| /* Large capacity key type |
| * |
| * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. |
| * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public Licence |
| * as published by the Free Software Foundation; either version |
| * 2 of the Licence, or (at your option) any later version. |
| */ |
| |
| #define pr_fmt(fmt) "big_key: "fmt |
| #include <linux/init.h> |
| #include <linux/seq_file.h> |
| #include <linux/file.h> |
| #include <linux/shmem_fs.h> |
| #include <linux/err.h> |
| #include <linux/scatterlist.h> |
| #include <linux/random.h> |
| #include <keys/user-type.h> |
| #include <keys/big_key-type.h> |
| #include <crypto/aead.h> |
| |
| /* |
| * Layout of key payload words. |
| */ |
| enum { |
| big_key_data, |
| big_key_path, |
| big_key_path_2nd_part, |
| big_key_len, |
| }; |
| |
| /* |
| * Crypto operation with big_key data |
| */ |
| enum big_key_op { |
| BIG_KEY_ENC, |
| BIG_KEY_DEC, |
| }; |
| |
| /* |
| * If the data is under this limit, there's no point creating a shm file to |
| * hold it as the permanently resident metadata for the shmem fs will be at |
| * least as large as the data. |
| */ |
| #define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry)) |
| |
| /* |
| * Key size for big_key data encryption |
| */ |
| #define ENC_KEY_SIZE 32 |
| |
| /* |
| * Authentication tag length |
| */ |
| #define ENC_AUTHTAG_SIZE 16 |
| |
| /* |
| * big_key defined keys take an arbitrary string as the description and an |
| * arbitrary blob of data as the payload |
| */ |
| struct key_type key_type_big_key = { |
| .name = "big_key", |
| .preparse = big_key_preparse, |
| .free_preparse = big_key_free_preparse, |
| .instantiate = generic_key_instantiate, |
| .revoke = big_key_revoke, |
| .destroy = big_key_destroy, |
| .describe = big_key_describe, |
| .read = big_key_read, |
| /* no ->update(); don't add it without changing big_key_crypt() nonce */ |
| }; |
| |
| /* |
| * Crypto names for big_key data authenticated encryption |
| */ |
| static const char big_key_alg_name[] = "gcm(aes)"; |
| |
| /* |
| * Crypto algorithms for big_key data authenticated encryption |
| */ |
| static struct crypto_aead *big_key_aead; |
| |
| /* |
| * Since changing the key affects the entire object, we need a mutex. |
| */ |
| static DEFINE_MUTEX(big_key_aead_lock); |
| |
| /* |
| * Encrypt/decrypt big_key data |
| */ |
| static int big_key_crypt(enum big_key_op op, u8 *data, size_t datalen, u8 *key) |
| { |
| int ret; |
| struct scatterlist sgio; |
| struct aead_request *aead_req; |
| /* We always use a zero nonce. The reason we can get away with this is |
| * because we're using a different randomly generated key for every |
| * different encryption. Notably, too, key_type_big_key doesn't define |
| * an .update function, so there's no chance we'll wind up reusing the |
| * key to encrypt updated data. Simply put: one key, one encryption. |
| */ |
| u8 zero_nonce[crypto_aead_ivsize(big_key_aead)]; |
| |
| aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL); |
| if (!aead_req) |
| return -ENOMEM; |
| |
| memset(zero_nonce, 0, sizeof(zero_nonce)); |
| sg_init_one(&sgio, data, datalen + (op == BIG_KEY_ENC ? ENC_AUTHTAG_SIZE : 0)); |
| aead_request_set_crypt(aead_req, &sgio, &sgio, datalen, zero_nonce); |
| aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); |
| aead_request_set_ad(aead_req, 0); |
| |
| mutex_lock(&big_key_aead_lock); |
| if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) { |
| ret = -EAGAIN; |
| goto error; |
| } |
| if (op == BIG_KEY_ENC) |
| ret = crypto_aead_encrypt(aead_req); |
| else |
| ret = crypto_aead_decrypt(aead_req); |
| error: |
| mutex_unlock(&big_key_aead_lock); |
| aead_request_free(aead_req); |
| return ret; |
| } |
| |
| /* |
| * Preparse a big key |
| */ |
| int big_key_preparse(struct key_preparsed_payload *prep) |
| { |
| struct path *path = (struct path *)&prep->payload.data[big_key_path]; |
| struct file *file; |
| u8 *enckey; |
| u8 *data = NULL; |
| ssize_t written; |
| size_t datalen = prep->datalen; |
| int ret; |
| |
| ret = -EINVAL; |
| if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data) |
| goto error; |
| |
| /* Set an arbitrary quota */ |
| prep->quotalen = 16; |
| |
| prep->payload.data[big_key_len] = (void *)(unsigned long)datalen; |
| |
| if (datalen > BIG_KEY_FILE_THRESHOLD) { |
| /* Create a shmem file to store the data in. This will permit the data |
| * to be swapped out if needed. |
| * |
| * File content is stored encrypted with randomly generated key. |
| */ |
| size_t enclen = datalen + ENC_AUTHTAG_SIZE; |
| |
| data = kmalloc(enclen, GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| memcpy(data, prep->data, datalen); |
| |
| /* generate random key */ |
| enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL); |
| if (!enckey) { |
| ret = -ENOMEM; |
| goto error; |
| } |
| get_random_bytes(enckey, ENC_KEY_SIZE); |
| |
| /* encrypt aligned data */ |
| ret = big_key_crypt(BIG_KEY_ENC, data, datalen, enckey); |
| if (ret) |
| goto err_enckey; |
| |
| /* save aligned data to file */ |
| file = shmem_kernel_file_setup("", enclen, 0); |
| if (IS_ERR(file)) { |
| ret = PTR_ERR(file); |
| goto err_enckey; |
| } |
| |
| written = kernel_write(file, data, enclen, 0); |
| if (written != enclen) { |
| ret = written; |
| if (written >= 0) |
| ret = -ENOMEM; |
| goto err_fput; |
| } |
| |
| /* Pin the mount and dentry to the key so that we can open it again |
| * later |
| */ |
| prep->payload.data[big_key_data] = enckey; |
| *path = file->f_path; |
| path_get(path); |
| fput(file); |
| kzfree(data); |
| } else { |
| /* Just store the data in a buffer */ |
| void *data = kmalloc(datalen, GFP_KERNEL); |
| |
| if (!data) |
| return -ENOMEM; |
| |
| prep->payload.data[big_key_data] = data; |
| memcpy(data, prep->data, prep->datalen); |
| } |
| return 0; |
| |
| err_fput: |
| fput(file); |
| err_enckey: |
| kzfree(enckey); |
| error: |
| kzfree(data); |
| return ret; |
| } |
| |
| /* |
| * Clear preparsement. |
| */ |
| void big_key_free_preparse(struct key_preparsed_payload *prep) |
| { |
| if (prep->datalen > BIG_KEY_FILE_THRESHOLD) { |
| struct path *path = (struct path *)&prep->payload.data[big_key_path]; |
| |
| path_put(path); |
| } |
| kzfree(prep->payload.data[big_key_data]); |
| } |
| |
| /* |
| * dispose of the links from a revoked keyring |
| * - called with the key sem write-locked |
| */ |
| void big_key_revoke(struct key *key) |
| { |
| struct path *path = (struct path *)&key->payload.data[big_key_path]; |
| |
| /* clear the quota */ |
| key_payload_reserve(key, 0); |
| if (key_is_instantiated(key) && |
| (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD) |
| vfs_truncate(path, 0); |
| } |
| |
| /* |
| * dispose of the data dangling from the corpse of a big_key key |
| */ |
| void big_key_destroy(struct key *key) |
| { |
| size_t datalen = (size_t)key->payload.data[big_key_len]; |
| |
| if (datalen > BIG_KEY_FILE_THRESHOLD) { |
| struct path *path = (struct path *)&key->payload.data[big_key_path]; |
| |
| path_put(path); |
| path->mnt = NULL; |
| path->dentry = NULL; |
| } |
| kzfree(key->payload.data[big_key_data]); |
| key->payload.data[big_key_data] = NULL; |
| } |
| |
| /* |
| * describe the big_key key |
| */ |
| void big_key_describe(const struct key *key, struct seq_file *m) |
| { |
| size_t datalen = (size_t)key->payload.data[big_key_len]; |
| |
| seq_puts(m, key->description); |
| |
| if (key_is_instantiated(key)) |
| seq_printf(m, ": %zu [%s]", |
| datalen, |
| datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff"); |
| } |
| |
| /* |
| * read the key data |
| * - the key's semaphore is read-locked |
| */ |
| long big_key_read(const struct key *key, char __user *buffer, size_t buflen) |
| { |
| size_t datalen = (size_t)key->payload.data[big_key_len]; |
| long ret; |
| |
| if (!buffer || buflen < datalen) |
| return datalen; |
| |
| if (datalen > BIG_KEY_FILE_THRESHOLD) { |
| struct path *path = (struct path *)&key->payload.data[big_key_path]; |
| struct file *file; |
| u8 *data; |
| u8 *enckey = (u8 *)key->payload.data[big_key_data]; |
| size_t enclen = datalen + ENC_AUTHTAG_SIZE; |
| |
| data = kmalloc(enclen, GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| file = dentry_open(path, O_RDONLY, current_cred()); |
| if (IS_ERR(file)) { |
| ret = PTR_ERR(file); |
| goto error; |
| } |
| |
| /* read file to kernel and decrypt */ |
| ret = kernel_read(file, 0, data, enclen); |
| if (ret >= 0 && ret != enclen) { |
| ret = -EIO; |
| goto err_fput; |
| } |
| |
| ret = big_key_crypt(BIG_KEY_DEC, data, enclen, enckey); |
| if (ret) |
| goto err_fput; |
| |
| ret = datalen; |
| |
| /* copy decrypted data to user */ |
| if (copy_to_user(buffer, data, datalen) != 0) |
| ret = -EFAULT; |
| |
| err_fput: |
| fput(file); |
| error: |
| kzfree(data); |
| } else { |
| ret = datalen; |
| if (copy_to_user(buffer, key->payload.data[big_key_data], |
| datalen) != 0) |
| ret = -EFAULT; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Register key type |
| */ |
| static int __init big_key_init(void) |
| { |
| int ret; |
| |
| /* init block cipher */ |
| big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC); |
| if (IS_ERR(big_key_aead)) { |
| ret = PTR_ERR(big_key_aead); |
| pr_err("Can't alloc crypto: %d\n", ret); |
| return ret; |
| } |
| ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE); |
| if (ret < 0) { |
| pr_err("Can't set crypto auth tag len: %d\n", ret); |
| goto free_aead; |
| } |
| |
| ret = register_key_type(&key_type_big_key); |
| if (ret < 0) { |
| pr_err("Can't register type: %d\n", ret); |
| goto free_aead; |
| } |
| |
| return 0; |
| |
| free_aead: |
| crypto_free_aead(big_key_aead); |
| return ret; |
| } |
| |
| late_initcall(big_key_init); |