| #ifndef __NET_CFG80211_H |
| #define __NET_CFG80211_H |
| /* |
| * 802.11 device and configuration interface |
| * |
| * Copyright 2006-2009 Johannes Berg <johannes@sipsolutions.net> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/netdevice.h> |
| #include <linux/debugfs.h> |
| #include <linux/list.h> |
| #include <linux/netlink.h> |
| #include <linux/skbuff.h> |
| #include <linux/nl80211.h> |
| #include <linux/if_ether.h> |
| #include <linux/ieee80211.h> |
| #include <net/regulatory.h> |
| |
| /* remove once we remove the wext stuff */ |
| #include <net/iw_handler.h> |
| #include <linux/wireless.h> |
| |
| |
| /* |
| * wireless hardware capability structures |
| */ |
| |
| /** |
| * enum ieee80211_band - supported frequency bands |
| * |
| * The bands are assigned this way because the supported |
| * bitrates differ in these bands. |
| * |
| * @IEEE80211_BAND_2GHZ: 2.4GHz ISM band |
| * @IEEE80211_BAND_5GHZ: around 5GHz band (4.9-5.7) |
| */ |
| enum ieee80211_band { |
| IEEE80211_BAND_2GHZ, |
| IEEE80211_BAND_5GHZ, |
| |
| /* keep last */ |
| IEEE80211_NUM_BANDS |
| }; |
| |
| /** |
| * enum ieee80211_channel_flags - channel flags |
| * |
| * Channel flags set by the regulatory control code. |
| * |
| * @IEEE80211_CHAN_DISABLED: This channel is disabled. |
| * @IEEE80211_CHAN_PASSIVE_SCAN: Only passive scanning is permitted |
| * on this channel. |
| * @IEEE80211_CHAN_NO_IBSS: IBSS is not allowed on this channel. |
| * @IEEE80211_CHAN_RADAR: Radar detection is required on this channel. |
| * @IEEE80211_CHAN_NO_HT40PLUS: extension channel above this channel |
| * is not permitted. |
| * @IEEE80211_CHAN_NO_HT40MINUS: extension channel below this channel |
| * is not permitted. |
| */ |
| enum ieee80211_channel_flags { |
| IEEE80211_CHAN_DISABLED = 1<<0, |
| IEEE80211_CHAN_PASSIVE_SCAN = 1<<1, |
| IEEE80211_CHAN_NO_IBSS = 1<<2, |
| IEEE80211_CHAN_RADAR = 1<<3, |
| IEEE80211_CHAN_NO_HT40PLUS = 1<<4, |
| IEEE80211_CHAN_NO_HT40MINUS = 1<<5, |
| }; |
| |
| #define IEEE80211_CHAN_NO_HT40 \ |
| (IEEE80211_CHAN_NO_HT40PLUS | IEEE80211_CHAN_NO_HT40MINUS) |
| |
| /** |
| * struct ieee80211_channel - channel definition |
| * |
| * This structure describes a single channel for use |
| * with cfg80211. |
| * |
| * @center_freq: center frequency in MHz |
| * @max_bandwidth: maximum allowed bandwidth for this channel, in MHz |
| * @hw_value: hardware-specific value for the channel |
| * @flags: channel flags from &enum ieee80211_channel_flags. |
| * @orig_flags: channel flags at registration time, used by regulatory |
| * code to support devices with additional restrictions |
| * @band: band this channel belongs to. |
| * @max_antenna_gain: maximum antenna gain in dBi |
| * @max_power: maximum transmission power (in dBm) |
| * @beacon_found: helper to regulatory code to indicate when a beacon |
| * has been found on this channel. Use regulatory_hint_found_beacon() |
| * to enable this, this is is useful only on 5 GHz band. |
| * @orig_mag: internal use |
| * @orig_mpwr: internal use |
| */ |
| struct ieee80211_channel { |
| enum ieee80211_band band; |
| u16 center_freq; |
| u8 max_bandwidth; |
| u16 hw_value; |
| u32 flags; |
| int max_antenna_gain; |
| int max_power; |
| bool beacon_found; |
| u32 orig_flags; |
| int orig_mag, orig_mpwr; |
| }; |
| |
| /** |
| * enum ieee80211_rate_flags - rate flags |
| * |
| * Hardware/specification flags for rates. These are structured |
| * in a way that allows using the same bitrate structure for |
| * different bands/PHY modes. |
| * |
| * @IEEE80211_RATE_SHORT_PREAMBLE: Hardware can send with short |
| * preamble on this bitrate; only relevant in 2.4GHz band and |
| * with CCK rates. |
| * @IEEE80211_RATE_MANDATORY_A: This bitrate is a mandatory rate |
| * when used with 802.11a (on the 5 GHz band); filled by the |
| * core code when registering the wiphy. |
| * @IEEE80211_RATE_MANDATORY_B: This bitrate is a mandatory rate |
| * when used with 802.11b (on the 2.4 GHz band); filled by the |
| * core code when registering the wiphy. |
| * @IEEE80211_RATE_MANDATORY_G: This bitrate is a mandatory rate |
| * when used with 802.11g (on the 2.4 GHz band); filled by the |
| * core code when registering the wiphy. |
| * @IEEE80211_RATE_ERP_G: This is an ERP rate in 802.11g mode. |
| */ |
| enum ieee80211_rate_flags { |
| IEEE80211_RATE_SHORT_PREAMBLE = 1<<0, |
| IEEE80211_RATE_MANDATORY_A = 1<<1, |
| IEEE80211_RATE_MANDATORY_B = 1<<2, |
| IEEE80211_RATE_MANDATORY_G = 1<<3, |
| IEEE80211_RATE_ERP_G = 1<<4, |
| }; |
| |
| /** |
| * struct ieee80211_rate - bitrate definition |
| * |
| * This structure describes a bitrate that an 802.11 PHY can |
| * operate with. The two values @hw_value and @hw_value_short |
| * are only for driver use when pointers to this structure are |
| * passed around. |
| * |
| * @flags: rate-specific flags |
| * @bitrate: bitrate in units of 100 Kbps |
| * @hw_value: driver/hardware value for this rate |
| * @hw_value_short: driver/hardware value for this rate when |
| * short preamble is used |
| */ |
| struct ieee80211_rate { |
| u32 flags; |
| u16 bitrate; |
| u16 hw_value, hw_value_short; |
| }; |
| |
| /** |
| * struct ieee80211_sta_ht_cap - STA's HT capabilities |
| * |
| * This structure describes most essential parameters needed |
| * to describe 802.11n HT capabilities for an STA. |
| * |
| * @ht_supported: is HT supported by the STA |
| * @cap: HT capabilities map as described in 802.11n spec |
| * @ampdu_factor: Maximum A-MPDU length factor |
| * @ampdu_density: Minimum A-MPDU spacing |
| * @mcs: Supported MCS rates |
| */ |
| struct ieee80211_sta_ht_cap { |
| u16 cap; /* use IEEE80211_HT_CAP_ */ |
| bool ht_supported; |
| u8 ampdu_factor; |
| u8 ampdu_density; |
| struct ieee80211_mcs_info mcs; |
| }; |
| |
| /** |
| * struct ieee80211_supported_band - frequency band definition |
| * |
| * This structure describes a frequency band a wiphy |
| * is able to operate in. |
| * |
| * @channels: Array of channels the hardware can operate in |
| * in this band. |
| * @band: the band this structure represents |
| * @n_channels: Number of channels in @channels |
| * @bitrates: Array of bitrates the hardware can operate with |
| * in this band. Must be sorted to give a valid "supported |
| * rates" IE, i.e. CCK rates first, then OFDM. |
| * @n_bitrates: Number of bitrates in @bitrates |
| */ |
| struct ieee80211_supported_band { |
| struct ieee80211_channel *channels; |
| struct ieee80211_rate *bitrates; |
| enum ieee80211_band band; |
| int n_channels; |
| int n_bitrates; |
| struct ieee80211_sta_ht_cap ht_cap; |
| }; |
| |
| /* |
| * Wireless hardware/device configuration structures and methods |
| */ |
| |
| /** |
| * struct vif_params - describes virtual interface parameters |
| * @mesh_id: mesh ID to use |
| * @mesh_id_len: length of the mesh ID |
| */ |
| struct vif_params { |
| u8 *mesh_id; |
| int mesh_id_len; |
| }; |
| |
| /** |
| * struct key_params - key information |
| * |
| * Information about a key |
| * |
| * @key: key material |
| * @key_len: length of key material |
| * @cipher: cipher suite selector |
| * @seq: sequence counter (IV/PN) for TKIP and CCMP keys, only used |
| * with the get_key() callback, must be in little endian, |
| * length given by @seq_len. |
| */ |
| struct key_params { |
| u8 *key; |
| u8 *seq; |
| int key_len; |
| int seq_len; |
| u32 cipher; |
| }; |
| |
| /** |
| * struct beacon_parameters - beacon parameters |
| * |
| * Used to configure the beacon for an interface. |
| * |
| * @head: head portion of beacon (before TIM IE) |
| * or %NULL if not changed |
| * @tail: tail portion of beacon (after TIM IE) |
| * or %NULL if not changed |
| * @interval: beacon interval or zero if not changed |
| * @dtim_period: DTIM period or zero if not changed |
| * @head_len: length of @head |
| * @tail_len: length of @tail |
| */ |
| struct beacon_parameters { |
| u8 *head, *tail; |
| int interval, dtim_period; |
| int head_len, tail_len; |
| }; |
| |
| /** |
| * enum plink_action - actions to perform in mesh peers |
| * |
| * @PLINK_ACTION_INVALID: action 0 is reserved |
| * @PLINK_ACTION_OPEN: start mesh peer link establishment |
| * @PLINK_ACTION_BLOCL: block traffic from this mesh peer |
| */ |
| enum plink_actions { |
| PLINK_ACTION_INVALID, |
| PLINK_ACTION_OPEN, |
| PLINK_ACTION_BLOCK, |
| }; |
| |
| /** |
| * struct station_parameters - station parameters |
| * |
| * Used to change and create a new station. |
| * |
| * @vlan: vlan interface station should belong to |
| * @supported_rates: supported rates in IEEE 802.11 format |
| * (or NULL for no change) |
| * @supported_rates_len: number of supported rates |
| * @sta_flags_mask: station flags that changed |
| * (bitmask of BIT(NL80211_STA_FLAG_...)) |
| * @sta_flags_set: station flags values |
| * (bitmask of BIT(NL80211_STA_FLAG_...)) |
| * @listen_interval: listen interval or -1 for no change |
| * @aid: AID or zero for no change |
| */ |
| struct station_parameters { |
| u8 *supported_rates; |
| struct net_device *vlan; |
| u32 sta_flags_mask, sta_flags_set; |
| int listen_interval; |
| u16 aid; |
| u8 supported_rates_len; |
| u8 plink_action; |
| struct ieee80211_ht_cap *ht_capa; |
| }; |
| |
| /** |
| * enum station_info_flags - station information flags |
| * |
| * Used by the driver to indicate which info in &struct station_info |
| * it has filled in during get_station() or dump_station(). |
| * |
| * @STATION_INFO_INACTIVE_TIME: @inactive_time filled |
| * @STATION_INFO_RX_BYTES: @rx_bytes filled |
| * @STATION_INFO_TX_BYTES: @tx_bytes filled |
| * @STATION_INFO_LLID: @llid filled |
| * @STATION_INFO_PLID: @plid filled |
| * @STATION_INFO_PLINK_STATE: @plink_state filled |
| * @STATION_INFO_SIGNAL: @signal filled |
| * @STATION_INFO_TX_BITRATE: @tx_bitrate fields are filled |
| * (tx_bitrate, tx_bitrate_flags and tx_bitrate_mcs) |
| * @STATION_INFO_RX_PACKETS: @rx_packets filled |
| * @STATION_INFO_TX_PACKETS: @tx_packets filled |
| */ |
| enum station_info_flags { |
| STATION_INFO_INACTIVE_TIME = 1<<0, |
| STATION_INFO_RX_BYTES = 1<<1, |
| STATION_INFO_TX_BYTES = 1<<2, |
| STATION_INFO_LLID = 1<<3, |
| STATION_INFO_PLID = 1<<4, |
| STATION_INFO_PLINK_STATE = 1<<5, |
| STATION_INFO_SIGNAL = 1<<6, |
| STATION_INFO_TX_BITRATE = 1<<7, |
| STATION_INFO_RX_PACKETS = 1<<8, |
| STATION_INFO_TX_PACKETS = 1<<9, |
| }; |
| |
| /** |
| * enum station_info_rate_flags - bitrate info flags |
| * |
| * Used by the driver to indicate the specific rate transmission |
| * type for 802.11n transmissions. |
| * |
| * @RATE_INFO_FLAGS_MCS: @tx_bitrate_mcs filled |
| * @RATE_INFO_FLAGS_40_MHZ_WIDTH: 40 Mhz width transmission |
| * @RATE_INFO_FLAGS_SHORT_GI: 400ns guard interval |
| */ |
| enum rate_info_flags { |
| RATE_INFO_FLAGS_MCS = 1<<0, |
| RATE_INFO_FLAGS_40_MHZ_WIDTH = 1<<1, |
| RATE_INFO_FLAGS_SHORT_GI = 1<<2, |
| }; |
| |
| /** |
| * struct rate_info - bitrate information |
| * |
| * Information about a receiving or transmitting bitrate |
| * |
| * @flags: bitflag of flags from &enum rate_info_flags |
| * @mcs: mcs index if struct describes a 802.11n bitrate |
| * @legacy: bitrate in 100kbit/s for 802.11abg |
| */ |
| struct rate_info { |
| u8 flags; |
| u8 mcs; |
| u16 legacy; |
| }; |
| |
| /** |
| * struct station_info - station information |
| * |
| * Station information filled by driver for get_station() and dump_station. |
| * |
| * @filled: bitflag of flags from &enum station_info_flags |
| * @inactive_time: time since last station activity (tx/rx) in milliseconds |
| * @rx_bytes: bytes received from this station |
| * @tx_bytes: bytes transmitted to this station |
| * @llid: mesh local link id |
| * @plid: mesh peer link id |
| * @plink_state: mesh peer link state |
| * @signal: signal strength of last received packet in dBm |
| * @txrate: current unicast bitrate to this station |
| * @rx_packets: packets received from this station |
| * @tx_packets: packets transmitted to this station |
| */ |
| struct station_info { |
| u32 filled; |
| u32 inactive_time; |
| u32 rx_bytes; |
| u32 tx_bytes; |
| u16 llid; |
| u16 plid; |
| u8 plink_state; |
| s8 signal; |
| struct rate_info txrate; |
| u32 rx_packets; |
| u32 tx_packets; |
| }; |
| |
| /** |
| * enum monitor_flags - monitor flags |
| * |
| * Monitor interface configuration flags. Note that these must be the bits |
| * according to the nl80211 flags. |
| * |
| * @MONITOR_FLAG_FCSFAIL: pass frames with bad FCS |
| * @MONITOR_FLAG_PLCPFAIL: pass frames with bad PLCP |
| * @MONITOR_FLAG_CONTROL: pass control frames |
| * @MONITOR_FLAG_OTHER_BSS: disable BSSID filtering |
| * @MONITOR_FLAG_COOK_FRAMES: report frames after processing |
| */ |
| enum monitor_flags { |
| MONITOR_FLAG_FCSFAIL = 1<<NL80211_MNTR_FLAG_FCSFAIL, |
| MONITOR_FLAG_PLCPFAIL = 1<<NL80211_MNTR_FLAG_PLCPFAIL, |
| MONITOR_FLAG_CONTROL = 1<<NL80211_MNTR_FLAG_CONTROL, |
| MONITOR_FLAG_OTHER_BSS = 1<<NL80211_MNTR_FLAG_OTHER_BSS, |
| MONITOR_FLAG_COOK_FRAMES = 1<<NL80211_MNTR_FLAG_COOK_FRAMES, |
| }; |
| |
| /** |
| * enum mpath_info_flags - mesh path information flags |
| * |
| * Used by the driver to indicate which info in &struct mpath_info it has filled |
| * in during get_station() or dump_station(). |
| * |
| * MPATH_INFO_FRAME_QLEN: @frame_qlen filled |
| * MPATH_INFO_DSN: @dsn filled |
| * MPATH_INFO_METRIC: @metric filled |
| * MPATH_INFO_EXPTIME: @exptime filled |
| * MPATH_INFO_DISCOVERY_TIMEOUT: @discovery_timeout filled |
| * MPATH_INFO_DISCOVERY_RETRIES: @discovery_retries filled |
| * MPATH_INFO_FLAGS: @flags filled |
| */ |
| enum mpath_info_flags { |
| MPATH_INFO_FRAME_QLEN = BIT(0), |
| MPATH_INFO_DSN = BIT(1), |
| MPATH_INFO_METRIC = BIT(2), |
| MPATH_INFO_EXPTIME = BIT(3), |
| MPATH_INFO_DISCOVERY_TIMEOUT = BIT(4), |
| MPATH_INFO_DISCOVERY_RETRIES = BIT(5), |
| MPATH_INFO_FLAGS = BIT(6), |
| }; |
| |
| /** |
| * struct mpath_info - mesh path information |
| * |
| * Mesh path information filled by driver for get_mpath() and dump_mpath(). |
| * |
| * @filled: bitfield of flags from &enum mpath_info_flags |
| * @frame_qlen: number of queued frames for this destination |
| * @dsn: destination sequence number |
| * @metric: metric (cost) of this mesh path |
| * @exptime: expiration time for the mesh path from now, in msecs |
| * @flags: mesh path flags |
| * @discovery_timeout: total mesh path discovery timeout, in msecs |
| * @discovery_retries: mesh path discovery retries |
| */ |
| struct mpath_info { |
| u32 filled; |
| u32 frame_qlen; |
| u32 dsn; |
| u32 metric; |
| u32 exptime; |
| u32 discovery_timeout; |
| u8 discovery_retries; |
| u8 flags; |
| }; |
| |
| /** |
| * struct bss_parameters - BSS parameters |
| * |
| * Used to change BSS parameters (mainly for AP mode). |
| * |
| * @use_cts_prot: Whether to use CTS protection |
| * (0 = no, 1 = yes, -1 = do not change) |
| * @use_short_preamble: Whether the use of short preambles is allowed |
| * (0 = no, 1 = yes, -1 = do not change) |
| * @use_short_slot_time: Whether the use of short slot time is allowed |
| * (0 = no, 1 = yes, -1 = do not change) |
| * @basic_rates: basic rates in IEEE 802.11 format |
| * (or NULL for no change) |
| * @basic_rates_len: number of basic rates |
| */ |
| struct bss_parameters { |
| int use_cts_prot; |
| int use_short_preamble; |
| int use_short_slot_time; |
| u8 *basic_rates; |
| u8 basic_rates_len; |
| }; |
| |
| struct mesh_config { |
| /* Timeouts in ms */ |
| /* Mesh plink management parameters */ |
| u16 dot11MeshRetryTimeout; |
| u16 dot11MeshConfirmTimeout; |
| u16 dot11MeshHoldingTimeout; |
| u16 dot11MeshMaxPeerLinks; |
| u8 dot11MeshMaxRetries; |
| u8 dot11MeshTTL; |
| bool auto_open_plinks; |
| /* HWMP parameters */ |
| u8 dot11MeshHWMPmaxPREQretries; |
| u32 path_refresh_time; |
| u16 min_discovery_timeout; |
| u32 dot11MeshHWMPactivePathTimeout; |
| u16 dot11MeshHWMPpreqMinInterval; |
| u16 dot11MeshHWMPnetDiameterTraversalTime; |
| }; |
| |
| /** |
| * struct ieee80211_txq_params - TX queue parameters |
| * @queue: TX queue identifier (NL80211_TXQ_Q_*) |
| * @txop: Maximum burst time in units of 32 usecs, 0 meaning disabled |
| * @cwmin: Minimum contention window [a value of the form 2^n-1 in the range |
| * 1..32767] |
| * @cwmax: Maximum contention window [a value of the form 2^n-1 in the range |
| * 1..32767] |
| * @aifs: Arbitration interframe space [0..255] |
| */ |
| struct ieee80211_txq_params { |
| enum nl80211_txq_q queue; |
| u16 txop; |
| u16 cwmin; |
| u16 cwmax; |
| u8 aifs; |
| }; |
| |
| /* from net/wireless.h */ |
| struct wiphy; |
| |
| /* from net/ieee80211.h */ |
| struct ieee80211_channel; |
| |
| /** |
| * struct cfg80211_ssid - SSID description |
| * @ssid: the SSID |
| * @ssid_len: length of the ssid |
| */ |
| struct cfg80211_ssid { |
| u8 ssid[IEEE80211_MAX_SSID_LEN]; |
| u8 ssid_len; |
| }; |
| |
| /** |
| * struct cfg80211_scan_request - scan request description |
| * |
| * @ssids: SSIDs to scan for (active scan only) |
| * @n_ssids: number of SSIDs |
| * @channels: channels to scan on. |
| * @n_channels: number of channels for each band |
| * @ie: optional information element(s) to add into Probe Request or %NULL |
| * @ie_len: length of ie in octets |
| * @wiphy: the wiphy this was for |
| * @ifidx: the interface index |
| */ |
| struct cfg80211_scan_request { |
| struct cfg80211_ssid *ssids; |
| int n_ssids; |
| struct ieee80211_channel **channels; |
| u32 n_channels; |
| const u8 *ie; |
| size_t ie_len; |
| |
| /* internal */ |
| struct wiphy *wiphy; |
| int ifidx; |
| }; |
| |
| /** |
| * enum cfg80211_signal_type - signal type |
| * |
| * @CFG80211_SIGNAL_TYPE_NONE: no signal strength information available |
| * @CFG80211_SIGNAL_TYPE_MBM: signal strength in mBm (100*dBm) |
| * @CFG80211_SIGNAL_TYPE_UNSPEC: signal strength, increasing from 0 through 100 |
| */ |
| enum cfg80211_signal_type { |
| CFG80211_SIGNAL_TYPE_NONE, |
| CFG80211_SIGNAL_TYPE_MBM, |
| CFG80211_SIGNAL_TYPE_UNSPEC, |
| }; |
| |
| /** |
| * struct cfg80211_bss - BSS description |
| * |
| * This structure describes a BSS (which may also be a mesh network) |
| * for use in scan results and similar. |
| * |
| * @bssid: BSSID of the BSS |
| * @tsf: timestamp of last received update |
| * @beacon_interval: the beacon interval as from the frame |
| * @capability: the capability field in host byte order |
| * @information_elements: the information elements (Note that there |
| * is no guarantee that these are well-formed!) |
| * @len_information_elements: total length of the information elements |
| * @signal: signal strength value (type depends on the wiphy's signal_type) |
| * @hold: BSS should not expire |
| * @free_priv: function pointer to free private data |
| * @priv: private area for driver use, has at least wiphy->bss_priv_size bytes |
| */ |
| struct cfg80211_bss { |
| struct ieee80211_channel *channel; |
| |
| u8 bssid[ETH_ALEN]; |
| u64 tsf; |
| u16 beacon_interval; |
| u16 capability; |
| u8 *information_elements; |
| size_t len_information_elements; |
| |
| s32 signal; |
| |
| void (*free_priv)(struct cfg80211_bss *bss); |
| u8 priv[0] __attribute__((__aligned__(sizeof(void *)))); |
| }; |
| |
| /** |
| * struct cfg80211_auth_request - Authentication request data |
| * |
| * This structure provides information needed to complete IEEE 802.11 |
| * authentication. |
| * NOTE: This structure will likely change when more code from mac80211 is |
| * moved into cfg80211 so that non-mac80211 drivers can benefit from it, too. |
| * Before using this in a driver that does not use mac80211, it would be better |
| * to check the status of that work and better yet, volunteer to work on it. |
| * |
| * @chan: The channel to use or %NULL if not specified (auto-select based on |
| * scan results) |
| * @peer_addr: The address of the peer STA (AP BSSID in infrastructure case); |
| * this field is required to be present; if the driver wants to help with |
| * BSS selection, it should use (yet to be added) MLME event to allow user |
| * space SME to be notified of roaming candidate, so that the SME can then |
| * use the authentication request with the recommended BSSID and whatever |
| * other data may be needed for authentication/association |
| * @ssid: SSID or %NULL if not yet available |
| * @ssid_len: Length of ssid in octets |
| * @auth_type: Authentication type (algorithm) |
| * @ie: Extra IEs to add to Authentication frame or %NULL |
| * @ie_len: Length of ie buffer in octets |
| */ |
| struct cfg80211_auth_request { |
| struct ieee80211_channel *chan; |
| u8 *peer_addr; |
| const u8 *ssid; |
| size_t ssid_len; |
| enum nl80211_auth_type auth_type; |
| const u8 *ie; |
| size_t ie_len; |
| }; |
| |
| /** |
| * struct cfg80211_assoc_request - (Re)Association request data |
| * |
| * This structure provides information needed to complete IEEE 802.11 |
| * (re)association. |
| * NOTE: This structure will likely change when more code from mac80211 is |
| * moved into cfg80211 so that non-mac80211 drivers can benefit from it, too. |
| * Before using this in a driver that does not use mac80211, it would be better |
| * to check the status of that work and better yet, volunteer to work on it. |
| * |
| * @chan: The channel to use or %NULL if not specified (auto-select based on |
| * scan results) |
| * @peer_addr: The address of the peer STA (AP BSSID); this field is required |
| * to be present and the STA must be in State 2 (authenticated) with the |
| * peer STA |
| * @ssid: SSID |
| * @ssid_len: Length of ssid in octets |
| * @ie: Extra IEs to add to (Re)Association Request frame or %NULL |
| * @ie_len: Length of ie buffer in octets |
| * @use_mfp: Use management frame protection (IEEE 802.11w) in this association |
| * @control_port: Whether user space controls IEEE 802.1X port, i.e., |
| * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is |
| * required to assume that the port is unauthorized until authorized by |
| * user space. Otherwise, port is marked authorized by default. |
| */ |
| struct cfg80211_assoc_request { |
| struct ieee80211_channel *chan; |
| u8 *peer_addr; |
| const u8 *ssid; |
| size_t ssid_len; |
| const u8 *ie; |
| size_t ie_len; |
| bool use_mfp; |
| bool control_port; |
| }; |
| |
| /** |
| * struct cfg80211_deauth_request - Deauthentication request data |
| * |
| * This structure provides information needed to complete IEEE 802.11 |
| * deauthentication. |
| * |
| * @peer_addr: The address of the peer STA (AP BSSID); this field is required |
| * to be present and the STA must be authenticated with the peer STA |
| * @ie: Extra IEs to add to Deauthentication frame or %NULL |
| * @ie_len: Length of ie buffer in octets |
| */ |
| struct cfg80211_deauth_request { |
| u8 *peer_addr; |
| u16 reason_code; |
| const u8 *ie; |
| size_t ie_len; |
| }; |
| |
| /** |
| * struct cfg80211_disassoc_request - Disassociation request data |
| * |
| * This structure provides information needed to complete IEEE 802.11 |
| * disassocation. |
| * |
| * @peer_addr: The address of the peer STA (AP BSSID); this field is required |
| * to be present and the STA must be associated with the peer STA |
| * @ie: Extra IEs to add to Disassociation frame or %NULL |
| * @ie_len: Length of ie buffer in octets |
| */ |
| struct cfg80211_disassoc_request { |
| u8 *peer_addr; |
| u16 reason_code; |
| const u8 *ie; |
| size_t ie_len; |
| }; |
| |
| /** |
| * struct cfg80211_ibss_params - IBSS parameters |
| * |
| * This structure defines the IBSS parameters for the join_ibss() |
| * method. |
| * |
| * @ssid: The SSID, will always be non-null. |
| * @ssid_len: The length of the SSID, will always be non-zero. |
| * @bssid: Fixed BSSID requested, maybe be %NULL, if set do not |
| * search for IBSSs with a different BSSID. |
| * @channel: The channel to use if no IBSS can be found to join. |
| * @channel_fixed: The channel should be fixed -- do not search for |
| * IBSSs to join on other channels. |
| * @ie: information element(s) to include in the beacon |
| * @ie_len: length of that |
| * @beacon_interval: beacon interval to use |
| */ |
| struct cfg80211_ibss_params { |
| u8 *ssid; |
| u8 *bssid; |
| struct ieee80211_channel *channel; |
| u8 *ie; |
| u8 ssid_len, ie_len; |
| u16 beacon_interval; |
| bool channel_fixed; |
| }; |
| |
| /** |
| * enum wiphy_params_flags - set_wiphy_params bitfield values |
| * WIPHY_PARAM_RETRY_SHORT: wiphy->retry_short has changed |
| * WIPHY_PARAM_RETRY_LONG: wiphy->retry_long has changed |
| * WIPHY_PARAM_FRAG_THRESHOLD: wiphy->frag_threshold has changed |
| * WIPHY_PARAM_RTS_THRESHOLD: wiphy->rts_threshold has changed |
| */ |
| enum wiphy_params_flags { |
| WIPHY_PARAM_RETRY_SHORT = 1 << 0, |
| WIPHY_PARAM_RETRY_LONG = 1 << 1, |
| WIPHY_PARAM_FRAG_THRESHOLD = 1 << 2, |
| WIPHY_PARAM_RTS_THRESHOLD = 1 << 3, |
| }; |
| |
| /** |
| * enum tx_power_setting - TX power adjustment |
| * |
| * @TX_POWER_AUTOMATIC: the dbm parameter is ignored |
| * @TX_POWER_LIMITED: limit TX power by the dbm parameter |
| * @TX_POWER_FIXED: fix TX power to the dbm parameter |
| */ |
| enum tx_power_setting { |
| TX_POWER_AUTOMATIC, |
| TX_POWER_LIMITED, |
| TX_POWER_FIXED, |
| }; |
| |
| /** |
| * struct cfg80211_ops - backend description for wireless configuration |
| * |
| * This struct is registered by fullmac card drivers and/or wireless stacks |
| * in order to handle configuration requests on their interfaces. |
| * |
| * All callbacks except where otherwise noted should return 0 |
| * on success or a negative error code. |
| * |
| * All operations are currently invoked under rtnl for consistency with the |
| * wireless extensions but this is subject to reevaluation as soon as this |
| * code is used more widely and we have a first user without wext. |
| * |
| * @suspend: wiphy device needs to be suspended |
| * @resume: wiphy device needs to be resumed |
| * |
| * @add_virtual_intf: create a new virtual interface with the given name, |
| * must set the struct wireless_dev's iftype. |
| * |
| * @del_virtual_intf: remove the virtual interface determined by ifindex. |
| * |
| * @change_virtual_intf: change type/configuration of virtual interface, |
| * keep the struct wireless_dev's iftype updated. |
| * |
| * @add_key: add a key with the given parameters. @mac_addr will be %NULL |
| * when adding a group key. |
| * |
| * @get_key: get information about the key with the given parameters. |
| * @mac_addr will be %NULL when requesting information for a group |
| * key. All pointers given to the @callback function need not be valid |
| * after it returns. This function should return an error if it is |
| * not possible to retrieve the key, -ENOENT if it doesn't exist. |
| * |
| * @del_key: remove a key given the @mac_addr (%NULL for a group key) |
| * and @key_index, return -ENOENT if the key doesn't exist. |
| * |
| * @set_default_key: set the default key on an interface |
| * |
| * @set_default_mgmt_key: set the default management frame key on an interface |
| * |
| * @add_beacon: Add a beacon with given parameters, @head, @interval |
| * and @dtim_period will be valid, @tail is optional. |
| * @set_beacon: Change the beacon parameters for an access point mode |
| * interface. This should reject the call when no beacon has been |
| * configured. |
| * @del_beacon: Remove beacon configuration and stop sending the beacon. |
| * |
| * @add_station: Add a new station. |
| * |
| * @del_station: Remove a station; @mac may be NULL to remove all stations. |
| * |
| * @change_station: Modify a given station. |
| * |
| * @get_mesh_params: Put the current mesh parameters into *params |
| * |
| * @set_mesh_params: Set mesh parameters. |
| * The mask is a bitfield which tells us which parameters to |
| * set, and which to leave alone. |
| * |
| * @set_mesh_cfg: set mesh parameters (by now, just mesh id) |
| * |
| * @change_bss: Modify parameters for a given BSS. |
| * |
| * @set_txq_params: Set TX queue parameters |
| * |
| * @set_channel: Set channel |
| * |
| * @scan: Request to do a scan. If returning zero, the scan request is given |
| * the driver, and will be valid until passed to cfg80211_scan_done(). |
| * For scan results, call cfg80211_inform_bss(); you can call this outside |
| * the scan/scan_done bracket too. |
| * |
| * @auth: Request to authenticate with the specified peer |
| * @assoc: Request to (re)associate with the specified peer |
| * @deauth: Request to deauthenticate from the specified peer |
| * @disassoc: Request to disassociate from the specified peer |
| * |
| * @join_ibss: Join the specified IBSS (or create if necessary). Once done, call |
| * cfg80211_ibss_joined(), also call that function when changing BSSID due |
| * to a merge. |
| * @leave_ibss: Leave the IBSS. |
| * |
| * @set_wiphy_params: Notify that wiphy parameters have changed; |
| * @changed bitfield (see &enum wiphy_params_flags) describes which values |
| * have changed. The actual parameter values are available in |
| * struct wiphy. If returning an error, no value should be changed. |
| * |
| * @set_tx_power: set the transmit power according to the parameters |
| * @get_tx_power: store the current TX power into the dbm variable; |
| * return 0 if successful |
| * |
| * @rfkill_poll: polls the hw rfkill line, use cfg80211 reporting |
| * functions to adjust rfkill hw state |
| */ |
| struct cfg80211_ops { |
| int (*suspend)(struct wiphy *wiphy); |
| int (*resume)(struct wiphy *wiphy); |
| |
| int (*add_virtual_intf)(struct wiphy *wiphy, char *name, |
| enum nl80211_iftype type, u32 *flags, |
| struct vif_params *params); |
| int (*del_virtual_intf)(struct wiphy *wiphy, int ifindex); |
| int (*change_virtual_intf)(struct wiphy *wiphy, |
| struct net_device *dev, |
| enum nl80211_iftype type, u32 *flags, |
| struct vif_params *params); |
| |
| int (*add_key)(struct wiphy *wiphy, struct net_device *netdev, |
| u8 key_index, const u8 *mac_addr, |
| struct key_params *params); |
| int (*get_key)(struct wiphy *wiphy, struct net_device *netdev, |
| u8 key_index, const u8 *mac_addr, void *cookie, |
| void (*callback)(void *cookie, struct key_params*)); |
| int (*del_key)(struct wiphy *wiphy, struct net_device *netdev, |
| u8 key_index, const u8 *mac_addr); |
| int (*set_default_key)(struct wiphy *wiphy, |
| struct net_device *netdev, |
| u8 key_index); |
| int (*set_default_mgmt_key)(struct wiphy *wiphy, |
| struct net_device *netdev, |
| u8 key_index); |
| |
| int (*add_beacon)(struct wiphy *wiphy, struct net_device *dev, |
| struct beacon_parameters *info); |
| int (*set_beacon)(struct wiphy *wiphy, struct net_device *dev, |
| struct beacon_parameters *info); |
| int (*del_beacon)(struct wiphy *wiphy, struct net_device *dev); |
| |
| |
| int (*add_station)(struct wiphy *wiphy, struct net_device *dev, |
| u8 *mac, struct station_parameters *params); |
| int (*del_station)(struct wiphy *wiphy, struct net_device *dev, |
| u8 *mac); |
| int (*change_station)(struct wiphy *wiphy, struct net_device *dev, |
| u8 *mac, struct station_parameters *params); |
| int (*get_station)(struct wiphy *wiphy, struct net_device *dev, |
| u8 *mac, struct station_info *sinfo); |
| int (*dump_station)(struct wiphy *wiphy, struct net_device *dev, |
| int idx, u8 *mac, struct station_info *sinfo); |
| |
| int (*add_mpath)(struct wiphy *wiphy, struct net_device *dev, |
| u8 *dst, u8 *next_hop); |
| int (*del_mpath)(struct wiphy *wiphy, struct net_device *dev, |
| u8 *dst); |
| int (*change_mpath)(struct wiphy *wiphy, struct net_device *dev, |
| u8 *dst, u8 *next_hop); |
| int (*get_mpath)(struct wiphy *wiphy, struct net_device *dev, |
| u8 *dst, u8 *next_hop, |
| struct mpath_info *pinfo); |
| int (*dump_mpath)(struct wiphy *wiphy, struct net_device *dev, |
| int idx, u8 *dst, u8 *next_hop, |
| struct mpath_info *pinfo); |
| int (*get_mesh_params)(struct wiphy *wiphy, |
| struct net_device *dev, |
| struct mesh_config *conf); |
| int (*set_mesh_params)(struct wiphy *wiphy, |
| struct net_device *dev, |
| const struct mesh_config *nconf, u32 mask); |
| int (*change_bss)(struct wiphy *wiphy, struct net_device *dev, |
| struct bss_parameters *params); |
| |
| int (*set_txq_params)(struct wiphy *wiphy, |
| struct ieee80211_txq_params *params); |
| |
| int (*set_channel)(struct wiphy *wiphy, |
| struct ieee80211_channel *chan, |
| enum nl80211_channel_type channel_type); |
| |
| int (*scan)(struct wiphy *wiphy, struct net_device *dev, |
| struct cfg80211_scan_request *request); |
| |
| int (*auth)(struct wiphy *wiphy, struct net_device *dev, |
| struct cfg80211_auth_request *req); |
| int (*assoc)(struct wiphy *wiphy, struct net_device *dev, |
| struct cfg80211_assoc_request *req); |
| int (*deauth)(struct wiphy *wiphy, struct net_device *dev, |
| struct cfg80211_deauth_request *req); |
| int (*disassoc)(struct wiphy *wiphy, struct net_device *dev, |
| struct cfg80211_disassoc_request *req); |
| |
| int (*join_ibss)(struct wiphy *wiphy, struct net_device *dev, |
| struct cfg80211_ibss_params *params); |
| int (*leave_ibss)(struct wiphy *wiphy, struct net_device *dev); |
| |
| int (*set_wiphy_params)(struct wiphy *wiphy, u32 changed); |
| |
| int (*set_tx_power)(struct wiphy *wiphy, |
| enum tx_power_setting type, int dbm); |
| int (*get_tx_power)(struct wiphy *wiphy, int *dbm); |
| |
| void (*rfkill_poll)(struct wiphy *wiphy); |
| }; |
| |
| /* |
| * wireless hardware and networking interfaces structures |
| * and registration/helper functions |
| */ |
| |
| /** |
| * struct wiphy - wireless hardware description |
| * @idx: the wiphy index assigned to this item |
| * @class_dev: the class device representing /sys/class/ieee80211/<wiphy-name> |
| * @custom_regulatory: tells us the driver for this device |
| * has its own custom regulatory domain and cannot identify the |
| * ISO / IEC 3166 alpha2 it belongs to. When this is enabled |
| * we will disregard the first regulatory hint (when the |
| * initiator is %REGDOM_SET_BY_CORE). |
| * @strict_regulatory: tells us the driver for this device will ignore |
| * regulatory domain settings until it gets its own regulatory domain |
| * via its regulatory_hint(). After its gets its own regulatory domain |
| * it will only allow further regulatory domain settings to further |
| * enhance compliance. For example if channel 13 and 14 are disabled |
| * by this regulatory domain no user regulatory domain can enable these |
| * channels at a later time. This can be used for devices which do not |
| * have calibration information gauranteed for frequencies or settings |
| * outside of its regulatory domain. |
| * @reg_notifier: the driver's regulatory notification callback |
| * @regd: the driver's regulatory domain, if one was requested via |
| * the regulatory_hint() API. This can be used by the driver |
| * on the reg_notifier() if it chooses to ignore future |
| * regulatory domain changes caused by other drivers. |
| * @signal_type: signal type reported in &struct cfg80211_bss. |
| * @cipher_suites: supported cipher suites |
| * @n_cipher_suites: number of supported cipher suites |
| * @retry_short: Retry limit for short frames (dot11ShortRetryLimit) |
| * @retry_long: Retry limit for long frames (dot11LongRetryLimit) |
| * @frag_threshold: Fragmentation threshold (dot11FragmentationThreshold); |
| * -1 = fragmentation disabled, only odd values >= 256 used |
| * @rts_threshold: RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled |
| */ |
| struct wiphy { |
| /* assign these fields before you register the wiphy */ |
| |
| /* permanent MAC address */ |
| u8 perm_addr[ETH_ALEN]; |
| |
| /* Supported interface modes, OR together BIT(NL80211_IFTYPE_...) */ |
| u16 interface_modes; |
| |
| bool custom_regulatory; |
| bool strict_regulatory; |
| |
| enum cfg80211_signal_type signal_type; |
| |
| int bss_priv_size; |
| u8 max_scan_ssids; |
| u16 max_scan_ie_len; |
| |
| int n_cipher_suites; |
| const u32 *cipher_suites; |
| |
| u8 retry_short; |
| u8 retry_long; |
| u32 frag_threshold; |
| u32 rts_threshold; |
| |
| /* If multiple wiphys are registered and you're handed e.g. |
| * a regular netdev with assigned ieee80211_ptr, you won't |
| * know whether it points to a wiphy your driver has registered |
| * or not. Assign this to something global to your driver to |
| * help determine whether you own this wiphy or not. */ |
| const void *privid; |
| |
| struct ieee80211_supported_band *bands[IEEE80211_NUM_BANDS]; |
| |
| /* Lets us get back the wiphy on the callback */ |
| int (*reg_notifier)(struct wiphy *wiphy, |
| struct regulatory_request *request); |
| |
| /* fields below are read-only, assigned by cfg80211 */ |
| |
| const struct ieee80211_regdomain *regd; |
| |
| /* the item in /sys/class/ieee80211/ points to this, |
| * you need use set_wiphy_dev() (see below) */ |
| struct device dev; |
| |
| /* dir in debugfs: ieee80211/<wiphyname> */ |
| struct dentry *debugfsdir; |
| |
| char priv[0] __attribute__((__aligned__(NETDEV_ALIGN))); |
| }; |
| |
| /** |
| * wiphy_priv - return priv from wiphy |
| * |
| * @wiphy: the wiphy whose priv pointer to return |
| */ |
| static inline void *wiphy_priv(struct wiphy *wiphy) |
| { |
| BUG_ON(!wiphy); |
| return &wiphy->priv; |
| } |
| |
| /** |
| * set_wiphy_dev - set device pointer for wiphy |
| * |
| * @wiphy: The wiphy whose device to bind |
| * @dev: The device to parent it to |
| */ |
| static inline void set_wiphy_dev(struct wiphy *wiphy, struct device *dev) |
| { |
| wiphy->dev.parent = dev; |
| } |
| |
| /** |
| * wiphy_dev - get wiphy dev pointer |
| * |
| * @wiphy: The wiphy whose device struct to look up |
| */ |
| static inline struct device *wiphy_dev(struct wiphy *wiphy) |
| { |
| return wiphy->dev.parent; |
| } |
| |
| /** |
| * wiphy_name - get wiphy name |
| * |
| * @wiphy: The wiphy whose name to return |
| */ |
| static inline const char *wiphy_name(struct wiphy *wiphy) |
| { |
| return dev_name(&wiphy->dev); |
| } |
| |
| /** |
| * wiphy_new - create a new wiphy for use with cfg80211 |
| * |
| * @ops: The configuration operations for this device |
| * @sizeof_priv: The size of the private area to allocate |
| * |
| * Create a new wiphy and associate the given operations with it. |
| * @sizeof_priv bytes are allocated for private use. |
| * |
| * The returned pointer must be assigned to each netdev's |
| * ieee80211_ptr for proper operation. |
| */ |
| struct wiphy *wiphy_new(const struct cfg80211_ops *ops, int sizeof_priv); |
| |
| /** |
| * wiphy_register - register a wiphy with cfg80211 |
| * |
| * @wiphy: The wiphy to register. |
| * |
| * Returns a non-negative wiphy index or a negative error code. |
| */ |
| extern int wiphy_register(struct wiphy *wiphy); |
| |
| /** |
| * wiphy_unregister - deregister a wiphy from cfg80211 |
| * |
| * @wiphy: The wiphy to unregister. |
| * |
| * After this call, no more requests can be made with this priv |
| * pointer, but the call may sleep to wait for an outstanding |
| * request that is being handled. |
| */ |
| extern void wiphy_unregister(struct wiphy *wiphy); |
| |
| /** |
| * wiphy_free - free wiphy |
| * |
| * @wiphy: The wiphy to free |
| */ |
| extern void wiphy_free(struct wiphy *wiphy); |
| |
| /** |
| * struct wireless_dev - wireless per-netdev state |
| * |
| * This structure must be allocated by the driver/stack |
| * that uses the ieee80211_ptr field in struct net_device |
| * (this is intentional so it can be allocated along with |
| * the netdev.) |
| * |
| * @wiphy: pointer to hardware description |
| * @iftype: interface type |
| * @list: (private) Used to collect the interfaces |
| * @netdev: (private) Used to reference back to the netdev |
| * @current_bss: (private) Used by the internal configuration code |
| * @bssid: (private) Used by the internal configuration code |
| * @ssid: (private) Used by the internal configuration code |
| * @ssid_len: (private) Used by the internal configuration code |
| * @wext: (private) Used by the internal wireless extensions compat code |
| * @wext_bssid: (private) Used by the internal wireless extensions compat code |
| */ |
| struct wireless_dev { |
| struct wiphy *wiphy; |
| enum nl80211_iftype iftype; |
| |
| /* private to the generic wireless code */ |
| struct list_head list; |
| struct net_device *netdev; |
| |
| /* currently used for IBSS - might be rearranged in the future */ |
| struct cfg80211_bss *current_bss; |
| u8 bssid[ETH_ALEN]; |
| u8 ssid[IEEE80211_MAX_SSID_LEN]; |
| u8 ssid_len; |
| |
| #ifdef CONFIG_WIRELESS_EXT |
| /* wext data */ |
| struct { |
| struct cfg80211_ibss_params ibss; |
| u8 bssid[ETH_ALEN]; |
| s8 default_key, default_mgmt_key; |
| } wext; |
| #endif |
| }; |
| |
| /** |
| * wdev_priv - return wiphy priv from wireless_dev |
| * |
| * @wdev: The wireless device whose wiphy's priv pointer to return |
| */ |
| static inline void *wdev_priv(struct wireless_dev *wdev) |
| { |
| BUG_ON(!wdev); |
| return wiphy_priv(wdev->wiphy); |
| } |
| |
| /* |
| * Utility functions |
| */ |
| |
| /** |
| * ieee80211_channel_to_frequency - convert channel number to frequency |
| */ |
| extern int ieee80211_channel_to_frequency(int chan); |
| |
| /** |
| * ieee80211_frequency_to_channel - convert frequency to channel number |
| */ |
| extern int ieee80211_frequency_to_channel(int freq); |
| |
| /* |
| * Name indirection necessary because the ieee80211 code also has |
| * a function named "ieee80211_get_channel", so if you include |
| * cfg80211's header file you get cfg80211's version, if you try |
| * to include both header files you'll (rightfully!) get a symbol |
| * clash. |
| */ |
| extern struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, |
| int freq); |
| /** |
| * ieee80211_get_channel - get channel struct from wiphy for specified frequency |
| */ |
| static inline struct ieee80211_channel * |
| ieee80211_get_channel(struct wiphy *wiphy, int freq) |
| { |
| return __ieee80211_get_channel(wiphy, freq); |
| } |
| |
| /** |
| * ieee80211_get_response_rate - get basic rate for a given rate |
| * |
| * @sband: the band to look for rates in |
| * @basic_rates: bitmap of basic rates |
| * @bitrate: the bitrate for which to find the basic rate |
| * |
| * This function returns the basic rate corresponding to a given |
| * bitrate, that is the next lower bitrate contained in the basic |
| * rate map, which is, for this function, given as a bitmap of |
| * indices of rates in the band's bitrate table. |
| */ |
| struct ieee80211_rate * |
| ieee80211_get_response_rate(struct ieee80211_supported_band *sband, |
| u32 basic_rates, int bitrate); |
| |
| /* |
| * Radiotap parsing functions -- for controlled injection support |
| * |
| * Implemented in net/wireless/radiotap.c |
| * Documentation in Documentation/networking/radiotap-headers.txt |
| */ |
| |
| /** |
| * struct ieee80211_radiotap_iterator - tracks walk thru present radiotap args |
| * @rtheader: pointer to the radiotap header we are walking through |
| * @max_length: length of radiotap header in cpu byte ordering |
| * @this_arg_index: IEEE80211_RADIOTAP_... index of current arg |
| * @this_arg: pointer to current radiotap arg |
| * @arg_index: internal next argument index |
| * @arg: internal next argument pointer |
| * @next_bitmap: internal pointer to next present u32 |
| * @bitmap_shifter: internal shifter for curr u32 bitmap, b0 set == arg present |
| */ |
| |
| struct ieee80211_radiotap_iterator { |
| struct ieee80211_radiotap_header *rtheader; |
| int max_length; |
| int this_arg_index; |
| u8 *this_arg; |
| |
| int arg_index; |
| u8 *arg; |
| __le32 *next_bitmap; |
| u32 bitmap_shifter; |
| }; |
| |
| extern int ieee80211_radiotap_iterator_init( |
| struct ieee80211_radiotap_iterator *iterator, |
| struct ieee80211_radiotap_header *radiotap_header, |
| int max_length); |
| |
| extern int ieee80211_radiotap_iterator_next( |
| struct ieee80211_radiotap_iterator *iterator); |
| |
| extern const unsigned char rfc1042_header[6]; |
| extern const unsigned char bridge_tunnel_header[6]; |
| |
| /** |
| * ieee80211_get_hdrlen_from_skb - get header length from data |
| * |
| * Given an skb with a raw 802.11 header at the data pointer this function |
| * returns the 802.11 header length in bytes (not including encryption |
| * headers). If the data in the sk_buff is too short to contain a valid 802.11 |
| * header the function returns 0. |
| * |
| * @skb: the frame |
| */ |
| unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb); |
| |
| /** |
| * ieee80211_hdrlen - get header length in bytes from frame control |
| * @fc: frame control field in little-endian format |
| */ |
| unsigned int ieee80211_hdrlen(__le16 fc); |
| |
| /** |
| * ieee80211_data_to_8023 - convert an 802.11 data frame to 802.3 |
| * @skb: the 802.11 data frame |
| * @addr: the device MAC address |
| * @iftype: the virtual interface type |
| */ |
| int ieee80211_data_to_8023(struct sk_buff *skb, u8 *addr, |
| enum nl80211_iftype iftype); |
| |
| /** |
| * ieee80211_data_from_8023 - convert an 802.3 frame to 802.11 |
| * @skb: the 802.3 frame |
| * @addr: the device MAC address |
| * @iftype: the virtual interface type |
| * @bssid: the network bssid (used only for iftype STATION and ADHOC) |
| * @qos: build 802.11 QoS data frame |
| */ |
| int ieee80211_data_from_8023(struct sk_buff *skb, u8 *addr, |
| enum nl80211_iftype iftype, u8 *bssid, bool qos); |
| |
| /** |
| * cfg80211_classify8021d - determine the 802.1p/1d tag for a data frame |
| * @skb: the data frame |
| */ |
| unsigned int cfg80211_classify8021d(struct sk_buff *skb); |
| |
| /* |
| * Regulatory helper functions for wiphys |
| */ |
| |
| /** |
| * regulatory_hint - driver hint to the wireless core a regulatory domain |
| * @wiphy: the wireless device giving the hint (used only for reporting |
| * conflicts) |
| * @alpha2: the ISO/IEC 3166 alpha2 the driver claims its regulatory domain |
| * should be in. If @rd is set this should be NULL. Note that if you |
| * set this to NULL you should still set rd->alpha2 to some accepted |
| * alpha2. |
| * |
| * Wireless drivers can use this function to hint to the wireless core |
| * what it believes should be the current regulatory domain by |
| * giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory |
| * domain should be in or by providing a completely build regulatory domain. |
| * If the driver provides an ISO/IEC 3166 alpha2 userspace will be queried |
| * for a regulatory domain structure for the respective country. |
| * |
| * The wiphy must have been registered to cfg80211 prior to this call. |
| * For cfg80211 drivers this means you must first use wiphy_register(), |
| * for mac80211 drivers you must first use ieee80211_register_hw(). |
| * |
| * Drivers should check the return value, its possible you can get |
| * an -ENOMEM. |
| */ |
| extern int regulatory_hint(struct wiphy *wiphy, const char *alpha2); |
| |
| /** |
| * regulatory_hint_11d - hints a country IE as a regulatory domain |
| * @wiphy: the wireless device giving the hint (used only for reporting |
| * conflicts) |
| * @country_ie: pointer to the country IE |
| * @country_ie_len: length of the country IE |
| * |
| * We will intersect the rd with the what CRDA tells us should apply |
| * for the alpha2 this country IE belongs to, this prevents APs from |
| * sending us incorrect or outdated information against a country. |
| */ |
| extern void regulatory_hint_11d(struct wiphy *wiphy, |
| u8 *country_ie, |
| u8 country_ie_len); |
| /** |
| * wiphy_apply_custom_regulatory - apply a custom driver regulatory domain |
| * @wiphy: the wireless device we want to process the regulatory domain on |
| * @regd: the custom regulatory domain to use for this wiphy |
| * |
| * Drivers can sometimes have custom regulatory domains which do not apply |
| * to a specific country. Drivers can use this to apply such custom regulatory |
| * domains. This routine must be called prior to wiphy registration. The |
| * custom regulatory domain will be trusted completely and as such previous |
| * default channel settings will be disregarded. If no rule is found for a |
| * channel on the regulatory domain the channel will be disabled. |
| */ |
| extern void wiphy_apply_custom_regulatory( |
| struct wiphy *wiphy, |
| const struct ieee80211_regdomain *regd); |
| |
| /** |
| * freq_reg_info - get regulatory information for the given frequency |
| * @wiphy: the wiphy for which we want to process this rule for |
| * @center_freq: Frequency in KHz for which we want regulatory information for |
| * @desired_bw_khz: the desired max bandwidth you want to use per |
| * channel. Note that this is still 20 MHz if you want to use HT40 |
| * as HT40 makes use of two channels for its 40 MHz width bandwidth. |
| * If set to 0 we'll assume you want the standard 20 MHz. |
| * @reg_rule: the regulatory rule which we have for this frequency |
| * |
| * Use this function to get the regulatory rule for a specific frequency on |
| * a given wireless device. If the device has a specific regulatory domain |
| * it wants to follow we respect that unless a country IE has been received |
| * and processed already. |
| * |
| * Returns 0 if it was able to find a valid regulatory rule which does |
| * apply to the given center_freq otherwise it returns non-zero. It will |
| * also return -ERANGE if we determine the given center_freq does not even have |
| * a regulatory rule for a frequency range in the center_freq's band. See |
| * freq_in_rule_band() for our current definition of a band -- this is purely |
| * subjective and right now its 802.11 specific. |
| */ |
| extern int freq_reg_info(struct wiphy *wiphy, |
| u32 center_freq, |
| u32 desired_bw_khz, |
| const struct ieee80211_reg_rule **reg_rule); |
| |
| /* |
| * Temporary wext handlers & helper functions |
| * |
| * In the future cfg80211 will simply assign the entire wext handler |
| * structure to netdevs it manages, but we're not there yet. |
| */ |
| int cfg80211_wext_giwname(struct net_device *dev, |
| struct iw_request_info *info, |
| char *name, char *extra); |
| int cfg80211_wext_siwmode(struct net_device *dev, struct iw_request_info *info, |
| u32 *mode, char *extra); |
| int cfg80211_wext_giwmode(struct net_device *dev, struct iw_request_info *info, |
| u32 *mode, char *extra); |
| int cfg80211_wext_siwscan(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra); |
| int cfg80211_wext_giwscan(struct net_device *dev, |
| struct iw_request_info *info, |
| struct iw_point *data, char *extra); |
| int cfg80211_wext_siwmlme(struct net_device *dev, |
| struct iw_request_info *info, |
| struct iw_point *data, char *extra); |
| int cfg80211_wext_giwrange(struct net_device *dev, |
| struct iw_request_info *info, |
| struct iw_point *data, char *extra); |
| int cfg80211_ibss_wext_siwfreq(struct net_device *dev, |
| struct iw_request_info *info, |
| struct iw_freq *freq, char *extra); |
| int cfg80211_ibss_wext_giwfreq(struct net_device *dev, |
| struct iw_request_info *info, |
| struct iw_freq *freq, char *extra); |
| int cfg80211_ibss_wext_siwessid(struct net_device *dev, |
| struct iw_request_info *info, |
| struct iw_point *data, char *ssid); |
| int cfg80211_ibss_wext_giwessid(struct net_device *dev, |
| struct iw_request_info *info, |
| struct iw_point *data, char *ssid); |
| int cfg80211_ibss_wext_siwap(struct net_device *dev, |
| struct iw_request_info *info, |
| struct sockaddr *ap_addr, char *extra); |
| int cfg80211_ibss_wext_giwap(struct net_device *dev, |
| struct iw_request_info *info, |
| struct sockaddr *ap_addr, char *extra); |
| |
| struct ieee80211_channel *cfg80211_wext_freq(struct wiphy *wiphy, |
| struct iw_freq *freq); |
| |
| int cfg80211_wext_siwrts(struct net_device *dev, |
| struct iw_request_info *info, |
| struct iw_param *rts, char *extra); |
| int cfg80211_wext_giwrts(struct net_device *dev, |
| struct iw_request_info *info, |
| struct iw_param *rts, char *extra); |
| int cfg80211_wext_siwfrag(struct net_device *dev, |
| struct iw_request_info *info, |
| struct iw_param *frag, char *extra); |
| int cfg80211_wext_giwfrag(struct net_device *dev, |
| struct iw_request_info *info, |
| struct iw_param *frag, char *extra); |
| int cfg80211_wext_siwretry(struct net_device *dev, |
| struct iw_request_info *info, |
| struct iw_param *retry, char *extra); |
| int cfg80211_wext_giwretry(struct net_device *dev, |
| struct iw_request_info *info, |
| struct iw_param *retry, char *extra); |
| int cfg80211_wext_siwencodeext(struct net_device *dev, |
| struct iw_request_info *info, |
| struct iw_point *erq, char *extra); |
| int cfg80211_wext_siwencode(struct net_device *dev, |
| struct iw_request_info *info, |
| struct iw_point *erq, char *keybuf); |
| int cfg80211_wext_giwencode(struct net_device *dev, |
| struct iw_request_info *info, |
| struct iw_point *erq, char *keybuf); |
| int cfg80211_wext_siwtxpower(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *data, char *keybuf); |
| int cfg80211_wext_giwtxpower(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *data, char *keybuf); |
| |
| /* |
| * callbacks for asynchronous cfg80211 methods, notification |
| * functions and BSS handling helpers |
| */ |
| |
| /** |
| * cfg80211_scan_done - notify that scan finished |
| * |
| * @request: the corresponding scan request |
| * @aborted: set to true if the scan was aborted for any reason, |
| * userspace will be notified of that |
| */ |
| void cfg80211_scan_done(struct cfg80211_scan_request *request, bool aborted); |
| |
| /** |
| * cfg80211_inform_bss - inform cfg80211 of a new BSS |
| * |
| * @wiphy: the wiphy reporting the BSS |
| * @bss: the found BSS |
| * @signal: the signal strength, type depends on the wiphy's signal_type |
| * @gfp: context flags |
| * |
| * This informs cfg80211 that BSS information was found and |
| * the BSS should be updated/added. |
| */ |
| struct cfg80211_bss* |
| cfg80211_inform_bss_frame(struct wiphy *wiphy, |
| struct ieee80211_channel *channel, |
| struct ieee80211_mgmt *mgmt, size_t len, |
| s32 signal, gfp_t gfp); |
| |
| struct cfg80211_bss* |
| cfg80211_inform_bss(struct wiphy *wiphy, |
| struct ieee80211_channel *channel, |
| const u8 *bssid, |
| u64 timestamp, u16 capability, u16 beacon_interval, |
| const u8 *ie, size_t ielen, |
| s32 signal, gfp_t gfp); |
| |
| struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, |
| struct ieee80211_channel *channel, |
| const u8 *bssid, |
| const u8 *ssid, size_t ssid_len, |
| u16 capa_mask, u16 capa_val); |
| static inline struct cfg80211_bss * |
| cfg80211_get_ibss(struct wiphy *wiphy, |
| struct ieee80211_channel *channel, |
| const u8 *ssid, size_t ssid_len) |
| { |
| return cfg80211_get_bss(wiphy, channel, NULL, ssid, ssid_len, |
| WLAN_CAPABILITY_IBSS, WLAN_CAPABILITY_IBSS); |
| } |
| |
| struct cfg80211_bss *cfg80211_get_mesh(struct wiphy *wiphy, |
| struct ieee80211_channel *channel, |
| const u8 *meshid, size_t meshidlen, |
| const u8 *meshcfg); |
| void cfg80211_put_bss(struct cfg80211_bss *bss); |
| |
| /** |
| * cfg80211_unlink_bss - unlink BSS from internal data structures |
| * @wiphy: the wiphy |
| * @bss: the bss to remove |
| * |
| * This function removes the given BSS from the internal data structures |
| * thereby making it no longer show up in scan results etc. Use this |
| * function when you detect a BSS is gone. Normally BSSes will also time |
| * out, so it is not necessary to use this function at all. |
| */ |
| void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *bss); |
| |
| /** |
| * cfg80211_send_rx_auth - notification of processed authentication |
| * @dev: network device |
| * @buf: authentication frame (header + body) |
| * @len: length of the frame data |
| * |
| * This function is called whenever an authentication has been processed in |
| * station mode. The driver is required to call either this function or |
| * cfg80211_send_auth_timeout() to indicate the result of cfg80211_ops::auth() |
| * call. |
| */ |
| void cfg80211_send_rx_auth(struct net_device *dev, const u8 *buf, size_t len); |
| |
| /** |
| * cfg80211_send_auth_timeout - notification of timed out authentication |
| * @dev: network device |
| * @addr: The MAC address of the device with which the authentication timed out |
| */ |
| void cfg80211_send_auth_timeout(struct net_device *dev, const u8 *addr); |
| |
| /** |
| * cfg80211_send_rx_assoc - notification of processed association |
| * @dev: network device |
| * @buf: (re)association response frame (header + body) |
| * @len: length of the frame data |
| * |
| * This function is called whenever a (re)association response has been |
| * processed in station mode. The driver is required to call either this |
| * function or cfg80211_send_assoc_timeout() to indicate the result of |
| * cfg80211_ops::assoc() call. |
| */ |
| void cfg80211_send_rx_assoc(struct net_device *dev, const u8 *buf, size_t len); |
| |
| /** |
| * cfg80211_send_assoc_timeout - notification of timed out association |
| * @dev: network device |
| * @addr: The MAC address of the device with which the association timed out |
| */ |
| void cfg80211_send_assoc_timeout(struct net_device *dev, const u8 *addr); |
| |
| /** |
| * cfg80211_send_deauth - notification of processed deauthentication |
| * @dev: network device |
| * @buf: deauthentication frame (header + body) |
| * @len: length of the frame data |
| * |
| * This function is called whenever deauthentication has been processed in |
| * station mode. This includes both received deauthentication frames and |
| * locally generated ones. |
| */ |
| void cfg80211_send_deauth(struct net_device *dev, const u8 *buf, size_t len); |
| |
| /** |
| * cfg80211_send_disassoc - notification of processed disassociation |
| * @dev: network device |
| * @buf: disassociation response frame (header + body) |
| * @len: length of the frame data |
| * |
| * This function is called whenever disassociation has been processed in |
| * station mode. This includes both received disassociation frames and locally |
| * generated ones. |
| */ |
| void cfg80211_send_disassoc(struct net_device *dev, const u8 *buf, size_t len); |
| |
| /** |
| * cfg80211_hold_bss - exclude bss from expiration |
| * @bss: bss which should not expire |
| * |
| * In a case when the BSS is not updated but it shouldn't expire this |
| * function can be used to mark the BSS to be excluded from expiration. |
| */ |
| void cfg80211_hold_bss(struct cfg80211_bss *bss); |
| |
| /** |
| * cfg80211_unhold_bss - remove expiration exception from the BSS |
| * @bss: bss which can expire again |
| * |
| * This function marks the BSS to be expirable again. |
| */ |
| void cfg80211_unhold_bss(struct cfg80211_bss *bss); |
| |
| /** |
| * cfg80211_michael_mic_failure - notification of Michael MIC failure (TKIP) |
| * @dev: network device |
| * @addr: The source MAC address of the frame |
| * @key_type: The key type that the received frame used |
| * @key_id: Key identifier (0..3) |
| * @tsc: The TSC value of the frame that generated the MIC failure (6 octets) |
| * |
| * This function is called whenever the local MAC detects a MIC failure in a |
| * received frame. This matches with MLME-MICHAELMICFAILURE.indication() |
| * primitive. |
| */ |
| void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr, |
| enum nl80211_key_type key_type, int key_id, |
| const u8 *tsc); |
| |
| /** |
| * cfg80211_ibss_joined - notify cfg80211 that device joined an IBSS |
| * |
| * @dev: network device |
| * @bssid: the BSSID of the IBSS joined |
| * @gfp: allocation flags |
| * |
| * This function notifies cfg80211 that the device joined an IBSS or |
| * switched to a different BSSID. Before this function can be called, |
| * either a beacon has to have been received from the IBSS, or one of |
| * the cfg80211_inform_bss{,_frame} functions must have been called |
| * with the locally generated beacon -- this guarantees that there is |
| * always a scan result for this IBSS. cfg80211 will handle the rest. |
| */ |
| void cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid, gfp_t gfp); |
| |
| /** |
| * wiphy_rfkill_set_hw_state - notify cfg80211 about hw block state |
| * @wiphy: the wiphy |
| * @blocked: block status |
| */ |
| void wiphy_rfkill_set_hw_state(struct wiphy *wiphy, bool blocked); |
| |
| /** |
| * wiphy_rfkill_start_polling - start polling rfkill |
| * @wiphy: the wiphy |
| */ |
| void wiphy_rfkill_start_polling(struct wiphy *wiphy); |
| |
| /** |
| * wiphy_rfkill_stop_polling - stop polling rfkill |
| * @wiphy: the wiphy |
| */ |
| void wiphy_rfkill_stop_polling(struct wiphy *wiphy); |
| |
| #endif /* __NET_CFG80211_H */ |