blob: 00537072aad7ab25c80318886cb5afedd57d8ed5 [file] [log] [blame]
/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <typedefs.h>
#include <bcmdefs.h>
#include <osl.h>
#include <bcmutils.h>
#include <siutils.h>
#include <bcmdevs.h>
#include <hndsoc.h>
#include <sbchipc.h>
#include <pci_core.h>
#include <pcie_core.h>
#include <nicpci.h>
#include <bcmnvram.h>
#include <bcmsrom.h>
#include <hndtcam.h>
#include <pcicfg.h>
#include <sbsocram.h>
#ifdef BCMSDIO
#include <bcmsdh.h>
#include <sdio.h>
#include <sbsdio.h>
#include <sbhnddma.h>
#include <sbsdpcmdev.h>
#include <bcmsdpcm.h>
#endif /* BCMSDIO */
#include <hndpmu.h>
/* this file now contains only definitions for sb functions, only necessary
*for devices using Sonics backplanes (bcm4329)
*/
/* if an amba SDIO device is supported, please further restrict the inclusion
* of this file
*/
#ifdef BCMSDIO
#include "siutils_priv.h"
#endif
/* local prototypes */
static si_info_t *si_doattach(si_info_t *sii, uint devid, osl_t *osh,
void *regs, uint bustype, void *sdh, char **vars,
uint *varsz);
static bool si_buscore_prep(si_info_t *sii, uint bustype, uint devid,
void *sdh);
static bool si_buscore_setup(si_info_t *sii, chipcregs_t *cc, uint bustype,
uint32 savewin, uint *origidx, void *regs);
static void si_nvram_process(si_info_t *sii, char *pvars);
/* dev path concatenation util */
static char *si_devpathvar(si_t *sih, char *var, int len, const char *name);
static bool _si_clkctl_cc(si_info_t *sii, uint mode);
static bool si_ispcie(si_info_t *sii);
static uint BCMINITFN(socram_banksize) (si_info_t *sii, sbsocramregs_t *r,
uint8 idx, uint8 mtype);
/* global variable to indicate reservation/release of gpio's */
static uint32 si_gpioreservation = 0;
/* global flag to prevent shared resources from being initialized multiple times in si_attach() */
/*
* Allocate a si handle.
* devid - pci device id (used to determine chip#)
* osh - opaque OS handle
* regs - virtual address of initial core registers
* bustype - pci/sb/sdio/etc
* vars - pointer to a pointer area for "environment" variables
* varsz - pointer to int to return the size of the vars
*/
si_t *BCMATTACHFN(si_attach) (uint devid, osl_t *osh, void *regs,
uint bustype, void *sdh, char **vars,
uint *varsz) {
si_info_t *sii;
/* alloc si_info_t */
if ((sii = MALLOC(osh, sizeof(si_info_t))) == NULL) {
SI_ERROR(("si_attach: malloc failed! malloced %d bytes\n",
MALLOCED(osh)));
return (NULL);
}
if (si_doattach(sii, devid, osh, regs, bustype, sdh, vars, varsz) ==
NULL) {
MFREE(osh, sii, sizeof(si_info_t));
return (NULL);
}
sii->vars = vars ? *vars : NULL;
sii->varsz = varsz ? *varsz : 0;
return (si_t *) sii;
}
/* global kernel resource */
static si_info_t ksii;
static uint32 wd_msticks; /* watchdog timer ticks normalized to ms */
static bool
BCMATTACHFN(si_buscore_prep) (si_info_t *sii, uint bustype, uint devid,
void *sdh) {
/* kludge to enable the clock on the 4306 which lacks a slowclock */
if (BUSTYPE(bustype) == PCI_BUS && !si_ispcie(sii))
si_clkctl_xtal(&sii->pub, XTAL | PLL, ON);
#if defined(BCMSDIO)
if (BUSTYPE(bustype) == SDIO_BUS) {
int err;
uint8 clkset;
/* Try forcing SDIO core to do ALPAvail request only */
clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ;
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR,
clkset, &err);
if (!err) {
uint8 clkval;
/* If register supported, wait for ALPAvail and then force ALP */
clkval =
bcmsdh_cfg_read(sdh, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, NULL);
if ((clkval & ~SBSDIO_AVBITS) == clkset) {
SPINWAIT(((clkval =
bcmsdh_cfg_read(sdh, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR,
NULL)),
!SBSDIO_ALPAV(clkval)),
PMU_MAX_TRANSITION_DLY);
if (!SBSDIO_ALPAV(clkval)) {
SI_ERROR(("timeout on ALPAV wait, clkval 0x%02x\n", clkval));
return FALSE;
}
clkset =
SBSDIO_FORCE_HW_CLKREQ_OFF |
SBSDIO_FORCE_ALP;
bcmsdh_cfg_write(sdh, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR,
clkset, &err);
OSL_DELAY(65);
}
}
/* Also, disable the extra SDIO pull-ups */
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SDIOPULLUP, 0,
NULL);
}
#endif /* defined(BCMSDIO) */
return TRUE;
}
static bool
BCMATTACHFN(si_buscore_setup) (si_info_t *sii, chipcregs_t *cc, uint bustype,
uint32 savewin, uint *origidx, void *regs) {
bool pci, pcie;
uint i;
uint pciidx, pcieidx, pcirev, pcierev;
cc = si_setcoreidx(&sii->pub, SI_CC_IDX);
ASSERT((uintptr) cc);
/* get chipcommon rev */
sii->pub.ccrev = (int)si_corerev(&sii->pub);
/* get chipcommon chipstatus */
if (sii->pub.ccrev >= 11)
sii->pub.chipst = R_REG(sii->osh, &cc->chipstatus);
/* get chipcommon capabilites */
sii->pub.cccaps = R_REG(sii->osh, &cc->capabilities);
/* get chipcommon extended capabilities */
if (sii->pub.ccrev >= 35)
sii->pub.cccaps_ext = R_REG(sii->osh, &cc->capabilities_ext);
/* get pmu rev and caps */
if (sii->pub.cccaps & CC_CAP_PMU) {
sii->pub.pmucaps = R_REG(sii->osh, &cc->pmucapabilities);
sii->pub.pmurev = sii->pub.pmucaps & PCAP_REV_MASK;
}
/*
SI_MSG(("Chipc: rev %d, caps 0x%x, chipst 0x%x pmurev %d, pmucaps 0x%x\n",
sii->pub.ccrev, sii->pub.cccaps, sii->pub.chipst, sii->pub.pmurev,
sii->pub.pmucaps));
*/
/* figure out bus/orignal core idx */
sii->pub.buscoretype = NODEV_CORE_ID;
sii->pub.buscorerev = NOREV;
sii->pub.buscoreidx = BADIDX;
pci = pcie = FALSE;
pcirev = pcierev = NOREV;
pciidx = pcieidx = BADIDX;
for (i = 0; i < sii->numcores; i++) {
uint cid, crev;
si_setcoreidx(&sii->pub, i);
cid = si_coreid(&sii->pub);
crev = si_corerev(&sii->pub);
/* Display cores found */
SI_VMSG(("CORE[%d]: id 0x%x rev %d base 0x%x regs 0x%p\n",
i, cid, crev, sii->coresba[i], sii->regs[i]));
if (BUSTYPE(bustype) == PCI_BUS) {
if (cid == PCI_CORE_ID) {
pciidx = i;
pcirev = crev;
pci = TRUE;
} else if (cid == PCIE_CORE_ID) {
pcieidx = i;
pcierev = crev;
pcie = TRUE;
}
}
#ifdef BCMSDIO
else if (((BUSTYPE(bustype) == SDIO_BUS) ||
(BUSTYPE(bustype) == SPI_BUS)) &&
((cid == PCMCIA_CORE_ID) || (cid == SDIOD_CORE_ID))) {
sii->pub.buscorerev = crev;
sii->pub.buscoretype = cid;
sii->pub.buscoreidx = i;
}
#endif /* BCMSDIO */
/* find the core idx before entering this func. */
if ((savewin && (savewin == sii->coresba[i])) ||
(regs == sii->regs[i]))
*origidx = i;
}
if (pci && pcie) {
if (si_ispcie(sii))
pci = FALSE;
else
pcie = FALSE;
}
if (pci) {
sii->pub.buscoretype = PCI_CORE_ID;
sii->pub.buscorerev = pcirev;
sii->pub.buscoreidx = pciidx;
} else if (pcie) {
sii->pub.buscoretype = PCIE_CORE_ID;
sii->pub.buscorerev = pcierev;
sii->pub.buscoreidx = pcieidx;
}
SI_VMSG(("Buscore id/type/rev %d/0x%x/%d\n", sii->pub.buscoreidx,
sii->pub.buscoretype, sii->pub.buscorerev));
/* fixup necessary chip/core configurations */
if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
if (SI_FAST(sii)) {
if (!sii->pch &&
((sii->pch =
(void *)(uintptr) pcicore_init(&sii->pub,
sii->osh,
(void *)
PCIEREGS(sii))) ==
NULL))
return FALSE;
}
if (si_pci_fixcfg(&sii->pub)) {
SI_ERROR(("si_doattach: sb_pci_fixcfg failed\n"));
return FALSE;
}
}
/* return to the original core */
si_setcoreidx(&sii->pub, *origidx);
return TRUE;
}
static void BCMATTACHFN(si_nvram_process) (si_info_t *sii, char *pvars)
{
uint w = 0;
/* get boardtype and boardrev */
switch (BUSTYPE(sii->pub.bustype)) {
case PCI_BUS:
/* do a pci config read to get subsystem id and subvendor id */
w = OSL_PCI_READ_CONFIG(sii->osh, PCI_CFG_SVID, sizeof(uint32));
/* Let nvram variables override subsystem Vend/ID */
if ((sii->pub.boardvendor =
(uint16) si_getdevpathintvar(&sii->pub, "boardvendor"))
== 0)
sii->pub.boardvendor = w & 0xffff;
else
SI_ERROR(("Overriding boardvendor: 0x%x instead of 0x%x\n", sii->pub.boardvendor, w & 0xffff));
if ((sii->pub.boardtype =
(uint16) si_getdevpathintvar(&sii->pub, "boardtype"))
== 0)
sii->pub.boardtype = (w >> 16) & 0xffff;
else
SI_ERROR(("Overriding boardtype: 0x%x instead of 0x%x\n", sii->pub.boardtype, (w >> 16) & 0xffff));
break;
#ifdef BCMSDIO
case SDIO_BUS:
#endif
sii->pub.boardvendor = getintvar(pvars, "manfid");
sii->pub.boardtype = getintvar(pvars, "prodid");
break;
#ifdef BCMSDIO
case SPI_BUS:
sii->pub.boardvendor = VENDOR_BROADCOM;
sii->pub.boardtype = SPI_BOARD;
break;
#endif
case SI_BUS:
case JTAG_BUS:
sii->pub.boardvendor = VENDOR_BROADCOM;
if (pvars == NULL
|| ((sii->pub.boardtype = getintvar(pvars, "prodid")) == 0))
if ((sii->pub.boardtype =
getintvar(NULL, "boardtype")) == 0)
sii->pub.boardtype = 0xffff;
break;
}
if (sii->pub.boardtype == 0) {
SI_ERROR(("si_doattach: unknown board type\n"));
ASSERT(sii->pub.boardtype);
}
sii->pub.boardflags = getintvar(pvars, "boardflags");
}
/* this is will make Sonics calls directly, since Sonics is no longer supported in the Si abstraction */
/* this has been customized for the bcm 4329 ONLY */
#ifdef BCMSDIO
static si_info_t *BCMATTACHFN(si_doattach) (si_info_t *sii, uint devid,
osl_t *osh, void *regs,
uint bustype, void *sdh,
char **vars, uint *varsz) {
struct si_pub *sih = &sii->pub;
uint32 w, savewin;
chipcregs_t *cc;
char *pvars = NULL;
uint origidx;
ASSERT(GOODREGS(regs));
bzero((uchar *) sii, sizeof(si_info_t));
savewin = 0;
sih->buscoreidx = BADIDX;
sii->curmap = regs;
sii->sdh = sdh;
sii->osh = osh;
/* find Chipcommon address */
cc = (chipcregs_t *) sii->curmap;
sih->bustype = bustype;
if (bustype != BUSTYPE(bustype)) {
SI_ERROR(("si_doattach: bus type %d does not match configured bus type %d\n", bustype, BUSTYPE(bustype)));
return NULL;
}
/* bus/core/clk setup for register access */
if (!si_buscore_prep(sii, bustype, devid, sdh)) {
SI_ERROR(("si_doattach: si_core_clk_prep failed %d\n",
bustype));
return NULL;
}
/* ChipID recognition.
* We assume we can read chipid at offset 0 from the regs arg.
* If we add other chiptypes (or if we need to support old sdio hosts w/o chipcommon),
* some way of recognizing them needs to be added here.
*/
w = R_REG(osh, &cc->chipid);
sih->socitype = (w & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
/* Might as wll fill in chip id rev & pkg */
sih->chip = w & CID_ID_MASK;
sih->chiprev = (w & CID_REV_MASK) >> CID_REV_SHIFT;
sih->chippkg = (w & CID_PKG_MASK) >> CID_PKG_SHIFT;
if ((CHIPID(sih->chip) == BCM4329_CHIP_ID) && (sih->chiprev == 0) &&
(sih->chippkg != BCM4329_289PIN_PKG_ID)) {
sih->chippkg = BCM4329_182PIN_PKG_ID;
}
sih->issim = IS_SIM(sih->chippkg);
/* scan for cores */
/* SI_MSG(("Found chip type SB (0x%08x)\n", w)); */
sb_scan(&sii->pub, regs, devid);
/* no cores found, bail out */
if (sii->numcores == 0) {
SI_ERROR(("si_doattach: could not find any cores\n"));
return NULL;
}
/* bus/core/clk setup */
origidx = SI_CC_IDX;
if (!si_buscore_setup(sii, cc, bustype, savewin, &origidx, regs)) {
SI_ERROR(("si_doattach: si_buscore_setup failed\n"));
goto exit;
}
/* Init nvram from flash if it exists */
nvram_init((void *)&(sii->pub));
/* Init nvram from sprom/otp if they exist */
if (srom_var_init
(&sii->pub, BUSTYPE(bustype), regs, sii->osh, vars, varsz)) {
SI_ERROR(("si_doattach: srom_var_init failed: bad srom\n"));
goto exit;
}
pvars = vars ? *vars : NULL;
si_nvram_process(sii, pvars);
/* === NVRAM, clock is ready === */
cc = (chipcregs_t *) si_setcore(sih, CC_CORE_ID, 0);
W_REG(osh, &cc->gpiopullup, 0);
W_REG(osh, &cc->gpiopulldown, 0);
sb_setcoreidx(sih, origidx);
/* PMU specific initializations */
if (PMUCTL_ENAB(sih)) {
uint32 xtalfreq;
si_pmu_init(sih, sii->osh);
si_pmu_chip_init(sih, sii->osh);
xtalfreq = getintvar(pvars, "xtalfreq");
/* If xtalfreq var not available, try to measure it */
if (xtalfreq == 0)
xtalfreq = si_pmu_measure_alpclk(sih, sii->osh);
si_pmu_pll_init(sih, sii->osh, xtalfreq);
si_pmu_res_init(sih, sii->osh);
si_pmu_swreg_init(sih, sii->osh);
}
/* setup the GPIO based LED powersave register */
if ((w = getintvar(pvars, "leddc")) == 0)
w = DEFAULT_GPIOTIMERVAL;
sb_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, gpiotimerval), ~0, w);
#ifdef BCMDBG
/* clear any previous epidiag-induced target abort */
sb_taclear(sih, FALSE);
#endif /* BCMDBG */
return (sii);
exit:
return NULL;
}
#else /* BCMSDIO */
static si_info_t *BCMATTACHFN(si_doattach) (si_info_t *sii, uint devid,
osl_t *osh, void *regs,
uint bustype, void *sdh,
char **vars, uint *varsz) {
struct si_pub *sih = &sii->pub;
uint32 w, savewin;
chipcregs_t *cc;
char *pvars = NULL;
uint origidx;
ASSERT(GOODREGS(regs));
bzero((uchar *) sii, sizeof(si_info_t));
savewin = 0;
sih->buscoreidx = BADIDX;
sii->curmap = regs;
sii->sdh = sdh;
sii->osh = osh;
/* check to see if we are a si core mimic'ing a pci core */
if ((bustype == PCI_BUS) &&
(OSL_PCI_READ_CONFIG(sii->osh, PCI_SPROM_CONTROL, sizeof(uint32)) ==
0xffffffff)) {
SI_ERROR(("%s: incoming bus is PCI but it's a lie, switching to SI " "devid:0x%x\n", __func__, devid));
bustype = SI_BUS;
}
/* find Chipcommon address */
if (bustype == PCI_BUS) {
savewin =
OSL_PCI_READ_CONFIG(sii->osh, PCI_BAR0_WIN, sizeof(uint32));
if (!GOODCOREADDR(savewin, SI_ENUM_BASE))
savewin = SI_ENUM_BASE;
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, SI_ENUM_BASE);
cc = (chipcregs_t *) regs;
} else {
cc = (chipcregs_t *) REG_MAP(SI_ENUM_BASE, SI_CORE_SIZE);
}
sih->bustype = bustype;
if (bustype != BUSTYPE(bustype)) {
SI_ERROR(("si_doattach: bus type %d does not match configured bus type %d\n", bustype, BUSTYPE(bustype)));
return NULL;
}
/* bus/core/clk setup for register access */
if (!si_buscore_prep(sii, bustype, devid, sdh)) {
SI_ERROR(("si_doattach: si_core_clk_prep failed %d\n",
bustype));
return NULL;
}
/* ChipID recognition.
* We assume we can read chipid at offset 0 from the regs arg.
* If we add other chiptypes (or if we need to support old sdio hosts w/o chipcommon),
* some way of recognizing them needs to be added here.
*/
w = R_REG(osh, &cc->chipid);
sih->socitype = (w & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
/* Might as wll fill in chip id rev & pkg */
sih->chip = w & CID_ID_MASK;
sih->chiprev = (w & CID_REV_MASK) >> CID_REV_SHIFT;
sih->chippkg = (w & CID_PKG_MASK) >> CID_PKG_SHIFT;
sih->issim = IS_SIM(sih->chippkg);
/* scan for cores */
if (CHIPTYPE(sii->pub.socitype) == SOCI_AI) {
SI_MSG(("Found chip type AI (0x%08x)\n", w));
/* pass chipc address instead of original core base */
ai_scan(&sii->pub, (void *)(uintptr) cc, devid);
} else {
SI_ERROR(("Found chip of unknown type (0x%08x)\n", w));
return NULL;
}
/* no cores found, bail out */
if (sii->numcores == 0) {
SI_ERROR(("si_doattach: could not find any cores\n"));
return NULL;
}
/* bus/core/clk setup */
origidx = SI_CC_IDX;
if (!si_buscore_setup(sii, cc, bustype, savewin, &origidx, regs)) {
SI_ERROR(("si_doattach: si_buscore_setup failed\n"));
goto exit;
}
/* assume current core is CC */
if ((sii->pub.ccrev == 0x25)
&&
((CHIPID(sih->chip) == BCM43236_CHIP_ID
|| CHIPID(sih->chip) == BCM43235_CHIP_ID
|| CHIPID(sih->chip) == BCM43238_CHIP_ID)
&& (CHIPREV(sii->pub.chiprev) <= 2))) {
if ((cc->chipstatus & CST43236_BP_CLK) != 0) {
uint clkdiv;
clkdiv = R_REG(osh, &cc->clkdiv);
/* otp_clk_div is even number, 120/14 < 9mhz */
clkdiv = (clkdiv & ~CLKD_OTP) | (14 << CLKD_OTP_SHIFT);
W_REG(osh, &cc->clkdiv, clkdiv);
SI_ERROR(("%s: set clkdiv to %x\n", __func__, clkdiv));
}
OSL_DELAY(10);
}
/* Init nvram from flash if it exists */
nvram_init((void *)&(sii->pub));
/* Init nvram from sprom/otp if they exist */
if (srom_var_init
(&sii->pub, BUSTYPE(bustype), regs, sii->osh, vars, varsz)) {
SI_ERROR(("si_doattach: srom_var_init failed: bad srom\n"));
goto exit;
}
pvars = vars ? *vars : NULL;
si_nvram_process(sii, pvars);
/* === NVRAM, clock is ready === */
cc = (chipcregs_t *) si_setcore(sih, CC_CORE_ID, 0);
W_REG(osh, &cc->gpiopullup, 0);
W_REG(osh, &cc->gpiopulldown, 0);
si_setcoreidx(sih, origidx);
/* PMU specific initializations */
if (PMUCTL_ENAB(sih)) {
uint32 xtalfreq;
si_pmu_init(sih, sii->osh);
si_pmu_chip_init(sih, sii->osh);
xtalfreq = getintvar(pvars, "xtalfreq");
/* If xtalfreq var not available, try to measure it */
if (xtalfreq == 0)
xtalfreq = si_pmu_measure_alpclk(sih, sii->osh);
si_pmu_pll_init(sih, sii->osh, xtalfreq);
si_pmu_res_init(sih, sii->osh);
si_pmu_swreg_init(sih, sii->osh);
}
/* setup the GPIO based LED powersave register */
if ((w = getintvar(pvars, "leddc")) == 0)
w = DEFAULT_GPIOTIMERVAL;
si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, gpiotimerval), ~0, w);
if (PCIE(sii)) {
ASSERT(sii->pch != NULL);
pcicore_attach(sii->pch, pvars, SI_DOATTACH);
}
if ((CHIPID(sih->chip) == BCM43224_CHIP_ID) ||
(CHIPID(sih->chip) == BCM43421_CHIP_ID)) {
/* enable 12 mA drive strenth for 43224 and set chipControl register bit 15 */
if (CHIPREV(sih->chiprev) == 0) {
SI_MSG(("Applying 43224A0 WARs\n"));
si_corereg(sih, SI_CC_IDX,
OFFSETOF(chipcregs_t, chipcontrol),
CCTRL43224_GPIO_TOGGLE,
CCTRL43224_GPIO_TOGGLE);
si_pmu_chipcontrol(sih, 0, CCTRL_43224A0_12MA_LED_DRIVE,
CCTRL_43224A0_12MA_LED_DRIVE);
}
if (CHIPREV(sih->chiprev) >= 1) {
SI_MSG(("Applying 43224B0+ WARs\n"));
si_pmu_chipcontrol(sih, 0, CCTRL_43224B0_12MA_LED_DRIVE,
CCTRL_43224B0_12MA_LED_DRIVE);
}
}
if (CHIPID(sih->chip) == BCM4313_CHIP_ID) {
/* enable 12 mA drive strenth for 4313 and set chipControl register bit 1 */
SI_MSG(("Applying 4313 WARs\n"));
si_pmu_chipcontrol(sih, 0, CCTRL_4313_12MA_LED_DRIVE,
CCTRL_4313_12MA_LED_DRIVE);
}
if (CHIPID(sih->chip) == BCM4331_CHIP_ID) {
/* Enable Ext PA lines depending on chip package option */
si_chipcontrl_epa4331(sih, TRUE);
}
return (sii);
exit:
if (BUSTYPE(sih->bustype) == PCI_BUS) {
if (sii->pch)
pcicore_deinit(sii->pch);
sii->pch = NULL;
}
return NULL;
}
#endif /* BCMSDIO */
/* may be called with core in reset */
void BCMATTACHFN(si_detach) (si_t *sih)
{
si_info_t *sii;
uint idx;
struct si_pub *si_local = NULL;
bcopy(&sih, &si_local, sizeof(si_t **));
sii = SI_INFO(sih);
if (sii == NULL)
return;
if (BUSTYPE(sih->bustype) == SI_BUS)
for (idx = 0; idx < SI_MAXCORES; idx++)
if (sii->regs[idx]) {
REG_UNMAP(sii->regs[idx]);
sii->regs[idx] = NULL;
}
nvram_exit((void *)si_local); /* free up nvram buffers */
if (BUSTYPE(sih->bustype) == PCI_BUS) {
if (sii->pch)
pcicore_deinit(sii->pch);
sii->pch = NULL;
}
#if !defined(BCMBUSTYPE) || (BCMBUSTYPE == SI_BUS)
if (sii != &ksii)
#endif /* !BCMBUSTYPE || (BCMBUSTYPE == SI_BUS) */
MFREE(sii->osh, sii, sizeof(si_info_t));
}
void *si_osh(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
return sii->osh;
}
void si_setosh(si_t *sih, osl_t *osh)
{
si_info_t *sii;
sii = SI_INFO(sih);
if (sii->osh != NULL) {
SI_ERROR(("osh is already set....\n"));
ASSERT(!sii->osh);
}
sii->osh = osh;
}
/* register driver interrupt disabling and restoring callback functions */
void
si_register_intr_callback(si_t *sih, void *intrsoff_fn, void *intrsrestore_fn,
void *intrsenabled_fn, void *intr_arg)
{
si_info_t *sii;
sii = SI_INFO(sih);
sii->intr_arg = intr_arg;
sii->intrsoff_fn = (si_intrsoff_t) intrsoff_fn;
sii->intrsrestore_fn = (si_intrsrestore_t) intrsrestore_fn;
sii->intrsenabled_fn = (si_intrsenabled_t) intrsenabled_fn;
/* save current core id. when this function called, the current core
* must be the core which provides driver functions(il, et, wl, etc.)
*/
sii->dev_coreid = sii->coreid[sii->curidx];
}
void si_deregister_intr_callback(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
sii->intrsoff_fn = NULL;
}
uint si_intflag(si_t *sih)
{
si_info_t *sii = SI_INFO(sih);
if (CHIPTYPE(sih->socitype) == SOCI_AI)
return R_REG(sii->osh,
((uint32 *) (uintptr) (sii->oob_router +
OOB_STATUSA)));
else {
ASSERT(0);
return 0;
}
}
uint si_flag(si_t *sih)
{
if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_flag(sih);
else {
ASSERT(0);
return 0;
}
}
void si_setint(si_t *sih, int siflag)
{
if (CHIPTYPE(sih->socitype) == SOCI_AI)
ai_setint(sih, siflag);
else
ASSERT(0);
}
#ifndef BCMSDIO
uint si_coreid(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
return sii->coreid[sii->curidx];
}
#endif
uint si_coreidx(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
return sii->curidx;
}
/* return the core-type instantiation # of the current core */
uint si_coreunit(si_t *sih)
{
si_info_t *sii;
uint idx;
uint coreid;
uint coreunit;
uint i;
sii = SI_INFO(sih);
coreunit = 0;
idx = sii->curidx;
ASSERT(GOODREGS(sii->curmap));
coreid = si_coreid(sih);
/* count the cores of our type */
for (i = 0; i < idx; i++)
if (sii->coreid[i] == coreid)
coreunit++;
return (coreunit);
}
uint si_corevendor(si_t *sih)
{
if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_corevendor(sih);
else {
ASSERT(0);
return 0;
}
}
bool si_backplane64(si_t *sih)
{
return ((sih->cccaps & CC_CAP_BKPLN64) != 0);
}
#ifndef BCMSDIO
uint si_corerev(si_t *sih)
{
if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_corerev(sih);
else {
ASSERT(0);
return 0;
}
}
#endif
/* return index of coreid or BADIDX if not found */
uint si_findcoreidx(si_t *sih, uint coreid, uint coreunit)
{
si_info_t *sii;
uint found;
uint i;
sii = SI_INFO(sih);
found = 0;
for (i = 0; i < sii->numcores; i++)
if (sii->coreid[i] == coreid) {
if (found == coreunit)
return (i);
found++;
}
return (BADIDX);
}
/* return list of found cores */
uint si_corelist(si_t *sih, uint coreid[])
{
si_info_t *sii;
sii = SI_INFO(sih);
bcopy((uchar *) sii->coreid, (uchar *) coreid,
(sii->numcores * sizeof(uint)));
return (sii->numcores);
}
/* return current register mapping */
void *si_coreregs(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
ASSERT(GOODREGS(sii->curmap));
return (sii->curmap);
}
/*
* This function changes logical "focus" to the indicated core;
* must be called with interrupts off.
* Moreover, callers should keep interrupts off during switching out of and back to d11 core
*/
void *si_setcore(si_t *sih, uint coreid, uint coreunit)
{
uint idx;
idx = si_findcoreidx(sih, coreid, coreunit);
if (!GOODIDX(idx))
return (NULL);
if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_setcoreidx(sih, idx);
else {
#ifdef BCMSDIO
return sb_setcoreidx(sih, idx);
#else
ASSERT(0);
return NULL;
#endif
}
}
#ifndef BCMSDIO
void *si_setcoreidx(si_t *sih, uint coreidx)
{
if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_setcoreidx(sih, coreidx);
else {
ASSERT(0);
return NULL;
}
}
#endif
/* Turn off interrupt as required by sb_setcore, before switch core */
void *si_switch_core(si_t *sih, uint coreid, uint *origidx, uint *intr_val)
{
void *cc;
si_info_t *sii;
sii = SI_INFO(sih);
if (SI_FAST(sii)) {
/* Overloading the origidx variable to remember the coreid,
* this works because the core ids cannot be confused with
* core indices.
*/
*origidx = coreid;
if (coreid == CC_CORE_ID)
return (void *)CCREGS_FAST(sii);
else if (coreid == sih->buscoretype)
return (void *)PCIEREGS(sii);
}
INTR_OFF(sii, *intr_val);
*origidx = sii->curidx;
cc = si_setcore(sih, coreid, 0);
ASSERT(cc != NULL);
return cc;
}
/* restore coreidx and restore interrupt */
void si_restore_core(si_t *sih, uint coreid, uint intr_val)
{
si_info_t *sii;
sii = SI_INFO(sih);
if (SI_FAST(sii)
&& ((coreid == CC_CORE_ID) || (coreid == sih->buscoretype)))
return;
si_setcoreidx(sih, coreid);
INTR_RESTORE(sii, intr_val);
}
int si_numaddrspaces(si_t *sih)
{
if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_numaddrspaces(sih);
else {
ASSERT(0);
return 0;
}
}
uint32 si_addrspace(si_t *sih, uint asidx)
{
if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_addrspace(sih, asidx);
else {
ASSERT(0);
return 0;
}
}
uint32 si_addrspacesize(si_t *sih, uint asidx)
{
if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_addrspacesize(sih, asidx);
else {
ASSERT(0);
return 0;
}
}
uint32 si_core_cflags(si_t *sih, uint32 mask, uint32 val)
{
if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_core_cflags(sih, mask, val);
else {
ASSERT(0);
return 0;
}
}
void si_core_cflags_wo(si_t *sih, uint32 mask, uint32 val)
{
if (CHIPTYPE(sih->socitype) == SOCI_AI)
ai_core_cflags_wo(sih, mask, val);
else
ASSERT(0);
}
uint32 si_core_sflags(si_t *sih, uint32 mask, uint32 val)
{
if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_core_sflags(sih, mask, val);
else {
ASSERT(0);
return 0;
}
}
bool si_iscoreup(si_t *sih)
{
if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_iscoreup(sih);
else {
#ifdef BCMSDIO
return sb_iscoreup(sih);
#else
ASSERT(0);
return FALSE;
#endif
}
}
void si_write_wrapperreg(si_t *sih, uint32 offset, uint32 val)
{
/* only for 4319, no requirement for SOCI_SB */
if (CHIPTYPE(sih->socitype) == SOCI_AI) {
ai_write_wrap_reg(sih, offset, val);
}
}
uint si_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val)
{
if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_corereg(sih, coreidx, regoff, mask, val);
else {
#ifdef BCMSDIO
return sb_corereg(sih, coreidx, regoff, mask, val);
#else
ASSERT(0);
return 0;
#endif
}
}
void si_core_disable(si_t *sih, uint32 bits)
{
if (CHIPTYPE(sih->socitype) == SOCI_AI)
ai_core_disable(sih, bits);
#ifdef BCMSDIO
else
sb_core_disable(sih, bits);
#endif
}
void si_core_reset(si_t *sih, uint32 bits, uint32 resetbits)
{
if (CHIPTYPE(sih->socitype) == SOCI_AI)
ai_core_reset(sih, bits, resetbits);
#ifdef BCMSDIO
else
sb_core_reset(sih, bits, resetbits);
#endif
}
/* Run bist on current core. Caller needs to take care of core-specific bist hazards */
int si_corebist(si_t *sih)
{
uint32 cflags;
int result = 0;
/* Read core control flags */
cflags = si_core_cflags(sih, 0, 0);
/* Set bist & fgc */
si_core_cflags(sih, ~0, (SICF_BIST_EN | SICF_FGC));
/* Wait for bist done */
SPINWAIT(((si_core_sflags(sih, 0, 0) & SISF_BIST_DONE) == 0), 100000);
if (si_core_sflags(sih, 0, 0) & SISF_BIST_ERROR)
result = BCME_ERROR;
/* Reset core control flags */
si_core_cflags(sih, 0xffff, cflags);
return result;
}
static uint32 BCMINITFN(factor6) (uint32 x)
{
switch (x) {
case CC_F6_2:
return 2;
case CC_F6_3:
return 3;
case CC_F6_4:
return 4;
case CC_F6_5:
return 5;
case CC_F6_6:
return 6;
case CC_F6_7:
return 7;
default:
return 0;
}
}
/* calculate the speed the SI would run at given a set of clockcontrol values */
uint32 BCMINITFN(si_clock_rate) (uint32 pll_type, uint32 n, uint32 m)
{
uint32 n1, n2, clock, m1, m2, m3, mc;
n1 = n & CN_N1_MASK;
n2 = (n & CN_N2_MASK) >> CN_N2_SHIFT;
if (pll_type == PLL_TYPE6) {
if (m & CC_T6_MMASK)
return CC_T6_M1;
else
return CC_T6_M0;
} else if ((pll_type == PLL_TYPE1) ||
(pll_type == PLL_TYPE3) ||
(pll_type == PLL_TYPE4) || (pll_type == PLL_TYPE7)) {
n1 = factor6(n1);
n2 += CC_F5_BIAS;
} else if (pll_type == PLL_TYPE2) {
n1 += CC_T2_BIAS;
n2 += CC_T2_BIAS;
ASSERT((n1 >= 2) && (n1 <= 7));
ASSERT((n2 >= 5) && (n2 <= 23));
} else if (pll_type == PLL_TYPE5) {
return (100000000);
} else
ASSERT(0);
/* PLL types 3 and 7 use BASE2 (25Mhz) */
if ((pll_type == PLL_TYPE3) || (pll_type == PLL_TYPE7)) {
clock = CC_CLOCK_BASE2 * n1 * n2;
} else
clock = CC_CLOCK_BASE1 * n1 * n2;
if (clock == 0)
return 0;
m1 = m & CC_M1_MASK;
m2 = (m & CC_M2_MASK) >> CC_M2_SHIFT;
m3 = (m & CC_M3_MASK) >> CC_M3_SHIFT;
mc = (m & CC_MC_MASK) >> CC_MC_SHIFT;
if ((pll_type == PLL_TYPE1) ||
(pll_type == PLL_TYPE3) ||
(pll_type == PLL_TYPE4) || (pll_type == PLL_TYPE7)) {
m1 = factor6(m1);
if ((pll_type == PLL_TYPE1) || (pll_type == PLL_TYPE3))
m2 += CC_F5_BIAS;
else
m2 = factor6(m2);
m3 = factor6(m3);
switch (mc) {
case CC_MC_BYPASS:
return (clock);
case CC_MC_M1:
return (clock / m1);
case CC_MC_M1M2:
return (clock / (m1 * m2));
case CC_MC_M1M2M3:
return (clock / (m1 * m2 * m3));
case CC_MC_M1M3:
return (clock / (m1 * m3));
default:
return (0);
}
} else {
ASSERT(pll_type == PLL_TYPE2);
m1 += CC_T2_BIAS;
m2 += CC_T2M2_BIAS;
m3 += CC_T2_BIAS;
ASSERT((m1 >= 2) && (m1 <= 7));
ASSERT((m2 >= 3) && (m2 <= 10));
ASSERT((m3 >= 2) && (m3 <= 7));
if ((mc & CC_T2MC_M1BYP) == 0)
clock /= m1;
if ((mc & CC_T2MC_M2BYP) == 0)
clock /= m2;
if ((mc & CC_T2MC_M3BYP) == 0)
clock /= m3;
return (clock);
}
}
uint32 BCMINITFN(si_clock) (si_t *sih)
{
si_info_t *sii;
chipcregs_t *cc;
uint32 n, m;
uint idx;
uint32 pll_type, rate;
uint intr_val = 0;
sii = SI_INFO(sih);
INTR_OFF(sii, intr_val);
if (PMUCTL_ENAB(sih)) {
rate = si_pmu_si_clock(sih, sii->osh);
goto exit;
}
idx = sii->curidx;
cc = (chipcregs_t *) si_setcore(sih, CC_CORE_ID, 0);
ASSERT(cc != NULL);
n = R_REG(sii->osh, &cc->clockcontrol_n);
pll_type = sih->cccaps & CC_CAP_PLL_MASK;
if (pll_type == PLL_TYPE6)
m = R_REG(sii->osh, &cc->clockcontrol_m3);
else if (pll_type == PLL_TYPE3)
m = R_REG(sii->osh, &cc->clockcontrol_m2);
else
m = R_REG(sii->osh, &cc->clockcontrol_sb);
/* calculate rate */
rate = si_clock_rate(pll_type, n, m);
if (pll_type == PLL_TYPE3)
rate = rate / 2;
/* switch back to previous core */
si_setcoreidx(sih, idx);
exit:
INTR_RESTORE(sii, intr_val);
return rate;
}
uint32 BCMINITFN(si_alp_clock) (si_t *sih)
{
if (PMUCTL_ENAB(sih))
return si_pmu_alp_clock(sih, si_osh(sih));
return ALP_CLOCK;
}
uint32 BCMINITFN(si_ilp_clock) (si_t *sih)
{
if (PMUCTL_ENAB(sih))
return si_pmu_ilp_clock(sih, si_osh(sih));
return ILP_CLOCK;
}
/* set chip watchdog reset timer to fire in 'ticks' */
void si_watchdog(si_t *sih, uint ticks)
{
uint nb, maxt;
if (PMUCTL_ENAB(sih)) {
if ((CHIPID(sih->chip) == BCM4319_CHIP_ID) &&
(CHIPREV(sih->chiprev) == 0) && (ticks != 0)) {
si_corereg(sih, SI_CC_IDX,
OFFSETOF(chipcregs_t, clk_ctl_st), ~0, 0x2);
si_setcore(sih, USB20D_CORE_ID, 0);
si_core_disable(sih, 1);
si_setcore(sih, CC_CORE_ID, 0);
}
nb = (sih->ccrev < 26) ? 16 : ((sih->ccrev >= 37) ? 32 : 24);
/* The mips compiler uses the sllv instruction,
* so we specially handle the 32-bit case.
*/
if (nb == 32)
maxt = 0xffffffff;
else
maxt = ((1 << nb) - 1);
if (ticks == 1)
ticks = 2;
else if (ticks > maxt)
ticks = maxt;
si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, pmuwatchdog),
~0, ticks);
} else {
/* make sure we come up in fast clock mode; or if clearing, clear clock */
si_clkctl_cc(sih, ticks ? CLK_FAST : CLK_DYNAMIC);
maxt = (1 << 28) - 1;
if (ticks > maxt)
ticks = maxt;
si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, watchdog), ~0,
ticks);
}
}
/* trigger watchdog reset after ms milliseconds */
void si_watchdog_ms(si_t *sih, uint32 ms)
{
si_watchdog(sih, wd_msticks * ms);
}
uint16 BCMATTACHFN(si_d11_devid) (si_t *sih)
{
si_info_t *sii = SI_INFO(sih);
uint16 device;
/* normal case: nvram variable with devpath->devid->wl0id */
if ((device = (uint16) si_getdevpathintvar(sih, "devid")) != 0) ;
/* Get devid from OTP/SPROM depending on where the SROM is read */
else if ((device = (uint16) getintvar(sii->vars, "devid")) != 0) ;
/* no longer support wl0id, but keep the code here for backward compatibility. */
else if ((device = (uint16) getintvar(sii->vars, "wl0id")) != 0) ;
else
/* ignore it */
device = 0xffff;
return device;
}
/* return the slow clock source - LPO, XTAL, or PCI */
static uint si_slowclk_src(si_info_t *sii)
{
chipcregs_t *cc;
ASSERT(SI_FAST(sii) || si_coreid(&sii->pub) == CC_CORE_ID);
if (sii->pub.ccrev < 6) {
if ((BUSTYPE(sii->pub.bustype) == PCI_BUS) &&
(OSL_PCI_READ_CONFIG(sii->osh, PCI_GPIO_OUT, sizeof(uint32))
& PCI_CFG_GPIO_SCS))
return (SCC_SS_PCI);
else
return (SCC_SS_XTAL);
} else if (sii->pub.ccrev < 10) {
cc = (chipcregs_t *) si_setcoreidx(&sii->pub, sii->curidx);
return (R_REG(sii->osh, &cc->slow_clk_ctl) & SCC_SS_MASK);
} else /* Insta-clock */
return (SCC_SS_XTAL);
}
/* return the ILP (slowclock) min or max frequency */
static uint si_slowclk_freq(si_info_t *sii, bool max_freq, chipcregs_t *cc)
{
uint32 slowclk;
uint div;
ASSERT(SI_FAST(sii) || si_coreid(&sii->pub) == CC_CORE_ID);
/* shouldn't be here unless we've established the chip has dynamic clk control */
ASSERT(R_REG(sii->osh, &cc->capabilities) & CC_CAP_PWR_CTL);
slowclk = si_slowclk_src(sii);
if (sii->pub.ccrev < 6) {
if (slowclk == SCC_SS_PCI)
return (max_freq ? (PCIMAXFREQ / 64)
: (PCIMINFREQ / 64));
else
return (max_freq ? (XTALMAXFREQ / 32)
: (XTALMINFREQ / 32));
} else if (sii->pub.ccrev < 10) {
div = 4 *
(((R_REG(sii->osh, &cc->slow_clk_ctl) & SCC_CD_MASK) >>
SCC_CD_SHIFT) + 1);
if (slowclk == SCC_SS_LPO)
return (max_freq ? LPOMAXFREQ : LPOMINFREQ);
else if (slowclk == SCC_SS_XTAL)
return (max_freq ? (XTALMAXFREQ / div)
: (XTALMINFREQ / div));
else if (slowclk == SCC_SS_PCI)
return (max_freq ? (PCIMAXFREQ / div)
: (PCIMINFREQ / div));
else
ASSERT(0);
} else {
/* Chipc rev 10 is InstaClock */
div = R_REG(sii->osh, &cc->system_clk_ctl) >> SYCC_CD_SHIFT;
div = 4 * (div + 1);
return (max_freq ? XTALMAXFREQ : (XTALMINFREQ / div));
}
return (0);
}
static void BCMINITFN(si_clkctl_setdelay) (si_info_t *sii, void *chipcregs)
{
chipcregs_t *cc = (chipcregs_t *) chipcregs;
uint slowmaxfreq, pll_delay, slowclk;
uint pll_on_delay, fref_sel_delay;
pll_delay = PLL_DELAY;
/* If the slow clock is not sourced by the xtal then add the xtal_on_delay
* since the xtal will also be powered down by dynamic clk control logic.
*/
slowclk = si_slowclk_src(sii);
if (slowclk != SCC_SS_XTAL)
pll_delay += XTAL_ON_DELAY;
/* Starting with 4318 it is ILP that is used for the delays */
slowmaxfreq =
si_slowclk_freq(sii, (sii->pub.ccrev >= 10) ? FALSE : TRUE, cc);
pll_on_delay = ((slowmaxfreq * pll_delay) + 999999) / 1000000;
fref_sel_delay = ((slowmaxfreq * FREF_DELAY) + 999999) / 1000000;
W_REG(sii->osh, &cc->pll_on_delay, pll_on_delay);
W_REG(sii->osh, &cc->fref_sel_delay, fref_sel_delay);
}
/* initialize power control delay registers */
void BCMINITFN(si_clkctl_init) (si_t *sih)
{
si_info_t *sii;
uint origidx = 0;
chipcregs_t *cc;
bool fast;
if (!CCCTL_ENAB(sih))
return;
sii = SI_INFO(sih);
fast = SI_FAST(sii);
if (!fast) {
origidx = sii->curidx;
if ((cc =
(chipcregs_t *) si_setcore(sih, CC_CORE_ID, 0)) == NULL)
return;
} else if ((cc = (chipcregs_t *) CCREGS_FAST(sii)) == NULL)
return;
ASSERT(cc != NULL);
/* set all Instaclk chip ILP to 1 MHz */
if (sih->ccrev >= 10)
SET_REG(sii->osh, &cc->system_clk_ctl, SYCC_CD_MASK,
(ILP_DIV_1MHZ << SYCC_CD_SHIFT));
si_clkctl_setdelay(sii, (void *)(uintptr) cc);
if (!fast)
si_setcoreidx(sih, origidx);
}
/* return the value suitable for writing to the dot11 core FAST_PWRUP_DELAY register */
uint16 BCMINITFN(si_clkctl_fast_pwrup_delay) (si_t *sih)
{
si_info_t *sii;
uint origidx = 0;
chipcregs_t *cc;
uint slowminfreq;
uint16 fpdelay;
uint intr_val = 0;
bool fast;
sii = SI_INFO(sih);
if (PMUCTL_ENAB(sih)) {
INTR_OFF(sii, intr_val);
fpdelay = si_pmu_fast_pwrup_delay(sih, sii->osh);
INTR_RESTORE(sii, intr_val);
return fpdelay;
}
if (!CCCTL_ENAB(sih))
return 0;
fast = SI_FAST(sii);
fpdelay = 0;
if (!fast) {
origidx = sii->curidx;
INTR_OFF(sii, intr_val);
if ((cc =
(chipcregs_t *) si_setcore(sih, CC_CORE_ID, 0)) == NULL)
goto done;
} else if ((cc = (chipcregs_t *) CCREGS_FAST(sii)) == NULL)
goto done;
ASSERT(cc != NULL);
slowminfreq = si_slowclk_freq(sii, FALSE, cc);
fpdelay = (((R_REG(sii->osh, &cc->pll_on_delay) + 2) * 1000000) +
(slowminfreq - 1)) / slowminfreq;
done:
if (!fast) {
si_setcoreidx(sih, origidx);
INTR_RESTORE(sii, intr_val);
}
return fpdelay;
}
/* turn primary xtal and/or pll off/on */
int si_clkctl_xtal(si_t *sih, uint what, bool on)
{
si_info_t *sii;
uint32 in, out, outen;
sii = SI_INFO(sih);
switch (BUSTYPE(sih->bustype)) {
#ifdef BCMSDIO
case SDIO_BUS:
return (-1);
#endif /* BCMSDIO */
case PCI_BUS:
/* pcie core doesn't have any mapping to control the xtal pu */
if (PCIE(sii))
return -1;
in = OSL_PCI_READ_CONFIG(sii->osh, PCI_GPIO_IN, sizeof(uint32));
out =
OSL_PCI_READ_CONFIG(sii->osh, PCI_GPIO_OUT, sizeof(uint32));
outen =
OSL_PCI_READ_CONFIG(sii->osh, PCI_GPIO_OUTEN,
sizeof(uint32));
/*
* Avoid glitching the clock if GPRS is already using it.
* We can't actually read the state of the PLLPD so we infer it
* by the value of XTAL_PU which *is* readable via gpioin.
*/
if (on && (in & PCI_CFG_GPIO_XTAL))
return (0);
if (what & XTAL)
outen |= PCI_CFG_GPIO_XTAL;
if (what & PLL)
outen |= PCI_CFG_GPIO_PLL;
if (on) {
/* turn primary xtal on */
if (what & XTAL) {
out |= PCI_CFG_GPIO_XTAL;
if (what & PLL)
out |= PCI_CFG_GPIO_PLL;
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_GPIO_OUT,
sizeof(uint32), out);
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_GPIO_OUTEN,
sizeof(uint32), outen);
OSL_DELAY(XTAL_ON_DELAY);
}
/* turn pll on */
if (what & PLL) {
out &= ~PCI_CFG_GPIO_PLL;
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_GPIO_OUT,
sizeof(uint32), out);
OSL_DELAY(2000);
}
} else {
if (what & XTAL)
out &= ~PCI_CFG_GPIO_XTAL;
if (what & PLL)
out |= PCI_CFG_GPIO_PLL;
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_GPIO_OUT,
sizeof(uint32), out);
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_GPIO_OUTEN,
sizeof(uint32), outen);
}
default:
return (-1);
}
return (0);
}
/*
* clock control policy function throught chipcommon
*
* set dynamic clk control mode (forceslow, forcefast, dynamic)
* returns true if we are forcing fast clock
* this is a wrapper over the next internal function
* to allow flexible policy settings for outside caller
*/
bool si_clkctl_cc(si_t *sih, uint mode)
{
si_info_t *sii;
sii = SI_INFO(sih);
/* chipcommon cores prior to rev6 don't support dynamic clock control */
if (sih->ccrev < 6)
return FALSE;
if (PCI_FORCEHT(sii))
return (mode == CLK_FAST);
return _si_clkctl_cc(sii, mode);
}
/* clk control mechanism through chipcommon, no policy checking */
static bool _si_clkctl_cc(si_info_t *sii, uint mode)
{
uint origidx = 0;
chipcregs_t *cc;
uint32 scc;
uint intr_val = 0;
bool fast = SI_FAST(sii);
/* chipcommon cores prior to rev6 don't support dynamic clock control */
if (sii->pub.ccrev < 6)
return (FALSE);
/* Chips with ccrev 10 are EOL and they don't have SYCC_HR which we use below */
ASSERT(sii->pub.ccrev != 10);
if (!fast) {
INTR_OFF(sii, intr_val);
origidx = sii->curidx;
if ((BUSTYPE(sii->pub.bustype) == SI_BUS) &&
si_setcore(&sii->pub, MIPS33_CORE_ID, 0) &&
(si_corerev(&sii->pub) <= 7) && (sii->pub.ccrev >= 10))
goto done;
cc = (chipcregs_t *) si_setcore(&sii->pub, CC_CORE_ID, 0);
} else if ((cc = (chipcregs_t *) CCREGS_FAST(sii)) == NULL)
goto done;
ASSERT(cc != NULL);
if (!CCCTL_ENAB(&sii->pub) && (sii->pub.ccrev < 20))
goto done;
switch (mode) {
case CLK_FAST: /* FORCEHT, fast (pll) clock */
if (sii->pub.ccrev < 10) {
/* don't forget to force xtal back on before we clear SCC_DYN_XTAL.. */
si_clkctl_xtal(&sii->pub, XTAL, ON);
SET_REG(sii->osh, &cc->slow_clk_ctl,
(SCC_XC | SCC_FS | SCC_IP), SCC_IP);
} else if (sii->pub.ccrev < 20) {
OR_REG(sii->osh, &cc->system_clk_ctl, SYCC_HR);
} else {
OR_REG(sii->osh, &cc->clk_ctl_st, CCS_FORCEHT);
}
/* wait for the PLL */
if (PMUCTL_ENAB(&sii->pub)) {
uint32 htavail = CCS_HTAVAIL;
SPINWAIT(((R_REG(sii->osh, &cc->clk_ctl_st) & htavail)
== 0), PMU_MAX_TRANSITION_DLY);
ASSERT(R_REG(sii->osh, &cc->clk_ctl_st) & htavail);
} else {
OSL_DELAY(PLL_DELAY);
}
break;
case CLK_DYNAMIC: /* enable dynamic clock control */
if (sii->pub.ccrev < 10) {
scc = R_REG(sii->osh, &cc->slow_clk_ctl);
scc &= ~(SCC_FS | SCC_IP | SCC_XC);
if ((scc & SCC_SS_MASK) != SCC_SS_XTAL)
scc |= SCC_XC;
W_REG(sii->osh, &cc->slow_clk_ctl, scc);
/* for dynamic control, we have to release our xtal_pu "force on" */
if (scc & SCC_XC)
si_clkctl_xtal(&sii->pub, XTAL, OFF);
} else if (sii->pub.ccrev < 20) {
/* Instaclock */
AND_REG(sii->osh, &cc->system_clk_ctl, ~SYCC_HR);
} else {
AND_REG(sii->osh, &cc->clk_ctl_st, ~CCS_FORCEHT);
}
break;
default:
ASSERT(0);
}
done:
if (!fast) {
si_setcoreidx(&sii->pub, origidx);
INTR_RESTORE(sii, intr_val);
}
return (mode == CLK_FAST);
}
/* Build device path. Support SI, PCI, and JTAG for now. */
int BCMATTACHFN(si_devpath) (si_t *sih, char *path, int size)
{
int slen;
ASSERT(path != NULL);
ASSERT(size >= SI_DEVPATH_BUFSZ);
if (!path || size <= 0)
return -1;
switch (BUSTYPE(sih->bustype)) {
case SI_BUS:
case JTAG_BUS:
slen = snprintf(path, (size_t) size, "sb/%u/", si_coreidx(sih));
break;
case PCI_BUS:
ASSERT((SI_INFO(sih))->osh != NULL);
slen = snprintf(path, (size_t) size, "pci/%u/%u/",
OSL_PCI_BUS((SI_INFO(sih))->osh),
OSL_PCI_SLOT((SI_INFO(sih))->osh));
break;
#ifdef BCMSDIO
case SDIO_BUS:
SI_ERROR(("si_devpath: device 0 assumed\n"));
slen = snprintf(path, (size_t) size, "sd/%u/", si_coreidx(sih));
break;
#endif
default:
slen = -1;
ASSERT(0);
break;
}
if (slen < 0 || slen >= size) {
path[0] = '\0';
return -1;
}
return 0;
}
/* Get a variable, but only if it has a devpath prefix */
char *BCMATTACHFN(si_getdevpathvar) (si_t *sih, const char *name)
{
char varname[SI_DEVPATH_BUFSZ + 32];
si_devpathvar(sih, varname, sizeof(varname), name);
return (getvar(NULL, varname));
}
/* Get a variable, but only if it has a devpath prefix */
int BCMATTACHFN(si_getdevpathintvar) (si_t *sih, const char *name)
{
#if defined(BCMBUSTYPE) && (BCMBUSTYPE == SI_BUS)
return (getintvar(NULL, name));
#else
char varname[SI_DEVPATH_BUFSZ + 32];
si_devpathvar(sih, varname, sizeof(varname), name);
return (getintvar(NULL, varname));
#endif
}
char *si_getnvramflvar(si_t *sih, const char *name)
{
return (getvar(NULL, name));
}
/* Concatenate the dev path with a varname into the given 'var' buffer
* and return the 'var' pointer.
* Nothing is done to the arguments if len == 0 or var is NULL, var is still returned.
* On overflow, the first char will be set to '\0'.
*/
static char *BCMATTACHFN(si_devpathvar) (si_t *sih, char *var, int len,
const char *name) {
uint path_len;
if (!var || len <= 0)
return var;
if (si_devpath(sih, var, len) == 0) {
path_len = strlen(var);
if (strlen(name) + 1 > (uint) (len - path_len))
var[0] = '\0';
else
strncpy(var + path_len, name, len - path_len - 1);
}
return var;
}
uint32 si_pciereg(si_t *sih, uint32 offset, uint32 mask, uint32 val, uint type)
{
si_info_t *sii;
sii = SI_INFO(sih);
if (!PCIE(sii)) {
SI_ERROR(("%s: Not a PCIE device\n", __func__));
return 0;
}
return pcicore_pciereg(sii->pch, offset, mask, val, type);
}
uint32
si_pcieserdesreg(si_t *sih, uint32 mdioslave, uint32 offset, uint32 mask,
uint32 val)
{
si_info_t *sii;
sii = SI_INFO(sih);
if (!PCIE(sii)) {
SI_ERROR(("%s: Not a PCIE device\n", __func__));
return 0;
}
return pcicore_pcieserdesreg(sii->pch, mdioslave, offset, mask, val);
}
/* return TRUE if PCIE capability exists in the pci config space */
static bool si_ispcie(si_info_t *sii)
{
uint8 cap_ptr;
if (BUSTYPE(sii->pub.bustype) != PCI_BUS)
return FALSE;
cap_ptr =
pcicore_find_pci_capability(sii->osh, PCI_CAP_PCIECAP_ID, NULL,
NULL);
if (!cap_ptr)
return FALSE;
return TRUE;
}
/* Wake-on-wireless-LAN (WOWL) support functions */
/* Enable PME generation and disable clkreq */
void si_pci_pmeen(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
pcicore_pmeen(sii->pch);
}
/* Return TRUE if PME status is set */
bool si_pci_pmestat(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
return pcicore_pmestat(sii->pch);
}
/* Disable PME generation, clear the PME status bit if set */
void si_pci_pmeclr(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
pcicore_pmeclr(sii->pch);
}
#ifdef BCMSDIO
/* initialize the sdio core */
void si_sdio_init(si_t *sih)
{
si_info_t *sii = SI_INFO(sih);
if (((sih->buscoretype == PCMCIA_CORE_ID) && (sih->buscorerev >= 8)) ||
(sih->buscoretype == SDIOD_CORE_ID)) {
uint idx;
sdpcmd_regs_t *sdpregs;
/* get the current core index */
idx = sii->curidx;
ASSERT(idx == si_findcoreidx(sih, D11_CORE_ID, 0));
/* switch to sdio core */
if (!
(sdpregs =
(sdpcmd_regs_t *) si_setcore(sih, PCMCIA_CORE_ID, 0)))
sdpregs =
(sdpcmd_regs_t *) si_setcore(sih, SDIOD_CORE_ID, 0);
ASSERT(sdpregs);
SI_MSG(("si_sdio_init: For PCMCIA/SDIO Corerev %d, enable ints from core %d " "through SD core %d (%p)\n", sih->buscorerev, idx, sii->curidx, sdpregs));
/* enable backplane error and core interrupts */
W_REG(sii->osh, &sdpregs->hostintmask, I_SBINT);
W_REG(sii->osh, &sdpregs->sbintmask,
(I_SB_SERR | I_SB_RESPERR | (1 << idx)));
/* switch back to previous core */
si_setcoreidx(sih, idx);
}
/* enable interrupts */
bcmsdh_intr_enable(sii->sdh);
}
#endif /* BCMSDIO */
bool BCMATTACHFN(si_pci_war16165) (si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
return (PCI(sii) && (sih->buscorerev <= 10));
}
/* Disable pcie_war_ovr for some platforms (sigh!)
* This is for boards that have BFL2_PCIEWAR_OVR set
* but are in systems that still want the benefits of ASPM
* Note that this should be done AFTER si_doattach
*/
void si_pcie_war_ovr_update(si_t *sih, uint8 aspm)
{
si_info_t *sii;
sii = SI_INFO(sih);
if (!PCIE(sii))
return;
pcie_war_ovr_aspm_update(sii->pch, aspm);
}
/* back door for other module to override chippkg */
void si_chippkg_set(si_t *sih, uint val)
{
si_info_t *sii;
sii = SI_INFO(sih);
sii->pub.chippkg = val;
}
void BCMINITFN(si_pci_up) (si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
/* if not pci bus, we're done */
if (BUSTYPE(sih->bustype) != PCI_BUS)
return;
if (PCI_FORCEHT(sii))
_si_clkctl_cc(sii, CLK_FAST);
if (PCIE(sii))
pcicore_up(sii->pch, SI_PCIUP);
}
/* Unconfigure and/or apply various WARs when system is going to sleep mode */
void BCMUNINITFN(si_pci_sleep) (si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
pcicore_sleep(sii->pch);
}
/* Unconfigure and/or apply various WARs when going down */
void BCMINITFN(si_pci_down) (si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
/* if not pci bus, we're done */
if (BUSTYPE(sih->bustype) != PCI_BUS)
return;
/* release FORCEHT since chip is going to "down" state */
if (PCI_FORCEHT(sii))
_si_clkctl_cc(sii, CLK_DYNAMIC);
pcicore_down(sii->pch, SI_PCIDOWN);
}
/*
* Configure the pci core for pci client (NIC) action
* coremask is the bitvec of cores by index to be enabled.
*/
void BCMATTACHFN(si_pci_setup) (si_t *sih, uint coremask)
{
si_info_t *sii;
sbpciregs_t *pciregs = NULL;
uint32 siflag = 0, w;
uint idx = 0;
sii = SI_INFO(sih);
if (BUSTYPE(sii->pub.bustype) != PCI_BUS)
return;
ASSERT(PCI(sii) || PCIE(sii));
ASSERT(sii->pub.buscoreidx != BADIDX);
if (PCI(sii)) {
/* get current core index */
idx = sii->curidx;
/* we interrupt on this backplane flag number */
siflag = si_flag(sih);
/* switch over to pci core */
pciregs =
(sbpciregs_t *) si_setcoreidx(sih, sii->pub.buscoreidx);
}
/*
* Enable sb->pci interrupts. Assume
* PCI rev 2.3 support was added in pci core rev 6 and things changed..
*/
if (PCIE(sii) || (PCI(sii) && ((sii->pub.buscorerev) >= 6))) {
/* pci config write to set this core bit in PCIIntMask */
w = OSL_PCI_READ_CONFIG(sii->osh, PCI_INT_MASK, sizeof(uint32));
w |= (coremask << PCI_SBIM_SHIFT);
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_INT_MASK, sizeof(uint32), w);
} else {
/* set sbintvec bit for our flag number */
si_setint(sih, siflag);
}
if (PCI(sii)) {
OR_REG(sii->osh, &pciregs->sbtopci2,
(SBTOPCI_PREF | SBTOPCI_BURST));
if (sii->pub.buscorerev >= 11) {
OR_REG(sii->osh, &pciregs->sbtopci2,
SBTOPCI_RC_READMULTI);
w = R_REG(sii->osh, &pciregs->clkrun);
W_REG(sii->osh, &pciregs->clkrun,
(w | PCI_CLKRUN_DSBL));
w = R_REG(sii->osh, &pciregs->clkrun);
}
/* switch back to previous core */
si_setcoreidx(sih, idx);
}
}
uint8 si_pcieclkreq(si_t *sih, uint32 mask, uint32 val)
{
si_info_t *sii;
sii = SI_INFO(sih);
if (!(PCIE(sii)))
return 0;
return pcie_clkreq(sii->pch, mask, val);
}
uint32 si_pcielcreg(si_t *sih, uint32 mask, uint32 val)
{
si_info_t *sii;
sii = SI_INFO(sih);
if (!PCIE(sii))
return 0;
return pcie_lcreg(sii->pch, mask, val);
}
/* indirect way to read pcie config regs */
uint si_pcie_readreg(void *sih, uint addrtype, uint offset)
{
return pcie_readreg(((si_info_t *) sih)->osh,
(sbpcieregs_t *) PCIEREGS(((si_info_t *) sih)),
addrtype, offset);
}
/*
* Fixup SROMless PCI device's configuration.
* The current core may be changed upon return.
*/
int si_pci_fixcfg(si_t *sih)
{
uint origidx, pciidx;
sbpciregs_t *pciregs = NULL;
sbpcieregs_t *pcieregs = NULL;
void *regs = NULL;
uint16 val16, *reg16 = NULL;
si_info_t *sii = SI_INFO(sih);
ASSERT(BUSTYPE(sii->pub.bustype) == PCI_BUS);
/* Fixup PI in SROM shadow area to enable the correct PCI core access */
/* save the current index */
origidx = si_coreidx(&sii->pub);
/* check 'pi' is correct and fix it if not */
if (sii->pub.buscoretype == PCIE_CORE_ID) {
pcieregs =
(sbpcieregs_t *) si_setcore(&sii->pub, PCIE_CORE_ID, 0);
regs = pcieregs;
ASSERT(pcieregs != NULL);
reg16 = &pcieregs->sprom[SRSH_PI_OFFSET];
} else if (sii->pub.buscoretype == PCI_CORE_ID) {
pciregs = (sbpciregs_t *) si_setcore(&sii->pub, PCI_CORE_ID, 0);
regs = pciregs;
ASSERT(pciregs != NULL);
reg16 = &pciregs->sprom[SRSH_PI_OFFSET];
}
pciidx = si_coreidx(&sii->pub);
val16 = R_REG(sii->osh, reg16);
if (((val16 & SRSH_PI_MASK) >> SRSH_PI_SHIFT) != (uint16) pciidx) {
val16 =
(uint16) (pciidx << SRSH_PI_SHIFT) | (val16 &
~SRSH_PI_MASK);
W_REG(sii->osh, reg16, val16);
}
/* restore the original index */
si_setcoreidx(&sii->pub, origidx);
pcicore_hwup(sii->pch);
return 0;
}
/* change logical "focus" to the gpio core for optimized access */
void *si_gpiosetcore(si_t *sih)
{
return (si_setcoreidx(sih, SI_CC_IDX));
}
/* mask&set gpiocontrol bits */
uint32 si_gpiocontrol(si_t *sih, uint32 mask, uint32 val, uint8 priority)
{
uint regoff;
regoff = 0;
/* gpios could be shared on router platforms
* ignore reservation if it's high priority (e.g., test apps)
*/
if ((priority != GPIO_HI_PRIORITY) &&
(BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
mask = priority ? (si_gpioreservation & mask) :
((si_gpioreservation | mask) & ~(si_gpioreservation));
val &= mask;
}
regoff = OFFSETOF(chipcregs_t, gpiocontrol);
return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
}
/* mask&set gpio output enable bits */
uint32 si_gpioouten(si_t *sih, uint32 mask, uint32 val, uint8 priority)
{
uint regoff;
regoff = 0;
/* gpios could be shared on router platforms
* ignore reservation if it's high priority (e.g., test apps)
*/
if ((priority != GPIO_HI_PRIORITY) &&
(BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
mask = priority ? (si_gpioreservation & mask) :
((si_gpioreservation | mask) & ~(si_gpioreservation));
val &= mask;
}
regoff = OFFSETOF(chipcregs_t, gpioouten);
return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
}
/* mask&set gpio output bits */
uint32 si_gpioout(si_t *sih, uint32 mask, uint32 val, uint8 priority)
{
uint regoff;
regoff = 0;
/* gpios could be shared on router platforms
* ignore reservation if it's high priority (e.g., test apps)
*/
if ((priority != GPIO_HI_PRIORITY) &&
(BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
mask = priority ? (si_gpioreservation & mask) :
((si_gpioreservation | mask) & ~(si_gpioreservation));
val &= mask;
}
regoff = OFFSETOF(chipcregs_t, gpioout);
return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
}
/* reserve one gpio */
uint32 si_gpioreserve(si_t *sih, uint32 gpio_bitmask, uint8 priority)
{
si_info_t *sii;
sii = SI_INFO(sih);
/* only cores on SI_BUS share GPIO's and only applcation users need to
* reserve/release GPIO
*/
if ((BUSTYPE(sih->bustype) != SI_BUS) || (!priority)) {
ASSERT((BUSTYPE(sih->bustype) == SI_BUS) && (priority));
return 0xffffffff;
}
/* make sure only one bit is set */
if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) {
ASSERT((gpio_bitmask)
&& !((gpio_bitmask) & (gpio_bitmask - 1)));
return 0xffffffff;
}
/* already reserved */
if (si_gpioreservation & gpio_bitmask)
return 0xffffffff;
/* set reservation */
si_gpioreservation |= gpio_bitmask;
return si_gpioreservation;
}
/* release one gpio */
/*
* releasing the gpio doesn't change the current value on the GPIO last write value
* persists till some one overwrites it
*/
uint32 si_gpiorelease(si_t *sih, uint32 gpio_bitmask, uint8 priority)
{
si_info_t *sii;
sii = SI_INFO(sih);
/* only cores on SI_BUS share GPIO's and only applcation users need to
* reserve/release GPIO
*/
if ((BUSTYPE(sih->bustype) != SI_BUS) || (!priority)) {
ASSERT((BUSTYPE(sih->bustype) == SI_BUS) && (priority));
return 0xffffffff;
}
/* make sure only one bit is set */
if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) {
ASSERT((gpio_bitmask)
&& !((gpio_bitmask) & (gpio_bitmask - 1)));
return 0xffffffff;
}
/* already released */
if (!(si_gpioreservation & gpio_bitmask))
return 0xffffffff;
/* clear reservation */
si_gpioreservation &= ~gpio_bitmask;
return si_gpioreservation;
}
/* return the current gpioin register value */
uint32 si_gpioin(si_t *sih)
{
si_info_t *sii;
uint regoff;
sii = SI_INFO(sih);
regoff = 0;
regoff = OFFSETOF(chipcregs_t, gpioin);
return (si_corereg(sih, SI_CC_IDX, regoff, 0, 0));
}
/* mask&set gpio interrupt polarity bits */
uint32 si_gpiointpolarity(si_t *sih, uint32 mask, uint32 val, uint8 priority)
{
si_info_t *sii;
uint regoff;
sii = SI_INFO(sih);
regoff = 0;
/* gpios could be shared on router platforms */
if ((BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
mask = priority ? (si_gpioreservation & mask) :
((si_gpioreservation | mask) & ~(si_gpioreservation));
val &= mask;
}
regoff = OFFSETOF(chipcregs_t, gpiointpolarity);
return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
}
/* mask&set gpio interrupt mask bits */
uint32 si_gpiointmask(si_t *sih, uint32 mask, uint32 val, uint8 priority)
{
si_info_t *sii;
uint regoff;
sii = SI_INFO(sih);
regoff = 0;
/* gpios could be shared on router platforms */
if ((BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
mask = priority ? (si_gpioreservation & mask) :
((si_gpioreservation | mask) & ~(si_gpioreservation));
val &= mask;
}
regoff = OFFSETOF(chipcregs_t, gpiointmask);
return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
}
/* assign the gpio to an led */
uint32 si_gpioled(si_t *sih, uint32 mask, uint32 val)
{
si_info_t *sii;
sii = SI_INFO(sih);
if (sih->ccrev < 16)
return 0xffffffff;
/* gpio led powersave reg */
return (si_corereg
(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, gpiotimeroutmask), mask,
val));
}
/* mask&set gpio timer val */
uint32 si_gpiotimerval(si_t *sih, uint32 mask, uint32 gpiotimerval)
{
si_info_t *sii;
sii = SI_INFO(sih);
if (sih->ccrev < 16)
return 0xffffffff;
return (si_corereg(sih, SI_CC_IDX,
OFFSETOF(chipcregs_t, gpiotimerval), mask,
gpiotimerval));
}
uint32 si_gpiopull(si_t *sih, bool updown, uint32 mask, uint32 val)
{
si_info_t *sii;
uint offs;
sii = SI_INFO(sih);
if (sih->ccrev < 20)
return 0xffffffff;
offs =
(updown ? OFFSETOF(chipcregs_t, gpiopulldown) :
OFFSETOF(chipcregs_t, gpiopullup));
return (si_corereg(sih, SI_CC_IDX, offs, mask, val));
}
uint32 si_gpioevent(si_t *sih, uint regtype, uint32 mask, uint32 val)
{
si_info_t *sii;
uint offs;
sii = SI_INFO(sih);
if (sih->ccrev < 11)
return 0xffffffff;
if (regtype == GPIO_REGEVT)
offs = OFFSETOF(chipcregs_t, gpioevent);
else if (regtype == GPIO_REGEVT_INTMSK)
offs = OFFSETOF(chipcregs_t, gpioeventintmask);
else if (regtype == GPIO_REGEVT_INTPOL)
offs = OFFSETOF(chipcregs_t, gpioeventintpolarity);
else
return 0xffffffff;
return (si_corereg(sih, SI_CC_IDX, offs, mask, val));
}
void *BCMATTACHFN(si_gpio_handler_register) (si_t *sih, uint32 event,
bool level, gpio_handler_t cb,
void *arg) {
si_info_t *sii;
gpioh_item_t *gi;
ASSERT(event);
ASSERT(cb != NULL);
sii = SI_INFO(sih);
if (sih->ccrev < 11)
return NULL;
if ((gi = MALLOC(sii->osh, sizeof(gpioh_item_t))) == NULL)
return NULL;
bzero(gi, sizeof(gpioh_item_t));
gi->event = event;
gi->handler = cb;
gi->arg = arg;
gi->level = level;
gi->next = sii->gpioh_head;
sii->gpioh_head = gi;
return (void *)(gi);
}
void BCMATTACHFN(si_gpio_handler_unregister) (si_t *sih, void *gpioh)
{
si_info_t *sii;
gpioh_item_t *p, *n;
sii = SI_INFO(sih);
if (sih->ccrev < 11)
return;
ASSERT(sii->gpioh_head != NULL);
if ((void *)sii->gpioh_head == gpioh) {
sii->gpioh_head = sii->gpioh_head->next;
MFREE(sii->osh, gpioh, sizeof(gpioh_item_t));
return;
} else {
p = sii->gpioh_head;
n = p->next;
while (n) {
if ((void *)n == gpioh) {
p->next = n->next;
MFREE(sii->osh, gpioh, sizeof(gpioh_item_t));
return;
}
p = n;
n = n->next;
}
}
ASSERT(0); /* Not found in list */
}
void si_gpio_handler_process(si_t *sih)
{
si_info_t *sii;
gpioh_item_t *h;
uint32 status;
uint32 level = si_gpioin(sih);
uint32 edge = si_gpioevent(sih, GPIO_REGEVT, 0, 0);
sii = SI_INFO(sih);
for (h = sii->gpioh_head; h != NULL; h = h->next) {
if (h->handler) {
status = (h->level ? level : edge);
if (status & h->event)
h->handler(status, h->arg);
}
}
si_gpioevent(sih, GPIO_REGEVT, edge, edge); /* clear edge-trigger status */
}
uint32 si_gpio_int_enable(si_t *sih, bool enable)
{
si_info_t *sii;
uint offs;
sii = SI_INFO(sih);
if (sih->ccrev < 11)
return 0xffffffff;
offs = OFFSETOF(chipcregs_t, intmask);
return (si_corereg
(sih, SI_CC_IDX, offs, CI_GPIO, (enable ? CI_GPIO : 0)));
}
/* Return the size of the specified SOCRAM bank */
static uint
socram_banksize(si_info_t *sii, sbsocramregs_t *regs, uint8 index,
uint8 mem_type)
{
uint banksize, bankinfo;
uint bankidx = index | (mem_type << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
ASSERT(mem_type <= SOCRAM_MEMTYPE_DEVRAM);
W_REG(sii->osh, &regs->bankidx, bankidx);
bankinfo = R_REG(sii->osh, &regs->bankinfo);
banksize =
SOCRAM_BANKINFO_SZBASE * ((bankinfo & SOCRAM_BANKINFO_SZMASK) + 1);
return banksize;
}
void si_socdevram(si_t *sih, bool set, uint8 *enable, uint8 *protect)
{
si_info_t *sii;
uint origidx;
uint intr_val = 0;
sbsocramregs_t *regs;
bool wasup;
uint corerev;
sii = SI_INFO(sih);
/* Block ints and save current core */
INTR_OFF(sii, intr_val);
origidx = si_coreidx(sih);
if (!set)
*enable = *protect = 0;
/* Switch to SOCRAM core */
if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
goto done;
/* Get info for determining size */
if (!(wasup = si_iscoreup(sih)))
si_core_reset(sih, 0, 0);
corerev = si_corerev(sih);
if (corerev >= 10) {
uint32 extcinfo;
uint8 nb;
uint8 i;
uint32 bankidx, bankinfo;
extcinfo = R_REG(sii->osh, &regs->extracoreinfo);
nb = ((extcinfo & SOCRAM_DEVRAMBANK_MASK) >>
SOCRAM_DEVRAMBANK_SHIFT);
for (i = 0; i < nb; i++) {
bankidx =
i | (SOCRAM_MEMTYPE_DEVRAM <<
SOCRAM_BANKIDX_MEMTYPE_SHIFT);
W_REG(sii->osh, &regs->bankidx, bankidx);
bankinfo = R_REG(sii->osh, &regs->bankinfo);
if (set) {
bankinfo &= ~SOCRAM_BANKINFO_DEVRAMSEL_MASK;
bankinfo &= ~SOCRAM_BANKINFO_DEVRAMPRO_MASK;
if (*enable) {
bankinfo |=
(1 <<
SOCRAM_BANKINFO_DEVRAMSEL_SHIFT);
if (*protect)
bankinfo |=
(1 <<
SOCRAM_BANKINFO_DEVRAMPRO_SHIFT);
}
W_REG(sii->osh, &regs->bankinfo, bankinfo);
} else if (i == 0) {
if (bankinfo & SOCRAM_BANKINFO_DEVRAMSEL_MASK) {
*enable = 1;
if (bankinfo &
SOCRAM_BANKINFO_DEVRAMPRO_MASK)
*protect = 1;
}
}
}
}
/* Return to previous state and core */
if (!wasup)
si_core_disable(sih, 0);
si_setcoreidx(sih, origidx);
done:
INTR_RESTORE(sii, intr_val);
}
bool si_socdevram_pkg(si_t *sih)
{
if (si_socdevram_size(sih) > 0)
return TRUE;
else
return FALSE;
}
uint32 si_socdevram_size(si_t *sih)
{
si_info_t *sii;
uint origidx;
uint intr_val = 0;
uint32 memsize = 0;
sbsocramregs_t *regs;
bool wasup;
uint corerev;
sii = SI_INFO(sih);
/* Block ints and save current core */
INTR_OFF(sii, intr_val);
origidx = si_coreidx(sih);
/* Switch to SOCRAM core */
if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
goto done;
/* Get info for determining size */
if (!(wasup = si_iscoreup(sih)))
si_core_reset(sih, 0, 0);
corerev = si_corerev(sih);
if (corerev >= 10) {
uint32 extcinfo;
uint8 nb;
uint8 i;
extcinfo = R_REG(sii->osh, &regs->extracoreinfo);
nb = (((extcinfo & SOCRAM_DEVRAMBANK_MASK) >>
SOCRAM_DEVRAMBANK_SHIFT));
for (i = 0; i < nb; i++)
memsize +=
socram_banksize(sii, regs, i,
SOCRAM_MEMTYPE_DEVRAM);
}
/* Return to previous state and core */
if (!wasup)
si_core_disable(sih, 0);
si_setcoreidx(sih, origidx);
done:
INTR_RESTORE(sii, intr_val);
return memsize;
}
/* Return the RAM size of the SOCRAM core */
uint32 si_socram_size(si_t *sih)
{
si_info_t *sii;
uint origidx;
uint intr_val = 0;
sbsocramregs_t *regs;
bool wasup;
uint corerev;
uint32 coreinfo;
uint memsize = 0;
sii = SI_INFO(sih);
/* Block ints and save current core */
INTR_OFF(sii, intr_val);
origidx = si_coreidx(sih);
/* Switch to SOCRAM core */
if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
goto done;
/* Get info for determining size */
if (!(wasup = si_iscoreup(sih)))
si_core_reset(sih, 0, 0);
corerev = si_corerev(sih);
coreinfo = R_REG(sii->osh, &regs->coreinfo);
/* Calculate size from coreinfo based on rev */
if (corerev == 0)
memsize = 1 << (16 + (coreinfo & SRCI_MS0_MASK));
else if (corerev < 3) {
memsize = 1 << (SR_BSZ_BASE + (coreinfo & SRCI_SRBSZ_MASK));
memsize *= (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
} else if ((corerev <= 7) || (corerev == 12)) {
uint nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
uint bsz = (coreinfo & SRCI_SRBSZ_MASK);
uint lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
if (lss != 0)
nb--;
memsize = nb * (1 << (bsz + SR_BSZ_BASE));
if (lss != 0)
memsize += (1 << ((lss - 1) + SR_BSZ_BASE));
} else {
uint8 i;
uint nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
for (i = 0; i < nb; i++)
memsize +=
socram_banksize(sii, regs, i, SOCRAM_MEMTYPE_RAM);
}
/* Return to previous state and core */
if (!wasup)
si_core_disable(sih, 0);
si_setcoreidx(sih, origidx);
done:
INTR_RESTORE(sii, intr_val);
return memsize;
}
void si_chipcontrl_epa4331(si_t *sih, bool on)
{
si_info_t *sii;
chipcregs_t *cc;
uint origidx;
uint32 val;
sii = SI_INFO(sih);
origidx = si_coreidx(sih);
cc = (chipcregs_t *) si_setcore(sih, CC_CORE_ID, 0);
val = R_REG(sii->osh, &cc->chipcontrol);
if (on) {
if (sih->chippkg == 9 || sih->chippkg == 0xb) {
/* Ext PA Controls for 4331 12x9 Package */
W_REG(sii->osh, &cc->chipcontrol, val |
(CCTRL4331_EXTPA_EN |
CCTRL4331_EXTPA_ON_GPIO2_5));
} else {
/* Ext PA Controls for 4331 12x12 Package */
W_REG(sii->osh, &cc->chipcontrol,
val | (CCTRL4331_EXTPA_EN));
}
} else {
val &= ~(CCTRL4331_EXTPA_EN | CCTRL4331_EXTPA_ON_GPIO2_5);
W_REG(sii->osh, &cc->chipcontrol, val);
}
si_setcoreidx(sih, origidx);
}
/* Enable BT-COEX & Ex-PA for 4313 */
void si_epa_4313war(si_t *sih)
{
si_info_t *sii;
chipcregs_t *cc;
uint origidx;
sii = SI_INFO(sih);
origidx = si_coreidx(sih);
cc = (chipcregs_t *) si_setcore(sih, CC_CORE_ID, 0);
/* EPA Fix */
W_REG(sii->osh, &cc->gpiocontrol,
R_REG(sii->osh, &cc->gpiocontrol) | GPIO_CTRL_EPA_EN_MASK);
si_setcoreidx(sih, origidx);
}
/* check if the device is removed */
bool si_deviceremoved(si_t *sih)
{
uint32 w;
si_info_t *sii;
sii = SI_INFO(sih);
switch (BUSTYPE(sih->bustype)) {
case PCI_BUS:
ASSERT(sii->osh != NULL);
w = OSL_PCI_READ_CONFIG(sii->osh, PCI_CFG_VID, sizeof(uint32));
if ((w & 0xFFFF) != VENDOR_BROADCOM)
return TRUE;
break;
}
return FALSE;
}
bool si_is_sprom_available(si_t *sih)
{
if (sih->ccrev >= 31) {
si_info_t *sii;
uint origidx;
chipcregs_t *cc;
uint32 sromctrl;
if ((sih->cccaps & CC_CAP_SROM) == 0)
return FALSE;
sii = SI_INFO(sih);
origidx = sii->curidx;
cc = si_setcoreidx(sih, SI_CC_IDX);
sromctrl = R_REG(sii->osh, &cc->sromcontrol);
si_setcoreidx(sih, origidx);
return (sromctrl & SRC_PRESENT);
}
switch (CHIPID(sih->chip)) {
case BCM4329_CHIP_ID:
return (sih->chipst & CST4329_SPROM_SEL) != 0;
case BCM4319_CHIP_ID:
return (sih->chipst & CST4319_SPROM_SEL) != 0;
case BCM4336_CHIP_ID:
return (sih->chipst & CST4336_SPROM_PRESENT) != 0;
case BCM4330_CHIP_ID:
return (sih->chipst & CST4330_SPROM_PRESENT) != 0;
case BCM4313_CHIP_ID:
return (sih->chipst & CST4313_SPROM_PRESENT) != 0;
case BCM4331_CHIP_ID:
return (sih->chipst & CST4331_SPROM_PRESENT) != 0;
default:
return TRUE;
}
}
bool si_is_otp_disabled(si_t *sih)
{
switch (CHIPID(sih->chip)) {
case BCM4329_CHIP_ID:
return (sih->chipst & CST4329_SPROM_OTP_SEL_MASK) ==
CST4329_OTP_PWRDN;
case BCM4319_CHIP_ID:
return (sih->chipst & CST4319_SPROM_OTP_SEL_MASK) ==
CST4319_OTP_PWRDN;
case BCM4336_CHIP_ID:
return ((sih->chipst & CST4336_OTP_PRESENT) == 0);
case BCM4330_CHIP_ID:
return ((sih->chipst & CST4330_OTP_PRESENT) == 0);
case BCM4313_CHIP_ID:
return (sih->chipst & CST4313_OTP_PRESENT) == 0;
/* These chips always have their OTP on */
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
case BCM43421_CHIP_ID:
case BCM43235_CHIP_ID:
case BCM43236_CHIP_ID:
case BCM43238_CHIP_ID:
case BCM4331_CHIP_ID:
default:
return FALSE;
}
}
bool si_is_otp_powered(si_t *sih)
{
if (PMUCTL_ENAB(sih))
return si_pmu_is_otp_powered(sih, si_osh(sih));
return TRUE;
}
void si_otp_power(si_t *sih, bool on)
{
if (PMUCTL_ENAB(sih))
si_pmu_otp_power(sih, si_osh(sih), on);
OSL_DELAY(1000);
}
bool
#if defined(BCMDBG)
si_is_sprom_enabled(si_t *sih)
#else
BCMATTACHFN(si_is_sprom_enabled) (si_t *sih)
#endif
{
return TRUE;
}
void
#if defined(BCMDBG)
si_sprom_enable(si_t *sih, bool enable)
#else
BCMATTACHFN(si_sprom_enable) (si_t *sih, bool enable)
#endif
{
if (PMUCTL_ENAB(sih))
si_pmu_sprom_enable(sih, si_osh(sih), enable);
}
/* Return BCME_NOTFOUND if the card doesn't have CIS format nvram */
int si_cis_source(si_t *sih)
{
/* Many chips have the same mapping of their chipstatus field */
static const uint cis_sel[] =
{ CIS_DEFAULT, CIS_SROM, CIS_OTP, CIS_SROM };
static const uint cis_43236_sel[] =
{ CIS_DEFAULT, CIS_SROM, CIS_OTP, CIS_OTP };
/* PCI chips use SROM format instead of CIS */
if (BUSTYPE(sih->bustype) == PCI_BUS)
return BCME_NOTFOUND;
switch (CHIPID(sih->chip)) {
case BCM43235_CHIP_ID:
case BCM43236_CHIP_ID:
case BCM43238_CHIP_ID:{
uint8 strap =
(sih->
chipst & CST4322_SPROM_OTP_SEL_MASK) >>
CST4322_SPROM_OTP_SEL_SHIFT;
return ((strap >=
sizeof(cis_sel)) ? CIS_DEFAULT :
cis_43236_sel[strap]);
}
case BCM4329_CHIP_ID:
return ((sih->chipst & CST4329_SPROM_OTP_SEL_MASK) >=
sizeof(cis_sel)) ? CIS_DEFAULT : cis_sel[(sih->
chipst &
CST4329_SPROM_OTP_SEL_MASK)];
case BCM4319_CHIP_ID:{
uint cis_sel4319 =
((sih->
chipst & CST4319_SPROM_OTP_SEL_MASK) >>
CST4319_SPROM_OTP_SEL_SHIFT);
return (cis_sel4319 >=
sizeof(cis_sel)) ? CIS_DEFAULT :
cis_sel[cis_sel4319];
}
case BCM4336_CHIP_ID:{
if (sih->chipst & CST4336_SPROM_PRESENT)
return CIS_SROM;
if (sih->chipst & CST4336_OTP_PRESENT)
return CIS_OTP;
return CIS_DEFAULT;
}
case BCM4330_CHIP_ID:{
if (sih->chipst & CST4330_SPROM_PRESENT)
return CIS_SROM;
if (sih->chipst & CST4330_OTP_PRESENT)
return CIS_OTP;
return CIS_DEFAULT;
}
default:
return CIS_DEFAULT;
}
}