| /* |
| * Copyright © 2012 NetCommWireless |
| * Iwo Mergler <Iwo.Mergler@netcommwireless.com.au> |
| * |
| * Test for multi-bit error recovery on a NAND page This mostly tests the |
| * ECC controller / driver. |
| * |
| * There are two test modes: |
| * |
| * 0 - artificially inserting bit errors until the ECC fails |
| * This is the default method and fairly quick. It should |
| * be independent of the quality of the FLASH. |
| * |
| * 1 - re-writing the same pattern repeatedly until the ECC fails. |
| * This method relies on the physics of NAND FLASH to eventually |
| * generate '0' bits if '1' has been written sufficient times. |
| * Depending on the NAND, the first bit errors will appear after |
| * 1000 or more writes and then will usually snowball, reaching the |
| * limits of the ECC quickly. |
| * |
| * The test stops after 10000 cycles, should your FLASH be |
| * exceptionally good and not generate bit errors before that. Try |
| * a different page in that case. |
| * |
| * Please note that neither of these tests will significantly 'use up' any |
| * FLASH endurance. Only a maximum of two erase operations will be performed. |
| * |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published by |
| * the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; see the file COPYING. If not, write to the Free Software |
| * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/err.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/slab.h> |
| |
| static int dev; |
| module_param(dev, int, S_IRUGO); |
| MODULE_PARM_DESC(dev, "MTD device number to use"); |
| |
| static unsigned page_offset; |
| module_param(page_offset, uint, S_IRUGO); |
| MODULE_PARM_DESC(page_offset, "Page number relative to dev start"); |
| |
| static unsigned seed; |
| module_param(seed, uint, S_IRUGO); |
| MODULE_PARM_DESC(seed, "Random seed"); |
| |
| static int mode; |
| module_param(mode, int, S_IRUGO); |
| MODULE_PARM_DESC(mode, "0=incremental errors, 1=overwrite test"); |
| |
| static unsigned max_overwrite = 10000; |
| |
| static loff_t offset; /* Offset of the page we're using. */ |
| static unsigned eraseblock; /* Eraseblock number for our page. */ |
| |
| /* We assume that the ECC can correct up to a certain number |
| * of biterrors per subpage. */ |
| static unsigned subsize; /* Size of subpages */ |
| static unsigned subcount; /* Number of subpages per page */ |
| |
| static struct mtd_info *mtd; /* MTD device */ |
| |
| static uint8_t *wbuffer; /* One page write / compare buffer */ |
| static uint8_t *rbuffer; /* One page read buffer */ |
| |
| /* 'random' bytes from known offsets */ |
| static uint8_t hash(unsigned offset) |
| { |
| unsigned v = offset; |
| unsigned char c; |
| v ^= 0x7f7edfd3; |
| v = v ^ (v >> 3); |
| v = v ^ (v >> 5); |
| v = v ^ (v >> 13); |
| c = v & 0xFF; |
| /* Reverse bits of result. */ |
| c = (c & 0x0F) << 4 | (c & 0xF0) >> 4; |
| c = (c & 0x33) << 2 | (c & 0xCC) >> 2; |
| c = (c & 0x55) << 1 | (c & 0xAA) >> 1; |
| return c; |
| } |
| |
| static int erase_block(void) |
| { |
| int err; |
| struct erase_info ei; |
| loff_t addr = eraseblock * mtd->erasesize; |
| |
| pr_info("erase_block\n"); |
| |
| memset(&ei, 0, sizeof(struct erase_info)); |
| ei.mtd = mtd; |
| ei.addr = addr; |
| ei.len = mtd->erasesize; |
| |
| err = mtd_erase(mtd, &ei); |
| if (err || ei.state == MTD_ERASE_FAILED) { |
| pr_err("error %d while erasing\n", err); |
| if (!err) |
| err = -EIO; |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /* Writes wbuffer to page */ |
| static int write_page(int log) |
| { |
| int err = 0; |
| size_t written; |
| |
| if (log) |
| pr_info("write_page\n"); |
| |
| err = mtd_write(mtd, offset, mtd->writesize, &written, wbuffer); |
| if (err || written != mtd->writesize) { |
| pr_err("error: write failed at %#llx\n", (long long)offset); |
| if (!err) |
| err = -EIO; |
| } |
| |
| return err; |
| } |
| |
| /* Re-writes the data area while leaving the OOB alone. */ |
| static int rewrite_page(int log) |
| { |
| int err = 0; |
| struct mtd_oob_ops ops; |
| |
| if (log) |
| pr_info("rewrite page\n"); |
| |
| ops.mode = MTD_OPS_RAW; /* No ECC */ |
| ops.len = mtd->writesize; |
| ops.retlen = 0; |
| ops.ooblen = 0; |
| ops.oobretlen = 0; |
| ops.ooboffs = 0; |
| ops.datbuf = wbuffer; |
| ops.oobbuf = NULL; |
| |
| err = mtd_write_oob(mtd, offset, &ops); |
| if (err || ops.retlen != mtd->writesize) { |
| pr_err("error: write_oob failed (%d)\n", err); |
| if (!err) |
| err = -EIO; |
| } |
| |
| return err; |
| } |
| |
| /* Reads page into rbuffer. Returns number of corrected bit errors (>=0) |
| * or error (<0) */ |
| static int read_page(int log) |
| { |
| int err = 0; |
| size_t read; |
| struct mtd_ecc_stats oldstats; |
| |
| if (log) |
| pr_info("read_page\n"); |
| |
| /* Saving last mtd stats */ |
| memcpy(&oldstats, &mtd->ecc_stats, sizeof(oldstats)); |
| |
| err = mtd_read(mtd, offset, mtd->writesize, &read, rbuffer); |
| if (err == -EUCLEAN) |
| err = mtd->ecc_stats.corrected - oldstats.corrected; |
| |
| if (err < 0 || read != mtd->writesize) { |
| pr_err("error: read failed at %#llx\n", (long long)offset); |
| if (err >= 0) |
| err = -EIO; |
| } |
| |
| return err; |
| } |
| |
| /* Verifies rbuffer against random sequence */ |
| static int verify_page(int log) |
| { |
| unsigned i, errs = 0; |
| |
| if (log) |
| pr_info("verify_page\n"); |
| |
| for (i = 0; i < mtd->writesize; i++) { |
| if (rbuffer[i] != hash(i+seed)) { |
| pr_err("Error: page offset %u, expected %02x, got %02x\n", |
| i, hash(i+seed), rbuffer[i]); |
| errs++; |
| } |
| } |
| |
| if (errs) |
| return -EIO; |
| else |
| return 0; |
| } |
| |
| #define CBIT(v, n) ((v) & (1 << (n))) |
| #define BCLR(v, n) ((v) = (v) & ~(1 << (n))) |
| |
| /* Finds the first '1' bit in wbuffer starting at offset 'byte' |
| * and sets it to '0'. */ |
| static int insert_biterror(unsigned byte) |
| { |
| int bit; |
| |
| while (byte < mtd->writesize) { |
| for (bit = 7; bit >= 0; bit--) { |
| if (CBIT(wbuffer[byte], bit)) { |
| BCLR(wbuffer[byte], bit); |
| pr_info("Inserted biterror @ %u/%u\n", byte, bit); |
| return 0; |
| } |
| } |
| byte++; |
| } |
| pr_err("biterror: Failed to find a '1' bit\n"); |
| return -EIO; |
| } |
| |
| /* Writes 'random' data to page and then introduces deliberate bit |
| * errors into the page, while verifying each step. */ |
| static int incremental_errors_test(void) |
| { |
| int err = 0; |
| unsigned i; |
| unsigned errs_per_subpage = 0; |
| |
| pr_info("incremental biterrors test\n"); |
| |
| for (i = 0; i < mtd->writesize; i++) |
| wbuffer[i] = hash(i+seed); |
| |
| err = write_page(1); |
| if (err) |
| goto exit; |
| |
| while (1) { |
| |
| err = rewrite_page(1); |
| if (err) |
| goto exit; |
| |
| err = read_page(1); |
| if (err > 0) |
| pr_info("Read reported %d corrected bit errors\n", err); |
| if (err < 0) { |
| pr_err("After %d biterrors per subpage, read reported error %d\n", |
| errs_per_subpage, err); |
| err = 0; |
| goto exit; |
| } |
| |
| err = verify_page(1); |
| if (err) { |
| pr_err("ECC failure, read data is incorrect despite read success\n"); |
| goto exit; |
| } |
| |
| pr_info("Successfully corrected %d bit errors per subpage\n", |
| errs_per_subpage); |
| |
| for (i = 0; i < subcount; i++) { |
| err = insert_biterror(i * subsize); |
| if (err < 0) |
| goto exit; |
| } |
| errs_per_subpage++; |
| } |
| |
| exit: |
| return err; |
| } |
| |
| |
| /* Writes 'random' data to page and then re-writes that same data repeatedly. |
| This eventually develops bit errors (bits written as '1' will slowly become |
| '0'), which are corrected as far as the ECC is capable of. */ |
| static int overwrite_test(void) |
| { |
| int err = 0; |
| unsigned i; |
| unsigned max_corrected = 0; |
| unsigned opno = 0; |
| /* We don't expect more than this many correctable bit errors per |
| * page. */ |
| #define MAXBITS 512 |
| static unsigned bitstats[MAXBITS]; /* bit error histogram. */ |
| |
| memset(bitstats, 0, sizeof(bitstats)); |
| |
| pr_info("overwrite biterrors test\n"); |
| |
| for (i = 0; i < mtd->writesize; i++) |
| wbuffer[i] = hash(i+seed); |
| |
| err = write_page(1); |
| if (err) |
| goto exit; |
| |
| while (opno < max_overwrite) { |
| |
| err = rewrite_page(0); |
| if (err) |
| break; |
| |
| err = read_page(0); |
| if (err >= 0) { |
| if (err >= MAXBITS) { |
| pr_info("Implausible number of bit errors corrected\n"); |
| err = -EIO; |
| break; |
| } |
| bitstats[err]++; |
| if (err > max_corrected) { |
| max_corrected = err; |
| pr_info("Read reported %d corrected bit errors\n", |
| err); |
| } |
| } else { /* err < 0 */ |
| pr_info("Read reported error %d\n", err); |
| err = 0; |
| break; |
| } |
| |
| err = verify_page(0); |
| if (err) { |
| bitstats[max_corrected] = opno; |
| pr_info("ECC failure, read data is incorrect despite read success\n"); |
| break; |
| } |
| |
| opno++; |
| } |
| |
| /* At this point bitstats[0] contains the number of ops with no bit |
| * errors, bitstats[1] the number of ops with 1 bit error, etc. */ |
| pr_info("Bit error histogram (%d operations total):\n", opno); |
| for (i = 0; i < max_corrected; i++) |
| pr_info("Page reads with %3d corrected bit errors: %d\n", |
| i, bitstats[i]); |
| |
| exit: |
| return err; |
| } |
| |
| static int __init mtd_nandbiterrs_init(void) |
| { |
| int err = 0; |
| |
| printk("\n"); |
| printk(KERN_INFO "==================================================\n"); |
| pr_info("MTD device: %d\n", dev); |
| |
| mtd = get_mtd_device(NULL, dev); |
| if (IS_ERR(mtd)) { |
| err = PTR_ERR(mtd); |
| pr_err("error: cannot get MTD device\n"); |
| goto exit_mtddev; |
| } |
| |
| if (mtd->type != MTD_NANDFLASH) { |
| pr_info("this test requires NAND flash\n"); |
| err = -ENODEV; |
| goto exit_nand; |
| } |
| |
| pr_info("MTD device size %llu, eraseblock=%u, page=%u, oob=%u\n", |
| (unsigned long long)mtd->size, mtd->erasesize, |
| mtd->writesize, mtd->oobsize); |
| |
| subsize = mtd->writesize >> mtd->subpage_sft; |
| subcount = mtd->writesize / subsize; |
| |
| pr_info("Device uses %d subpages of %d bytes\n", subcount, subsize); |
| |
| offset = page_offset * mtd->writesize; |
| eraseblock = mtd_div_by_eb(offset, mtd); |
| |
| pr_info("Using page=%u, offset=%llu, eraseblock=%u\n", |
| page_offset, offset, eraseblock); |
| |
| wbuffer = kmalloc(mtd->writesize, GFP_KERNEL); |
| if (!wbuffer) { |
| err = -ENOMEM; |
| goto exit_wbuffer; |
| } |
| |
| rbuffer = kmalloc(mtd->writesize, GFP_KERNEL); |
| if (!rbuffer) { |
| err = -ENOMEM; |
| goto exit_rbuffer; |
| } |
| |
| err = erase_block(); |
| if (err) |
| goto exit_error; |
| |
| if (mode == 0) |
| err = incremental_errors_test(); |
| else |
| err = overwrite_test(); |
| |
| if (err) |
| goto exit_error; |
| |
| /* We leave the block un-erased in case of test failure. */ |
| err = erase_block(); |
| if (err) |
| goto exit_error; |
| |
| err = -EIO; |
| pr_info("finished successfully.\n"); |
| printk(KERN_INFO "==================================================\n"); |
| |
| exit_error: |
| kfree(rbuffer); |
| exit_rbuffer: |
| kfree(wbuffer); |
| exit_wbuffer: |
| /* Nothing */ |
| exit_nand: |
| put_mtd_device(mtd); |
| exit_mtddev: |
| return err; |
| } |
| |
| static void __exit mtd_nandbiterrs_exit(void) |
| { |
| return; |
| } |
| |
| module_init(mtd_nandbiterrs_init); |
| module_exit(mtd_nandbiterrs_exit); |
| |
| MODULE_DESCRIPTION("NAND bit error recovery test"); |
| MODULE_AUTHOR("Iwo Mergler"); |
| MODULE_LICENSE("GPL"); |