| |
| #include <linux/ceph/ceph_debug.h> |
| |
| #include <linux/err.h> |
| #include <linux/scatterlist.h> |
| #include <linux/slab.h> |
| #include <crypto/aes.h> |
| #include <crypto/skcipher.h> |
| #include <linux/key-type.h> |
| |
| #include <keys/ceph-type.h> |
| #include <keys/user-type.h> |
| #include <linux/ceph/decode.h> |
| #include "crypto.h" |
| |
| int ceph_crypto_key_clone(struct ceph_crypto_key *dst, |
| const struct ceph_crypto_key *src) |
| { |
| memcpy(dst, src, sizeof(struct ceph_crypto_key)); |
| dst->key = kmemdup(src->key, src->len, GFP_NOFS); |
| if (!dst->key) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| int ceph_crypto_key_encode(struct ceph_crypto_key *key, void **p, void *end) |
| { |
| if (*p + sizeof(u16) + sizeof(key->created) + |
| sizeof(u16) + key->len > end) |
| return -ERANGE; |
| ceph_encode_16(p, key->type); |
| ceph_encode_copy(p, &key->created, sizeof(key->created)); |
| ceph_encode_16(p, key->len); |
| ceph_encode_copy(p, key->key, key->len); |
| return 0; |
| } |
| |
| int ceph_crypto_key_decode(struct ceph_crypto_key *key, void **p, void *end) |
| { |
| ceph_decode_need(p, end, 2*sizeof(u16) + sizeof(key->created), bad); |
| key->type = ceph_decode_16(p); |
| ceph_decode_copy(p, &key->created, sizeof(key->created)); |
| key->len = ceph_decode_16(p); |
| ceph_decode_need(p, end, key->len, bad); |
| key->key = kmalloc(key->len, GFP_NOFS); |
| if (!key->key) |
| return -ENOMEM; |
| ceph_decode_copy(p, key->key, key->len); |
| return 0; |
| |
| bad: |
| dout("failed to decode crypto key\n"); |
| return -EINVAL; |
| } |
| |
| int ceph_crypto_key_unarmor(struct ceph_crypto_key *key, const char *inkey) |
| { |
| int inlen = strlen(inkey); |
| int blen = inlen * 3 / 4; |
| void *buf, *p; |
| int ret; |
| |
| dout("crypto_key_unarmor %s\n", inkey); |
| buf = kmalloc(blen, GFP_NOFS); |
| if (!buf) |
| return -ENOMEM; |
| blen = ceph_unarmor(buf, inkey, inkey+inlen); |
| if (blen < 0) { |
| kfree(buf); |
| return blen; |
| } |
| |
| p = buf; |
| ret = ceph_crypto_key_decode(key, &p, p + blen); |
| kfree(buf); |
| if (ret) |
| return ret; |
| dout("crypto_key_unarmor key %p type %d len %d\n", key, |
| key->type, key->len); |
| return 0; |
| } |
| |
| static struct crypto_skcipher *ceph_crypto_alloc_cipher(void) |
| { |
| return crypto_alloc_skcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC); |
| } |
| |
| static const u8 *aes_iv = (u8 *)CEPH_AES_IV; |
| |
| /* |
| * Should be used for buffers allocated with ceph_kvmalloc(). |
| * Currently these are encrypt out-buffer (ceph_buffer) and decrypt |
| * in-buffer (msg front). |
| * |
| * Dispose of @sgt with teardown_sgtable(). |
| * |
| * @prealloc_sg is to avoid memory allocation inside sg_alloc_table() |
| * in cases where a single sg is sufficient. No attempt to reduce the |
| * number of sgs by squeezing physically contiguous pages together is |
| * made though, for simplicity. |
| */ |
| static int setup_sgtable(struct sg_table *sgt, struct scatterlist *prealloc_sg, |
| const void *buf, unsigned int buf_len) |
| { |
| struct scatterlist *sg; |
| const bool is_vmalloc = is_vmalloc_addr(buf); |
| unsigned int off = offset_in_page(buf); |
| unsigned int chunk_cnt = 1; |
| unsigned int chunk_len = PAGE_ALIGN(off + buf_len); |
| int i; |
| int ret; |
| |
| if (buf_len == 0) { |
| memset(sgt, 0, sizeof(*sgt)); |
| return -EINVAL; |
| } |
| |
| if (is_vmalloc) { |
| chunk_cnt = chunk_len >> PAGE_SHIFT; |
| chunk_len = PAGE_SIZE; |
| } |
| |
| if (chunk_cnt > 1) { |
| ret = sg_alloc_table(sgt, chunk_cnt, GFP_NOFS); |
| if (ret) |
| return ret; |
| } else { |
| WARN_ON(chunk_cnt != 1); |
| sg_init_table(prealloc_sg, 1); |
| sgt->sgl = prealloc_sg; |
| sgt->nents = sgt->orig_nents = 1; |
| } |
| |
| for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) { |
| struct page *page; |
| unsigned int len = min(chunk_len - off, buf_len); |
| |
| if (is_vmalloc) |
| page = vmalloc_to_page(buf); |
| else |
| page = virt_to_page(buf); |
| |
| sg_set_page(sg, page, len, off); |
| |
| off = 0; |
| buf += len; |
| buf_len -= len; |
| } |
| WARN_ON(buf_len != 0); |
| |
| return 0; |
| } |
| |
| static void teardown_sgtable(struct sg_table *sgt) |
| { |
| if (sgt->orig_nents > 1) |
| sg_free_table(sgt); |
| } |
| |
| static int ceph_aes_crypt(const struct ceph_crypto_key *key, bool encrypt, |
| void *buf, int buf_len, int in_len, int *pout_len) |
| { |
| struct crypto_skcipher *tfm = ceph_crypto_alloc_cipher(); |
| SKCIPHER_REQUEST_ON_STACK(req, tfm); |
| struct sg_table sgt; |
| struct scatterlist prealloc_sg; |
| char iv[AES_BLOCK_SIZE] __aligned(8); |
| int pad_byte = AES_BLOCK_SIZE - (in_len & (AES_BLOCK_SIZE - 1)); |
| int crypt_len = encrypt ? in_len + pad_byte : in_len; |
| int ret; |
| |
| if (IS_ERR(tfm)) |
| return PTR_ERR(tfm); |
| |
| WARN_ON(crypt_len > buf_len); |
| if (encrypt) |
| memset(buf + in_len, pad_byte, pad_byte); |
| ret = setup_sgtable(&sgt, &prealloc_sg, buf, crypt_len); |
| if (ret) |
| goto out_tfm; |
| |
| crypto_skcipher_setkey((void *)tfm, key->key, key->len); |
| memcpy(iv, aes_iv, AES_BLOCK_SIZE); |
| |
| skcipher_request_set_tfm(req, tfm); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| skcipher_request_set_crypt(req, sgt.sgl, sgt.sgl, crypt_len, iv); |
| |
| /* |
| print_hex_dump(KERN_ERR, "key: ", DUMP_PREFIX_NONE, 16, 1, |
| key->key, key->len, 1); |
| print_hex_dump(KERN_ERR, " in: ", DUMP_PREFIX_NONE, 16, 1, |
| buf, crypt_len, 1); |
| */ |
| if (encrypt) |
| ret = crypto_skcipher_encrypt(req); |
| else |
| ret = crypto_skcipher_decrypt(req); |
| skcipher_request_zero(req); |
| if (ret) { |
| pr_err("%s %scrypt failed: %d\n", __func__, |
| encrypt ? "en" : "de", ret); |
| goto out_sgt; |
| } |
| /* |
| print_hex_dump(KERN_ERR, "out: ", DUMP_PREFIX_NONE, 16, 1, |
| buf, crypt_len, 1); |
| */ |
| |
| if (encrypt) { |
| *pout_len = crypt_len; |
| } else { |
| pad_byte = *(char *)(buf + in_len - 1); |
| if (pad_byte > 0 && pad_byte <= AES_BLOCK_SIZE && |
| in_len >= pad_byte) { |
| *pout_len = in_len - pad_byte; |
| } else { |
| pr_err("%s got bad padding %d on in_len %d\n", |
| __func__, pad_byte, in_len); |
| ret = -EPERM; |
| goto out_sgt; |
| } |
| } |
| |
| out_sgt: |
| teardown_sgtable(&sgt); |
| out_tfm: |
| crypto_free_skcipher(tfm); |
| return ret; |
| } |
| |
| int ceph_crypt(const struct ceph_crypto_key *key, bool encrypt, |
| void *buf, int buf_len, int in_len, int *pout_len) |
| { |
| switch (key->type) { |
| case CEPH_CRYPTO_NONE: |
| *pout_len = in_len; |
| return 0; |
| case CEPH_CRYPTO_AES: |
| return ceph_aes_crypt(key, encrypt, buf, buf_len, in_len, |
| pout_len); |
| default: |
| return -ENOTSUPP; |
| } |
| } |
| |
| static int ceph_key_preparse(struct key_preparsed_payload *prep) |
| { |
| struct ceph_crypto_key *ckey; |
| size_t datalen = prep->datalen; |
| int ret; |
| void *p; |
| |
| ret = -EINVAL; |
| if (datalen <= 0 || datalen > 32767 || !prep->data) |
| goto err; |
| |
| ret = -ENOMEM; |
| ckey = kmalloc(sizeof(*ckey), GFP_KERNEL); |
| if (!ckey) |
| goto err; |
| |
| /* TODO ceph_crypto_key_decode should really take const input */ |
| p = (void *)prep->data; |
| ret = ceph_crypto_key_decode(ckey, &p, (char*)prep->data+datalen); |
| if (ret < 0) |
| goto err_ckey; |
| |
| prep->payload.data[0] = ckey; |
| prep->quotalen = datalen; |
| return 0; |
| |
| err_ckey: |
| kfree(ckey); |
| err: |
| return ret; |
| } |
| |
| static void ceph_key_free_preparse(struct key_preparsed_payload *prep) |
| { |
| struct ceph_crypto_key *ckey = prep->payload.data[0]; |
| ceph_crypto_key_destroy(ckey); |
| kfree(ckey); |
| } |
| |
| static void ceph_key_destroy(struct key *key) |
| { |
| struct ceph_crypto_key *ckey = key->payload.data[0]; |
| |
| ceph_crypto_key_destroy(ckey); |
| kfree(ckey); |
| } |
| |
| struct key_type key_type_ceph = { |
| .name = "ceph", |
| .preparse = ceph_key_preparse, |
| .free_preparse = ceph_key_free_preparse, |
| .instantiate = generic_key_instantiate, |
| .destroy = ceph_key_destroy, |
| }; |
| |
| int ceph_crypto_init(void) { |
| return register_key_type(&key_type_ceph); |
| } |
| |
| void ceph_crypto_shutdown(void) { |
| unregister_key_type(&key_type_ceph); |
| } |