| #undef DEBUG |
| |
| /* |
| * ARM performance counter support. |
| * |
| * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles |
| * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> |
| * |
| * This code is based on the sparc64 perf event code, which is in turn based |
| * on the x86 code. |
| */ |
| #define pr_fmt(fmt) "hw perfevents: " fmt |
| |
| #include <linux/bitmap.h> |
| #include <linux/cpumask.h> |
| #include <linux/cpu_pm.h> |
| #include <linux/export.h> |
| #include <linux/kernel.h> |
| #include <linux/of_device.h> |
| #include <linux/perf/arm_pmu.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/irq.h> |
| #include <linux/irqdesc.h> |
| |
| #include <asm/cputype.h> |
| #include <asm/irq_regs.h> |
| |
| static int |
| armpmu_map_cache_event(const unsigned (*cache_map) |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX], |
| u64 config) |
| { |
| unsigned int cache_type, cache_op, cache_result, ret; |
| |
| cache_type = (config >> 0) & 0xff; |
| if (cache_type >= PERF_COUNT_HW_CACHE_MAX) |
| return -EINVAL; |
| |
| cache_op = (config >> 8) & 0xff; |
| if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) |
| return -EINVAL; |
| |
| cache_result = (config >> 16) & 0xff; |
| if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) |
| return -EINVAL; |
| |
| ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; |
| |
| if (ret == CACHE_OP_UNSUPPORTED) |
| return -ENOENT; |
| |
| return ret; |
| } |
| |
| static int |
| armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) |
| { |
| int mapping; |
| |
| if (config >= PERF_COUNT_HW_MAX) |
| return -EINVAL; |
| |
| mapping = (*event_map)[config]; |
| return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; |
| } |
| |
| static int |
| armpmu_map_raw_event(u32 raw_event_mask, u64 config) |
| { |
| return (int)(config & raw_event_mask); |
| } |
| |
| int |
| armpmu_map_event(struct perf_event *event, |
| const unsigned (*event_map)[PERF_COUNT_HW_MAX], |
| const unsigned (*cache_map) |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX], |
| u32 raw_event_mask) |
| { |
| u64 config = event->attr.config; |
| int type = event->attr.type; |
| |
| if (type == event->pmu->type) |
| return armpmu_map_raw_event(raw_event_mask, config); |
| |
| switch (type) { |
| case PERF_TYPE_HARDWARE: |
| return armpmu_map_hw_event(event_map, config); |
| case PERF_TYPE_HW_CACHE: |
| return armpmu_map_cache_event(cache_map, config); |
| case PERF_TYPE_RAW: |
| return armpmu_map_raw_event(raw_event_mask, config); |
| } |
| |
| return -ENOENT; |
| } |
| |
| int armpmu_event_set_period(struct perf_event *event) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| s64 left = local64_read(&hwc->period_left); |
| s64 period = hwc->sample_period; |
| int ret = 0; |
| |
| if (unlikely(left <= -period)) { |
| left = period; |
| local64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| ret = 1; |
| } |
| |
| if (unlikely(left <= 0)) { |
| left += period; |
| local64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| ret = 1; |
| } |
| |
| /* |
| * Limit the maximum period to prevent the counter value |
| * from overtaking the one we are about to program. In |
| * effect we are reducing max_period to account for |
| * interrupt latency (and we are being very conservative). |
| */ |
| if (left > (armpmu->max_period >> 1)) |
| left = armpmu->max_period >> 1; |
| |
| local64_set(&hwc->prev_count, (u64)-left); |
| |
| armpmu->write_counter(event, (u64)(-left) & 0xffffffff); |
| |
| perf_event_update_userpage(event); |
| |
| return ret; |
| } |
| |
| u64 armpmu_event_update(struct perf_event *event) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| u64 delta, prev_raw_count, new_raw_count; |
| |
| again: |
| prev_raw_count = local64_read(&hwc->prev_count); |
| new_raw_count = armpmu->read_counter(event); |
| |
| if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, |
| new_raw_count) != prev_raw_count) |
| goto again; |
| |
| delta = (new_raw_count - prev_raw_count) & armpmu->max_period; |
| |
| local64_add(delta, &event->count); |
| local64_sub(delta, &hwc->period_left); |
| |
| return new_raw_count; |
| } |
| |
| static void |
| armpmu_read(struct perf_event *event) |
| { |
| armpmu_event_update(event); |
| } |
| |
| static void |
| armpmu_stop(struct perf_event *event, int flags) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| |
| /* |
| * ARM pmu always has to update the counter, so ignore |
| * PERF_EF_UPDATE, see comments in armpmu_start(). |
| */ |
| if (!(hwc->state & PERF_HES_STOPPED)) { |
| armpmu->disable(event); |
| armpmu_event_update(event); |
| hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; |
| } |
| } |
| |
| static void armpmu_start(struct perf_event *event, int flags) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| |
| /* |
| * ARM pmu always has to reprogram the period, so ignore |
| * PERF_EF_RELOAD, see the comment below. |
| */ |
| if (flags & PERF_EF_RELOAD) |
| WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); |
| |
| hwc->state = 0; |
| /* |
| * Set the period again. Some counters can't be stopped, so when we |
| * were stopped we simply disabled the IRQ source and the counter |
| * may have been left counting. If we don't do this step then we may |
| * get an interrupt too soon or *way* too late if the overflow has |
| * happened since disabling. |
| */ |
| armpmu_event_set_period(event); |
| armpmu->enable(event); |
| } |
| |
| static void |
| armpmu_del(struct perf_event *event, int flags) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->idx; |
| |
| armpmu_stop(event, PERF_EF_UPDATE); |
| hw_events->events[idx] = NULL; |
| clear_bit(idx, hw_events->used_mask); |
| if (armpmu->clear_event_idx) |
| armpmu->clear_event_idx(hw_events, event); |
| |
| perf_event_update_userpage(event); |
| } |
| |
| static int |
| armpmu_add(struct perf_event *event, int flags) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx; |
| int err = 0; |
| |
| /* An event following a process won't be stopped earlier */ |
| if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) |
| return -ENOENT; |
| |
| perf_pmu_disable(event->pmu); |
| |
| /* If we don't have a space for the counter then finish early. */ |
| idx = armpmu->get_event_idx(hw_events, event); |
| if (idx < 0) { |
| err = idx; |
| goto out; |
| } |
| |
| /* |
| * If there is an event in the counter we are going to use then make |
| * sure it is disabled. |
| */ |
| event->hw.idx = idx; |
| armpmu->disable(event); |
| hw_events->events[idx] = event; |
| |
| hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; |
| if (flags & PERF_EF_START) |
| armpmu_start(event, PERF_EF_RELOAD); |
| |
| /* Propagate our changes to the userspace mapping. */ |
| perf_event_update_userpage(event); |
| |
| out: |
| perf_pmu_enable(event->pmu); |
| return err; |
| } |
| |
| static int |
| validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events, |
| struct perf_event *event) |
| { |
| struct arm_pmu *armpmu; |
| |
| if (is_software_event(event)) |
| return 1; |
| |
| /* |
| * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The |
| * core perf code won't check that the pmu->ctx == leader->ctx |
| * until after pmu->event_init(event). |
| */ |
| if (event->pmu != pmu) |
| return 0; |
| |
| if (event->state < PERF_EVENT_STATE_OFF) |
| return 1; |
| |
| if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) |
| return 1; |
| |
| armpmu = to_arm_pmu(event->pmu); |
| return armpmu->get_event_idx(hw_events, event) >= 0; |
| } |
| |
| static int |
| validate_group(struct perf_event *event) |
| { |
| struct perf_event *sibling, *leader = event->group_leader; |
| struct pmu_hw_events fake_pmu; |
| |
| /* |
| * Initialise the fake PMU. We only need to populate the |
| * used_mask for the purposes of validation. |
| */ |
| memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask)); |
| |
| if (!validate_event(event->pmu, &fake_pmu, leader)) |
| return -EINVAL; |
| |
| list_for_each_entry(sibling, &leader->sibling_list, group_entry) { |
| if (!validate_event(event->pmu, &fake_pmu, sibling)) |
| return -EINVAL; |
| } |
| |
| if (!validate_event(event->pmu, &fake_pmu, event)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static irqreturn_t armpmu_dispatch_irq(int irq, void *dev) |
| { |
| struct arm_pmu *armpmu; |
| struct platform_device *plat_device; |
| struct arm_pmu_platdata *plat; |
| int ret; |
| u64 start_clock, finish_clock; |
| |
| /* |
| * we request the IRQ with a (possibly percpu) struct arm_pmu**, but |
| * the handlers expect a struct arm_pmu*. The percpu_irq framework will |
| * do any necessary shifting, we just need to perform the first |
| * dereference. |
| */ |
| armpmu = *(void **)dev; |
| plat_device = armpmu->plat_device; |
| plat = dev_get_platdata(&plat_device->dev); |
| |
| start_clock = sched_clock(); |
| if (plat && plat->handle_irq) |
| ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq); |
| else |
| ret = armpmu->handle_irq(irq, armpmu); |
| finish_clock = sched_clock(); |
| |
| perf_sample_event_took(finish_clock - start_clock); |
| return ret; |
| } |
| |
| static void |
| armpmu_release_hardware(struct arm_pmu *armpmu) |
| { |
| armpmu->free_irq(armpmu); |
| } |
| |
| static int |
| armpmu_reserve_hardware(struct arm_pmu *armpmu) |
| { |
| int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq); |
| if (err) { |
| armpmu_release_hardware(armpmu); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static void |
| hw_perf_event_destroy(struct perf_event *event) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| atomic_t *active_events = &armpmu->active_events; |
| struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex; |
| |
| if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) { |
| armpmu_release_hardware(armpmu); |
| mutex_unlock(pmu_reserve_mutex); |
| } |
| } |
| |
| static int |
| event_requires_mode_exclusion(struct perf_event_attr *attr) |
| { |
| return attr->exclude_idle || attr->exclude_user || |
| attr->exclude_kernel || attr->exclude_hv; |
| } |
| |
| static int |
| __hw_perf_event_init(struct perf_event *event) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| int mapping; |
| |
| mapping = armpmu->map_event(event); |
| |
| if (mapping < 0) { |
| pr_debug("event %x:%llx not supported\n", event->attr.type, |
| event->attr.config); |
| return mapping; |
| } |
| |
| /* |
| * We don't assign an index until we actually place the event onto |
| * hardware. Use -1 to signify that we haven't decided where to put it |
| * yet. For SMP systems, each core has it's own PMU so we can't do any |
| * clever allocation or constraints checking at this point. |
| */ |
| hwc->idx = -1; |
| hwc->config_base = 0; |
| hwc->config = 0; |
| hwc->event_base = 0; |
| |
| /* |
| * Check whether we need to exclude the counter from certain modes. |
| */ |
| if ((!armpmu->set_event_filter || |
| armpmu->set_event_filter(hwc, &event->attr)) && |
| event_requires_mode_exclusion(&event->attr)) { |
| pr_debug("ARM performance counters do not support " |
| "mode exclusion\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| /* |
| * Store the event encoding into the config_base field. |
| */ |
| hwc->config_base |= (unsigned long)mapping; |
| |
| if (!is_sampling_event(event)) { |
| /* |
| * For non-sampling runs, limit the sample_period to half |
| * of the counter width. That way, the new counter value |
| * is far less likely to overtake the previous one unless |
| * you have some serious IRQ latency issues. |
| */ |
| hwc->sample_period = armpmu->max_period >> 1; |
| hwc->last_period = hwc->sample_period; |
| local64_set(&hwc->period_left, hwc->sample_period); |
| } |
| |
| if (event->group_leader != event) { |
| if (validate_group(event) != 0) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int armpmu_event_init(struct perf_event *event) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| int err = 0; |
| atomic_t *active_events = &armpmu->active_events; |
| |
| /* |
| * Reject CPU-affine events for CPUs that are of a different class to |
| * that which this PMU handles. Process-following events (where |
| * event->cpu == -1) can be migrated between CPUs, and thus we have to |
| * reject them later (in armpmu_add) if they're scheduled on a |
| * different class of CPU. |
| */ |
| if (event->cpu != -1 && |
| !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus)) |
| return -ENOENT; |
| |
| /* does not support taken branch sampling */ |
| if (has_branch_stack(event)) |
| return -EOPNOTSUPP; |
| |
| if (armpmu->map_event(event) == -ENOENT) |
| return -ENOENT; |
| |
| event->destroy = hw_perf_event_destroy; |
| |
| if (!atomic_inc_not_zero(active_events)) { |
| mutex_lock(&armpmu->reserve_mutex); |
| if (atomic_read(active_events) == 0) |
| err = armpmu_reserve_hardware(armpmu); |
| |
| if (!err) |
| atomic_inc(active_events); |
| mutex_unlock(&armpmu->reserve_mutex); |
| } |
| |
| if (err) |
| return err; |
| |
| err = __hw_perf_event_init(event); |
| if (err) |
| hw_perf_event_destroy(event); |
| |
| return err; |
| } |
| |
| static void armpmu_enable(struct pmu *pmu) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(pmu); |
| struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); |
| int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); |
| |
| /* For task-bound events we may be called on other CPUs */ |
| if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) |
| return; |
| |
| if (enabled) |
| armpmu->start(armpmu); |
| } |
| |
| static void armpmu_disable(struct pmu *pmu) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(pmu); |
| |
| /* For task-bound events we may be called on other CPUs */ |
| if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) |
| return; |
| |
| armpmu->stop(armpmu); |
| } |
| |
| /* |
| * In heterogeneous systems, events are specific to a particular |
| * microarchitecture, and aren't suitable for another. Thus, only match CPUs of |
| * the same microarchitecture. |
| */ |
| static int armpmu_filter_match(struct perf_event *event) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| unsigned int cpu = smp_processor_id(); |
| return cpumask_test_cpu(cpu, &armpmu->supported_cpus); |
| } |
| |
| static ssize_t armpmu_cpumask_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev)); |
| return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus); |
| } |
| |
| static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL); |
| |
| static struct attribute *armpmu_common_attrs[] = { |
| &dev_attr_cpus.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group armpmu_common_attr_group = { |
| .attrs = armpmu_common_attrs, |
| }; |
| |
| static void armpmu_init(struct arm_pmu *armpmu) |
| { |
| atomic_set(&armpmu->active_events, 0); |
| mutex_init(&armpmu->reserve_mutex); |
| |
| armpmu->pmu = (struct pmu) { |
| .pmu_enable = armpmu_enable, |
| .pmu_disable = armpmu_disable, |
| .event_init = armpmu_event_init, |
| .add = armpmu_add, |
| .del = armpmu_del, |
| .start = armpmu_start, |
| .stop = armpmu_stop, |
| .read = armpmu_read, |
| .filter_match = armpmu_filter_match, |
| .attr_groups = armpmu->attr_groups, |
| }; |
| armpmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] = |
| &armpmu_common_attr_group; |
| } |
| |
| /* Set at runtime when we know what CPU type we are. */ |
| static struct arm_pmu *__oprofile_cpu_pmu; |
| |
| /* |
| * Despite the names, these two functions are CPU-specific and are used |
| * by the OProfile/perf code. |
| */ |
| const char *perf_pmu_name(void) |
| { |
| if (!__oprofile_cpu_pmu) |
| return NULL; |
| |
| return __oprofile_cpu_pmu->name; |
| } |
| EXPORT_SYMBOL_GPL(perf_pmu_name); |
| |
| int perf_num_counters(void) |
| { |
| int max_events = 0; |
| |
| if (__oprofile_cpu_pmu != NULL) |
| max_events = __oprofile_cpu_pmu->num_events; |
| |
| return max_events; |
| } |
| EXPORT_SYMBOL_GPL(perf_num_counters); |
| |
| static void cpu_pmu_enable_percpu_irq(void *data) |
| { |
| int irq = *(int *)data; |
| |
| enable_percpu_irq(irq, IRQ_TYPE_NONE); |
| } |
| |
| static void cpu_pmu_disable_percpu_irq(void *data) |
| { |
| int irq = *(int *)data; |
| |
| disable_percpu_irq(irq); |
| } |
| |
| static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu) |
| { |
| int i, irq, irqs; |
| struct platform_device *pmu_device = cpu_pmu->plat_device; |
| struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events; |
| |
| irqs = min(pmu_device->num_resources, num_possible_cpus()); |
| |
| irq = platform_get_irq(pmu_device, 0); |
| if (irq > 0 && irq_is_percpu(irq)) { |
| on_each_cpu_mask(&cpu_pmu->supported_cpus, |
| cpu_pmu_disable_percpu_irq, &irq, 1); |
| free_percpu_irq(irq, &hw_events->percpu_pmu); |
| } else { |
| for (i = 0; i < irqs; ++i) { |
| int cpu = i; |
| |
| if (cpu_pmu->irq_affinity) |
| cpu = cpu_pmu->irq_affinity[i]; |
| |
| if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs)) |
| continue; |
| irq = platform_get_irq(pmu_device, i); |
| if (irq > 0) |
| free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu)); |
| } |
| } |
| } |
| |
| static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler) |
| { |
| int i, err, irq, irqs; |
| struct platform_device *pmu_device = cpu_pmu->plat_device; |
| struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events; |
| |
| if (!pmu_device) |
| return -ENODEV; |
| |
| irqs = min(pmu_device->num_resources, num_possible_cpus()); |
| if (irqs < 1) { |
| pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n"); |
| return 0; |
| } |
| |
| irq = platform_get_irq(pmu_device, 0); |
| if (irq > 0 && irq_is_percpu(irq)) { |
| err = request_percpu_irq(irq, handler, "arm-pmu", |
| &hw_events->percpu_pmu); |
| if (err) { |
| pr_err("unable to request IRQ%d for ARM PMU counters\n", |
| irq); |
| return err; |
| } |
| |
| on_each_cpu_mask(&cpu_pmu->supported_cpus, |
| cpu_pmu_enable_percpu_irq, &irq, 1); |
| } else { |
| for (i = 0; i < irqs; ++i) { |
| int cpu = i; |
| |
| err = 0; |
| irq = platform_get_irq(pmu_device, i); |
| if (irq < 0) |
| continue; |
| |
| if (cpu_pmu->irq_affinity) |
| cpu = cpu_pmu->irq_affinity[i]; |
| |
| /* |
| * If we have a single PMU interrupt that we can't shift, |
| * assume that we're running on a uniprocessor machine and |
| * continue. Otherwise, continue without this interrupt. |
| */ |
| if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) { |
| pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n", |
| irq, cpu); |
| continue; |
| } |
| |
| err = request_irq(irq, handler, |
| IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu", |
| per_cpu_ptr(&hw_events->percpu_pmu, cpu)); |
| if (err) { |
| pr_err("unable to request IRQ%d for ARM PMU counters\n", |
| irq); |
| return err; |
| } |
| |
| cpumask_set_cpu(cpu, &cpu_pmu->active_irqs); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * PMU hardware loses all context when a CPU goes offline. |
| * When a CPU is hotplugged back in, since some hardware registers are |
| * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading |
| * junk values out of them. |
| */ |
| static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node) |
| { |
| struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); |
| |
| if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) |
| return 0; |
| if (pmu->reset) |
| pmu->reset(pmu); |
| return 0; |
| } |
| |
| #ifdef CONFIG_CPU_PM |
| static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd) |
| { |
| struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); |
| struct perf_event *event; |
| int idx; |
| |
| for (idx = 0; idx < armpmu->num_events; idx++) { |
| /* |
| * If the counter is not used skip it, there is no |
| * need of stopping/restarting it. |
| */ |
| if (!test_bit(idx, hw_events->used_mask)) |
| continue; |
| |
| event = hw_events->events[idx]; |
| |
| switch (cmd) { |
| case CPU_PM_ENTER: |
| /* |
| * Stop and update the counter |
| */ |
| armpmu_stop(event, PERF_EF_UPDATE); |
| break; |
| case CPU_PM_EXIT: |
| case CPU_PM_ENTER_FAILED: |
| /* |
| * Restore and enable the counter. |
| * armpmu_start() indirectly calls |
| * |
| * perf_event_update_userpage() |
| * |
| * that requires RCU read locking to be functional, |
| * wrap the call within RCU_NONIDLE to make the |
| * RCU subsystem aware this cpu is not idle from |
| * an RCU perspective for the armpmu_start() call |
| * duration. |
| */ |
| RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD)); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd, |
| void *v) |
| { |
| struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb); |
| struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); |
| int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); |
| |
| if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) |
| return NOTIFY_DONE; |
| |
| /* |
| * Always reset the PMU registers on power-up even if |
| * there are no events running. |
| */ |
| if (cmd == CPU_PM_EXIT && armpmu->reset) |
| armpmu->reset(armpmu); |
| |
| if (!enabled) |
| return NOTIFY_OK; |
| |
| switch (cmd) { |
| case CPU_PM_ENTER: |
| armpmu->stop(armpmu); |
| cpu_pm_pmu_setup(armpmu, cmd); |
| break; |
| case CPU_PM_EXIT: |
| cpu_pm_pmu_setup(armpmu, cmd); |
| case CPU_PM_ENTER_FAILED: |
| armpmu->start(armpmu); |
| break; |
| default: |
| return NOTIFY_DONE; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) |
| { |
| cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify; |
| return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb); |
| } |
| |
| static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) |
| { |
| cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb); |
| } |
| #else |
| static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; } |
| static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { } |
| #endif |
| |
| static int cpu_pmu_init(struct arm_pmu *cpu_pmu) |
| { |
| int err; |
| int cpu; |
| struct pmu_hw_events __percpu *cpu_hw_events; |
| |
| cpu_hw_events = alloc_percpu(struct pmu_hw_events); |
| if (!cpu_hw_events) |
| return -ENOMEM; |
| |
| err = cpuhp_state_add_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, |
| &cpu_pmu->node); |
| if (err) |
| goto out_free; |
| |
| err = cpu_pm_pmu_register(cpu_pmu); |
| if (err) |
| goto out_unregister; |
| |
| for_each_possible_cpu(cpu) { |
| struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu); |
| raw_spin_lock_init(&events->pmu_lock); |
| events->percpu_pmu = cpu_pmu; |
| } |
| |
| cpu_pmu->hw_events = cpu_hw_events; |
| cpu_pmu->request_irq = cpu_pmu_request_irq; |
| cpu_pmu->free_irq = cpu_pmu_free_irq; |
| |
| /* Ensure the PMU has sane values out of reset. */ |
| if (cpu_pmu->reset) |
| on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset, |
| cpu_pmu, 1); |
| |
| /* If no interrupts available, set the corresponding capability flag */ |
| if (!platform_get_irq(cpu_pmu->plat_device, 0)) |
| cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; |
| |
| /* |
| * This is a CPU PMU potentially in a heterogeneous configuration (e.g. |
| * big.LITTLE). This is not an uncore PMU, and we have taken ctx |
| * sharing into account (e.g. with our pmu::filter_match callback and |
| * pmu::event_init group validation). |
| */ |
| cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS; |
| |
| return 0; |
| |
| out_unregister: |
| cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, |
| &cpu_pmu->node); |
| out_free: |
| free_percpu(cpu_hw_events); |
| return err; |
| } |
| |
| static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu) |
| { |
| cpu_pm_pmu_unregister(cpu_pmu); |
| cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, |
| &cpu_pmu->node); |
| free_percpu(cpu_pmu->hw_events); |
| } |
| |
| /* |
| * CPU PMU identification and probing. |
| */ |
| static int probe_current_pmu(struct arm_pmu *pmu, |
| const struct pmu_probe_info *info) |
| { |
| int cpu = get_cpu(); |
| unsigned int cpuid = read_cpuid_id(); |
| int ret = -ENODEV; |
| |
| pr_info("probing PMU on CPU %d\n", cpu); |
| |
| for (; info->init != NULL; info++) { |
| if ((cpuid & info->mask) != info->cpuid) |
| continue; |
| ret = info->init(pmu); |
| break; |
| } |
| |
| put_cpu(); |
| return ret; |
| } |
| |
| static int of_pmu_irq_cfg(struct arm_pmu *pmu) |
| { |
| int *irqs, i = 0; |
| bool using_spi = false; |
| struct platform_device *pdev = pmu->plat_device; |
| |
| irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL); |
| if (!irqs) |
| return -ENOMEM; |
| |
| do { |
| struct device_node *dn; |
| int cpu, irq; |
| |
| /* See if we have an affinity entry */ |
| dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i); |
| if (!dn) |
| break; |
| |
| /* Check the IRQ type and prohibit a mix of PPIs and SPIs */ |
| irq = platform_get_irq(pdev, i); |
| if (irq > 0) { |
| bool spi = !irq_is_percpu(irq); |
| |
| if (i > 0 && spi != using_spi) { |
| pr_err("PPI/SPI IRQ type mismatch for %s!\n", |
| dn->name); |
| of_node_put(dn); |
| kfree(irqs); |
| return -EINVAL; |
| } |
| |
| using_spi = spi; |
| } |
| |
| /* Now look up the logical CPU number */ |
| for_each_possible_cpu(cpu) { |
| struct device_node *cpu_dn; |
| |
| cpu_dn = of_cpu_device_node_get(cpu); |
| of_node_put(cpu_dn); |
| |
| if (dn == cpu_dn) |
| break; |
| } |
| |
| if (cpu >= nr_cpu_ids) { |
| pr_warn("Failed to find logical CPU for %s\n", |
| dn->name); |
| of_node_put(dn); |
| cpumask_setall(&pmu->supported_cpus); |
| break; |
| } |
| of_node_put(dn); |
| |
| /* For SPIs, we need to track the affinity per IRQ */ |
| if (using_spi) { |
| if (i >= pdev->num_resources) |
| break; |
| |
| irqs[i] = cpu; |
| } |
| |
| /* Keep track of the CPUs containing this PMU type */ |
| cpumask_set_cpu(cpu, &pmu->supported_cpus); |
| i++; |
| } while (1); |
| |
| /* If we didn't manage to parse anything, try the interrupt affinity */ |
| if (cpumask_weight(&pmu->supported_cpus) == 0) { |
| int irq = platform_get_irq(pdev, 0); |
| |
| if (irq > 0 && irq_is_percpu(irq)) { |
| /* If using PPIs, check the affinity of the partition */ |
| int ret; |
| |
| ret = irq_get_percpu_devid_partition(irq, &pmu->supported_cpus); |
| if (ret) { |
| kfree(irqs); |
| return ret; |
| } |
| } else { |
| /* Otherwise default to all CPUs */ |
| cpumask_setall(&pmu->supported_cpus); |
| } |
| } |
| |
| /* If we matched up the IRQ affinities, use them to route the SPIs */ |
| if (using_spi && i == pdev->num_resources) |
| pmu->irq_affinity = irqs; |
| else |
| kfree(irqs); |
| |
| return 0; |
| } |
| |
| int arm_pmu_device_probe(struct platform_device *pdev, |
| const struct of_device_id *of_table, |
| const struct pmu_probe_info *probe_table) |
| { |
| const struct of_device_id *of_id; |
| const int (*init_fn)(struct arm_pmu *); |
| struct device_node *node = pdev->dev.of_node; |
| struct arm_pmu *pmu; |
| int ret = -ENODEV; |
| |
| pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL); |
| if (!pmu) { |
| pr_info("failed to allocate PMU device!\n"); |
| return -ENOMEM; |
| } |
| |
| armpmu_init(pmu); |
| |
| pmu->plat_device = pdev; |
| |
| if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) { |
| init_fn = of_id->data; |
| |
| pmu->secure_access = of_property_read_bool(pdev->dev.of_node, |
| "secure-reg-access"); |
| |
| /* arm64 systems boot only as non-secure */ |
| if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) { |
| pr_warn("ignoring \"secure-reg-access\" property for arm64\n"); |
| pmu->secure_access = false; |
| } |
| |
| ret = of_pmu_irq_cfg(pmu); |
| if (!ret) |
| ret = init_fn(pmu); |
| } else if (probe_table) { |
| cpumask_setall(&pmu->supported_cpus); |
| ret = probe_current_pmu(pmu, probe_table); |
| } |
| |
| if (ret) { |
| pr_info("%s: failed to probe PMU!\n", of_node_full_name(node)); |
| goto out_free; |
| } |
| |
| |
| ret = cpu_pmu_init(pmu); |
| if (ret) |
| goto out_free; |
| |
| ret = perf_pmu_register(&pmu->pmu, pmu->name, -1); |
| if (ret) |
| goto out_destroy; |
| |
| if (!__oprofile_cpu_pmu) |
| __oprofile_cpu_pmu = pmu; |
| |
| pr_info("enabled with %s PMU driver, %d counters available\n", |
| pmu->name, pmu->num_events); |
| |
| return 0; |
| |
| out_destroy: |
| cpu_pmu_destroy(pmu); |
| out_free: |
| pr_info("%s: failed to register PMU devices!\n", |
| of_node_full_name(node)); |
| kfree(pmu->irq_affinity); |
| kfree(pmu); |
| return ret; |
| } |
| |
| static int arm_pmu_hp_init(void) |
| { |
| int ret; |
| |
| ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING, |
| "AP_PERF_ARM_STARTING", |
| arm_perf_starting_cpu, NULL); |
| if (ret) |
| pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n", |
| ret); |
| return ret; |
| } |
| subsys_initcall(arm_pmu_hp_init); |