll = adreno_regulator_disable_poll,
.clk_set_options = adreno_clk_set_options,
.gpu_model = adreno_gpu_model,
.stop_fault_timer = adreno_dispatcher_stop_fault_timer,
.dispatcher_halt = adreno_dispatcher_halt,
.dispatcher_unhalt = adreno_dispatcher_unhalt,
};
static struct platform_driver adreno_platform_driver = {
.probe = adreno_probe,
.remove = adreno_remove,
.suspend = kgsl_suspend_driver,
.resume = kgsl_resume_driver,
.id_table = adreno_id_table,
.driver = {
.owner = THIS_MODULE,
.name = DEVICE_3D_NAME,
.pm = &kgsl_pm_ops,
.of_match_table = adreno_match_table,
}
};
static const struct of_device_id busmon_match_table[] = {
{ .compatible = "qcom,kgsl-busmon", .data = &device_3d0 },
{}
};
static int adreno_busmon_probe(struct platform_device *pdev)
{
struct kgsl_device *device;
const struct of_device_id *pdid =
of_match_device(busmon_match_table, &pdev->dev);
if (pdid == NULL)
return -ENXIO;
device = (struct kgsl_device *)pdid->data;
device->busmondev = &pdev->dev;
dev_set_drvdata(device->busmondev, device);
return 0;
}
static struct platform_driver kgsl_bus_platform_driver = {
.probe = adreno_busmon_probe,
.driver = {
.owner = THIS_MODULE,
.name = "kgsl-busmon",
.of_match_table = busmon_match_table,
}
};
static int __init kgsl_3d_init(void)
{
int ret;
ret = platform_driver_register(&kgsl_bus_platform_driver);
if (ret)
return ret;
ret = platform_driver_register(&adreno_platform_driver);
if (ret)
platform_driver_unregister(&kgsl_bus_platform_driver);
return ret;
}
static void __exit kgsl_3d_exit(void)
{
platform_driver_unregister(&adreno_platform_driver);
platform_driver_unregister(&kgsl_bus_platform_driver);
}
module_init(kgsl_3d_init);
module_exit(kgsl_3d_exit);
MODULE_DESCRIPTION("3D Graphics driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:kgsl_3d");