| /* |
| * Driver for the Conexant CX2584x Audio/Video decoder chip and related cores |
| * |
| * Integrated Consumer Infrared Controller |
| * |
| * Copyright (C) 2010 Andy Walls <awalls@md.metrocast.net> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| * 02110-1301, USA. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/kfifo.h> |
| #include <media/cx25840.h> |
| #include <media/rc-core.h> |
| |
| #include "cx25840-core.h" |
| |
| static unsigned int ir_debug; |
| module_param(ir_debug, int, 0644); |
| MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages"); |
| |
| #define CX25840_IR_REG_BASE 0x200 |
| |
| #define CX25840_IR_CNTRL_REG 0x200 |
| #define CNTRL_WIN_3_3 0x00000000 |
| #define CNTRL_WIN_4_3 0x00000001 |
| #define CNTRL_WIN_3_4 0x00000002 |
| #define CNTRL_WIN_4_4 0x00000003 |
| #define CNTRL_WIN 0x00000003 |
| #define CNTRL_EDG_NONE 0x00000000 |
| #define CNTRL_EDG_FALL 0x00000004 |
| #define CNTRL_EDG_RISE 0x00000008 |
| #define CNTRL_EDG_BOTH 0x0000000C |
| #define CNTRL_EDG 0x0000000C |
| #define CNTRL_DMD 0x00000010 |
| #define CNTRL_MOD 0x00000020 |
| #define CNTRL_RFE 0x00000040 |
| #define CNTRL_TFE 0x00000080 |
| #define CNTRL_RXE 0x00000100 |
| #define CNTRL_TXE 0x00000200 |
| #define CNTRL_RIC 0x00000400 |
| #define CNTRL_TIC 0x00000800 |
| #define CNTRL_CPL 0x00001000 |
| #define CNTRL_LBM 0x00002000 |
| #define CNTRL_R 0x00004000 |
| |
| #define CX25840_IR_TXCLK_REG 0x204 |
| #define TXCLK_TCD 0x0000FFFF |
| |
| #define CX25840_IR_RXCLK_REG 0x208 |
| #define RXCLK_RCD 0x0000FFFF |
| |
| #define CX25840_IR_CDUTY_REG 0x20C |
| #define CDUTY_CDC 0x0000000F |
| |
| #define CX25840_IR_STATS_REG 0x210 |
| #define STATS_RTO 0x00000001 |
| #define STATS_ROR 0x00000002 |
| #define STATS_RBY 0x00000004 |
| #define STATS_TBY 0x00000008 |
| #define STATS_RSR 0x00000010 |
| #define STATS_TSR 0x00000020 |
| |
| #define CX25840_IR_IRQEN_REG 0x214 |
| #define IRQEN_RTE 0x00000001 |
| #define IRQEN_ROE 0x00000002 |
| #define IRQEN_RSE 0x00000010 |
| #define IRQEN_TSE 0x00000020 |
| #define IRQEN_MSK 0x00000033 |
| |
| #define CX25840_IR_FILTR_REG 0x218 |
| #define FILTR_LPF 0x0000FFFF |
| |
| #define CX25840_IR_FIFO_REG 0x23C |
| #define FIFO_RXTX 0x0000FFFF |
| #define FIFO_RXTX_LVL 0x00010000 |
| #define FIFO_RXTX_RTO 0x0001FFFF |
| #define FIFO_RX_NDV 0x00020000 |
| #define FIFO_RX_DEPTH 8 |
| #define FIFO_TX_DEPTH 8 |
| |
| #define CX25840_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */ |
| #define CX25840_IR_REFCLK_FREQ (CX25840_VIDCLK_FREQ / 2) |
| |
| /* |
| * We use this union internally for convenience, but callers to tx_write |
| * and rx_read will be expecting records of type struct ir_raw_event. |
| * Always ensure the size of this union is dictated by struct ir_raw_event. |
| */ |
| union cx25840_ir_fifo_rec { |
| u32 hw_fifo_data; |
| struct ir_raw_event ir_core_data; |
| }; |
| |
| #define CX25840_IR_RX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec)) |
| #define CX25840_IR_TX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec)) |
| |
| struct cx25840_ir_state { |
| struct i2c_client *c; |
| |
| struct v4l2_subdev_ir_parameters rx_params; |
| struct mutex rx_params_lock; /* protects Rx parameter settings cache */ |
| atomic_t rxclk_divider; |
| atomic_t rx_invert; |
| |
| struct kfifo rx_kfifo; |
| spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */ |
| |
| struct v4l2_subdev_ir_parameters tx_params; |
| struct mutex tx_params_lock; /* protects Tx parameter settings cache */ |
| atomic_t txclk_divider; |
| }; |
| |
| static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd) |
| { |
| struct cx25840_state *state = to_state(sd); |
| return state ? state->ir_state : NULL; |
| } |
| |
| |
| /* |
| * Rx and Tx Clock Divider register computations |
| * |
| * Note the largest clock divider value of 0xffff corresponds to: |
| * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns |
| * which fits in 21 bits, so we'll use unsigned int for time arguments. |
| */ |
| static inline u16 count_to_clock_divider(unsigned int d) |
| { |
| if (d > RXCLK_RCD + 1) |
| d = RXCLK_RCD; |
| else if (d < 2) |
| d = 1; |
| else |
| d--; |
| return (u16) d; |
| } |
| |
| static inline u16 ns_to_clock_divider(unsigned int ns) |
| { |
| return count_to_clock_divider( |
| DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000)); |
| } |
| |
| static inline unsigned int clock_divider_to_ns(unsigned int divider) |
| { |
| /* Period of the Rx or Tx clock in ns */ |
| return DIV_ROUND_CLOSEST((divider + 1) * 1000, |
| CX25840_IR_REFCLK_FREQ / 1000000); |
| } |
| |
| static inline u16 carrier_freq_to_clock_divider(unsigned int freq) |
| { |
| return count_to_clock_divider( |
| DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16)); |
| } |
| |
| static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider) |
| { |
| return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16); |
| } |
| |
| static inline u16 freq_to_clock_divider(unsigned int freq, |
| unsigned int rollovers) |
| { |
| return count_to_clock_divider( |
| DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers)); |
| } |
| |
| static inline unsigned int clock_divider_to_freq(unsigned int divider, |
| unsigned int rollovers) |
| { |
| return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, |
| (divider + 1) * rollovers); |
| } |
| |
| /* |
| * Low Pass Filter register calculations |
| * |
| * Note the largest count value of 0xffff corresponds to: |
| * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns |
| * which fits in 21 bits, so we'll use unsigned int for time arguments. |
| */ |
| static inline u16 count_to_lpf_count(unsigned int d) |
| { |
| if (d > FILTR_LPF) |
| d = FILTR_LPF; |
| else if (d < 4) |
| d = 0; |
| return (u16) d; |
| } |
| |
| static inline u16 ns_to_lpf_count(unsigned int ns) |
| { |
| return count_to_lpf_count( |
| DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000)); |
| } |
| |
| static inline unsigned int lpf_count_to_ns(unsigned int count) |
| { |
| /* Duration of the Low Pass Filter rejection window in ns */ |
| return DIV_ROUND_CLOSEST(count * 1000, |
| CX25840_IR_REFCLK_FREQ / 1000000); |
| } |
| |
| static inline unsigned int lpf_count_to_us(unsigned int count) |
| { |
| /* Duration of the Low Pass Filter rejection window in us */ |
| return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000); |
| } |
| |
| /* |
| * FIFO register pulse width count compuations |
| */ |
| static u32 clock_divider_to_resolution(u16 divider) |
| { |
| /* |
| * Resolution is the duration of 1 tick of the readable portion of |
| * of the pulse width counter as read from the FIFO. The two lsb's are |
| * not readable, hence the << 2. This function returns ns. |
| */ |
| return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000, |
| CX25840_IR_REFCLK_FREQ / 1000000); |
| } |
| |
| static u64 pulse_width_count_to_ns(u16 count, u16 divider) |
| { |
| u64 n; |
| u32 rem; |
| |
| /* |
| * The 2 lsb's of the pulse width timer count are not readable, hence |
| * the (count << 2) | 0x3 |
| */ |
| n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */ |
| rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */ |
| if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2) |
| n++; |
| return n; |
| } |
| |
| #if 0 |
| /* Keep as we will need this for Transmit functionality */ |
| static u16 ns_to_pulse_width_count(u32 ns, u16 divider) |
| { |
| u64 n; |
| u32 d; |
| u32 rem; |
| |
| /* |
| * The 2 lsb's of the pulse width timer count are not accessible, hence |
| * the (1 << 2) |
| */ |
| n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */ |
| d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */ |
| rem = do_div(n, d); |
| if (rem >= d / 2) |
| n++; |
| |
| if (n > FIFO_RXTX) |
| n = FIFO_RXTX; |
| else if (n == 0) |
| n = 1; |
| return (u16) n; |
| } |
| |
| #endif |
| static unsigned int pulse_width_count_to_us(u16 count, u16 divider) |
| { |
| u64 n; |
| u32 rem; |
| |
| /* |
| * The 2 lsb's of the pulse width timer count are not readable, hence |
| * the (count << 2) | 0x3 |
| */ |
| n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */ |
| rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */ |
| if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2) |
| n++; |
| return (unsigned int) n; |
| } |
| |
| /* |
| * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts |
| * |
| * The total pulse clock count is an 18 bit pulse width timer count as the most |
| * significant part and (up to) 16 bit clock divider count as a modulus. |
| * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse |
| * width timer count's least significant bit. |
| */ |
| static u64 ns_to_pulse_clocks(u32 ns) |
| { |
| u64 clocks; |
| u32 rem; |
| clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */ |
| rem = do_div(clocks, 1000); /* /1000 = cycles */ |
| if (rem >= 1000 / 2) |
| clocks++; |
| return clocks; |
| } |
| |
| static u16 pulse_clocks_to_clock_divider(u64 count) |
| { |
| u32 rem; |
| |
| rem = do_div(count, (FIFO_RXTX << 2) | 0x3); |
| |
| /* net result needs to be rounded down and decremented by 1 */ |
| if (count > RXCLK_RCD + 1) |
| count = RXCLK_RCD; |
| else if (count < 2) |
| count = 1; |
| else |
| count--; |
| return (u16) count; |
| } |
| |
| /* |
| * IR Control Register helpers |
| */ |
| enum tx_fifo_watermark { |
| TX_FIFO_HALF_EMPTY = 0, |
| TX_FIFO_EMPTY = CNTRL_TIC, |
| }; |
| |
| enum rx_fifo_watermark { |
| RX_FIFO_HALF_FULL = 0, |
| RX_FIFO_NOT_EMPTY = CNTRL_RIC, |
| }; |
| |
| static inline void control_tx_irq_watermark(struct i2c_client *c, |
| enum tx_fifo_watermark level) |
| { |
| cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level); |
| } |
| |
| static inline void control_rx_irq_watermark(struct i2c_client *c, |
| enum rx_fifo_watermark level) |
| { |
| cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level); |
| } |
| |
| static inline void control_tx_enable(struct i2c_client *c, bool enable) |
| { |
| cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE), |
| enable ? (CNTRL_TXE | CNTRL_TFE) : 0); |
| } |
| |
| static inline void control_rx_enable(struct i2c_client *c, bool enable) |
| { |
| cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE), |
| enable ? (CNTRL_RXE | CNTRL_RFE) : 0); |
| } |
| |
| static inline void control_tx_modulation_enable(struct i2c_client *c, |
| bool enable) |
| { |
| cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD, |
| enable ? CNTRL_MOD : 0); |
| } |
| |
| static inline void control_rx_demodulation_enable(struct i2c_client *c, |
| bool enable) |
| { |
| cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD, |
| enable ? CNTRL_DMD : 0); |
| } |
| |
| static inline void control_rx_s_edge_detection(struct i2c_client *c, |
| u32 edge_types) |
| { |
| cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH, |
| edge_types & CNTRL_EDG_BOTH); |
| } |
| |
| static void control_rx_s_carrier_window(struct i2c_client *c, |
| unsigned int carrier, |
| unsigned int *carrier_range_low, |
| unsigned int *carrier_range_high) |
| { |
| u32 v; |
| unsigned int c16 = carrier * 16; |
| |
| if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) { |
| v = CNTRL_WIN_3_4; |
| *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4); |
| } else { |
| v = CNTRL_WIN_3_3; |
| *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3); |
| } |
| |
| if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) { |
| v |= CNTRL_WIN_4_3; |
| *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4); |
| } else { |
| v |= CNTRL_WIN_3_3; |
| *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3); |
| } |
| cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v); |
| } |
| |
| static inline void control_tx_polarity_invert(struct i2c_client *c, |
| bool invert) |
| { |
| cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL, |
| invert ? CNTRL_CPL : 0); |
| } |
| |
| /* |
| * IR Rx & Tx Clock Register helpers |
| */ |
| static unsigned int txclk_tx_s_carrier(struct i2c_client *c, |
| unsigned int freq, |
| u16 *divider) |
| { |
| *divider = carrier_freq_to_clock_divider(freq); |
| cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider); |
| return clock_divider_to_carrier_freq(*divider); |
| } |
| |
| static unsigned int rxclk_rx_s_carrier(struct i2c_client *c, |
| unsigned int freq, |
| u16 *divider) |
| { |
| *divider = carrier_freq_to_clock_divider(freq); |
| cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider); |
| return clock_divider_to_carrier_freq(*divider); |
| } |
| |
| static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns, |
| u16 *divider) |
| { |
| u64 pulse_clocks; |
| |
| if (ns > IR_MAX_DURATION) |
| ns = IR_MAX_DURATION; |
| pulse_clocks = ns_to_pulse_clocks(ns); |
| *divider = pulse_clocks_to_clock_divider(pulse_clocks); |
| cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider); |
| return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); |
| } |
| |
| static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns, |
| u16 *divider) |
| { |
| u64 pulse_clocks; |
| |
| if (ns > IR_MAX_DURATION) |
| ns = IR_MAX_DURATION; |
| pulse_clocks = ns_to_pulse_clocks(ns); |
| *divider = pulse_clocks_to_clock_divider(pulse_clocks); |
| cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider); |
| return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); |
| } |
| |
| /* |
| * IR Tx Carrier Duty Cycle register helpers |
| */ |
| static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c, |
| unsigned int duty_cycle) |
| { |
| u32 n; |
| n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */ |
| if (n != 0) |
| n--; |
| if (n > 15) |
| n = 15; |
| cx25840_write4(c, CX25840_IR_CDUTY_REG, n); |
| return DIV_ROUND_CLOSEST((n + 1) * 100, 16); |
| } |
| |
| /* |
| * IR Filter Register helpers |
| */ |
| static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns) |
| { |
| u32 count = ns_to_lpf_count(min_width_ns); |
| cx25840_write4(c, CX25840_IR_FILTR_REG, count); |
| return lpf_count_to_ns(count); |
| } |
| |
| /* |
| * IR IRQ Enable Register helpers |
| */ |
| static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask) |
| { |
| struct cx25840_state *state = to_state(sd); |
| |
| if (is_cx23885(state) || is_cx23887(state)) |
| mask ^= IRQEN_MSK; |
| mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE); |
| cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, |
| ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask); |
| } |
| |
| static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask) |
| { |
| struct cx25840_state *state = to_state(sd); |
| |
| if (is_cx23885(state) || is_cx23887(state)) |
| mask ^= IRQEN_MSK; |
| mask &= IRQEN_TSE; |
| cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask); |
| } |
| |
| /* |
| * V4L2 Subdevice IR Ops |
| */ |
| int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled) |
| { |
| struct cx25840_state *state = to_state(sd); |
| struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| struct i2c_client *c = NULL; |
| unsigned long flags; |
| |
| union cx25840_ir_fifo_rec rx_data[FIFO_RX_DEPTH]; |
| unsigned int i, j, k; |
| u32 events, v; |
| int tsr, rsr, rto, ror, tse, rse, rte, roe, kror; |
| u32 cntrl, irqen, stats; |
| |
| *handled = false; |
| if (ir_state == NULL) |
| return -ENODEV; |
| |
| c = ir_state->c; |
| |
| /* Only support the IR controller for the CX2388[57] AV Core for now */ |
| if (!(is_cx23885(state) || is_cx23887(state))) |
| return -ENODEV; |
| |
| cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG); |
| irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG); |
| if (is_cx23885(state) || is_cx23887(state)) |
| irqen ^= IRQEN_MSK; |
| stats = cx25840_read4(c, CX25840_IR_STATS_REG); |
| |
| tsr = stats & STATS_TSR; /* Tx FIFO Service Request */ |
| rsr = stats & STATS_RSR; /* Rx FIFO Service Request */ |
| rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */ |
| ror = stats & STATS_ROR; /* Rx FIFO Over Run */ |
| |
| tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */ |
| rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */ |
| rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */ |
| roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */ |
| |
| v4l2_dbg(2, ir_debug, sd, "IR IRQ Status: %s %s %s %s %s %s\n", |
| tsr ? "tsr" : " ", rsr ? "rsr" : " ", |
| rto ? "rto" : " ", ror ? "ror" : " ", |
| stats & STATS_TBY ? "tby" : " ", |
| stats & STATS_RBY ? "rby" : " "); |
| |
| v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n", |
| tse ? "tse" : " ", rse ? "rse" : " ", |
| rte ? "rte" : " ", roe ? "roe" : " "); |
| |
| /* |
| * Transmitter interrupt service |
| */ |
| if (tse && tsr) { |
| /* |
| * TODO: |
| * Check the watermark threshold setting |
| * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo |
| * Push the data to the hardware FIFO. |
| * If there was nothing more to send in the tx_kfifo, disable |
| * the TSR IRQ and notify the v4l2_device. |
| * If there was something in the tx_kfifo, check the tx_kfifo |
| * level and notify the v4l2_device, if it is low. |
| */ |
| /* For now, inhibit TSR interrupt until Tx is implemented */ |
| irqenable_tx(sd, 0); |
| events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ; |
| v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events); |
| *handled = true; |
| } |
| |
| /* |
| * Receiver interrupt service |
| */ |
| kror = 0; |
| if ((rse && rsr) || (rte && rto)) { |
| /* |
| * Receive data on RSR to clear the STATS_RSR. |
| * Receive data on RTO, since we may not have yet hit the RSR |
| * watermark when we receive the RTO. |
| */ |
| for (i = 0, v = FIFO_RX_NDV; |
| (v & FIFO_RX_NDV) && !kror; i = 0) { |
| for (j = 0; |
| (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) { |
| v = cx25840_read4(c, CX25840_IR_FIFO_REG); |
| rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV; |
| i++; |
| } |
| if (i == 0) |
| break; |
| j = i * sizeof(union cx25840_ir_fifo_rec); |
| k = kfifo_in_locked(&ir_state->rx_kfifo, |
| (unsigned char *) rx_data, j, |
| &ir_state->rx_kfifo_lock); |
| if (k != j) |
| kror++; /* rx_kfifo over run */ |
| } |
| *handled = true; |
| } |
| |
| events = 0; |
| v = 0; |
| if (kror) { |
| events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN; |
| v4l2_err(sd, "IR receiver software FIFO overrun\n"); |
| } |
| if (roe && ror) { |
| /* |
| * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear |
| * the Rx FIFO Over Run status (STATS_ROR) |
| */ |
| v |= CNTRL_RFE; |
| events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN; |
| v4l2_err(sd, "IR receiver hardware FIFO overrun\n"); |
| } |
| if (rte && rto) { |
| /* |
| * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear |
| * the Rx Pulse Width Timer Time Out (STATS_RTO) |
| */ |
| v |= CNTRL_RXE; |
| events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED; |
| } |
| if (v) { |
| /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */ |
| cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v); |
| cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl); |
| *handled = true; |
| } |
| spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags); |
| if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2) |
| events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ; |
| spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags); |
| |
| if (events) |
| v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events); |
| return 0; |
| } |
| |
| /* Receiver */ |
| static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count, |
| ssize_t *num) |
| { |
| struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| bool invert; |
| u16 divider; |
| unsigned int i, n; |
| union cx25840_ir_fifo_rec *p; |
| unsigned u, v; |
| |
| if (ir_state == NULL) |
| return -ENODEV; |
| |
| invert = (bool) atomic_read(&ir_state->rx_invert); |
| divider = (u16) atomic_read(&ir_state->rxclk_divider); |
| |
| n = count / sizeof(union cx25840_ir_fifo_rec) |
| * sizeof(union cx25840_ir_fifo_rec); |
| if (n == 0) { |
| *num = 0; |
| return 0; |
| } |
| |
| n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n, |
| &ir_state->rx_kfifo_lock); |
| |
| n /= sizeof(union cx25840_ir_fifo_rec); |
| *num = n * sizeof(union cx25840_ir_fifo_rec); |
| |
| for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) { |
| |
| if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) { |
| /* Assume RTO was because of no IR light input */ |
| u = 0; |
| v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n"); |
| } else { |
| u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0; |
| if (invert) |
| u = u ? 0 : 1; |
| } |
| |
| v = (unsigned) pulse_width_count_to_ns( |
| (u16) (p->hw_fifo_data & FIFO_RXTX), divider); |
| if (v > IR_MAX_DURATION) |
| v = IR_MAX_DURATION; |
| |
| init_ir_raw_event(&p->ir_core_data); |
| p->ir_core_data.pulse = u; |
| p->ir_core_data.duration = v; |
| |
| v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns %s\n", |
| v, u ? "mark" : "space"); |
| } |
| return 0; |
| } |
| |
| static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd, |
| struct v4l2_subdev_ir_parameters *p) |
| { |
| struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| |
| if (ir_state == NULL) |
| return -ENODEV; |
| |
| mutex_lock(&ir_state->rx_params_lock); |
| memcpy(p, &ir_state->rx_params, |
| sizeof(struct v4l2_subdev_ir_parameters)); |
| mutex_unlock(&ir_state->rx_params_lock); |
| return 0; |
| } |
| |
| static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd) |
| { |
| struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| struct i2c_client *c; |
| |
| if (ir_state == NULL) |
| return -ENODEV; |
| |
| c = ir_state->c; |
| mutex_lock(&ir_state->rx_params_lock); |
| |
| /* Disable or slow down all IR Rx circuits and counters */ |
| irqenable_rx(sd, 0); |
| control_rx_enable(c, false); |
| control_rx_demodulation_enable(c, false); |
| control_rx_s_edge_detection(c, CNTRL_EDG_NONE); |
| filter_rx_s_min_width(c, 0); |
| cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD); |
| |
| ir_state->rx_params.shutdown = true; |
| |
| mutex_unlock(&ir_state->rx_params_lock); |
| return 0; |
| } |
| |
| static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd, |
| struct v4l2_subdev_ir_parameters *p) |
| { |
| struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| struct i2c_client *c; |
| struct v4l2_subdev_ir_parameters *o; |
| u16 rxclk_divider; |
| |
| if (ir_state == NULL) |
| return -ENODEV; |
| |
| if (p->shutdown) |
| return cx25840_ir_rx_shutdown(sd); |
| |
| if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) |
| return -ENOSYS; |
| |
| c = ir_state->c; |
| o = &ir_state->rx_params; |
| |
| mutex_lock(&ir_state->rx_params_lock); |
| |
| o->shutdown = p->shutdown; |
| |
| p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; |
| o->mode = p->mode; |
| |
| p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec); |
| o->bytes_per_data_element = p->bytes_per_data_element; |
| |
| /* Before we tweak the hardware, we have to disable the receiver */ |
| irqenable_rx(sd, 0); |
| control_rx_enable(c, false); |
| |
| control_rx_demodulation_enable(c, p->modulation); |
| o->modulation = p->modulation; |
| |
| if (p->modulation) { |
| p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq, |
| &rxclk_divider); |
| |
| o->carrier_freq = p->carrier_freq; |
| |
| p->duty_cycle = 50; |
| o->duty_cycle = p->duty_cycle; |
| |
| control_rx_s_carrier_window(c, p->carrier_freq, |
| &p->carrier_range_lower, |
| &p->carrier_range_upper); |
| o->carrier_range_lower = p->carrier_range_lower; |
| o->carrier_range_upper = p->carrier_range_upper; |
| |
| p->max_pulse_width = |
| (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider); |
| } else { |
| p->max_pulse_width = |
| rxclk_rx_s_max_pulse_width(c, p->max_pulse_width, |
| &rxclk_divider); |
| } |
| o->max_pulse_width = p->max_pulse_width; |
| atomic_set(&ir_state->rxclk_divider, rxclk_divider); |
| |
| p->noise_filter_min_width = |
| filter_rx_s_min_width(c, p->noise_filter_min_width); |
| o->noise_filter_min_width = p->noise_filter_min_width; |
| |
| p->resolution = clock_divider_to_resolution(rxclk_divider); |
| o->resolution = p->resolution; |
| |
| /* FIXME - make this dependent on resolution for better performance */ |
| control_rx_irq_watermark(c, RX_FIFO_HALF_FULL); |
| |
| control_rx_s_edge_detection(c, CNTRL_EDG_BOTH); |
| |
| o->invert_level = p->invert_level; |
| atomic_set(&ir_state->rx_invert, p->invert_level); |
| |
| o->interrupt_enable = p->interrupt_enable; |
| o->enable = p->enable; |
| if (p->enable) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags); |
| kfifo_reset(&ir_state->rx_kfifo); |
| spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags); |
| if (p->interrupt_enable) |
| irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE); |
| control_rx_enable(c, p->enable); |
| } |
| |
| mutex_unlock(&ir_state->rx_params_lock); |
| return 0; |
| } |
| |
| /* Transmitter */ |
| static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count, |
| ssize_t *num) |
| { |
| struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| struct i2c_client *c; |
| |
| if (ir_state == NULL) |
| return -ENODEV; |
| |
| c = ir_state->c; |
| #if 0 |
| /* |
| * FIXME - the code below is an incomplete and untested sketch of what |
| * may need to be done. The critical part is to get 4 (or 8) pulses |
| * from the tx_kfifo, or converted from ns to the proper units from the |
| * input, and push them off to the hardware Tx FIFO right away, if the |
| * HW TX fifo needs service. The rest can be pushed to the tx_kfifo in |
| * a less critical timeframe. Also watch out for overruning the |
| * tx_kfifo - don't let it happen and let the caller know not all his |
| * pulses were written. |
| */ |
| u32 *ns_pulse = (u32 *) buf; |
| unsigned int n; |
| u32 fifo_pulse[FIFO_TX_DEPTH]; |
| u32 mark; |
| |
| /* Compute how much we can fit in the tx kfifo */ |
| n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo); |
| n = min(n, (unsigned int) count); |
| n /= sizeof(u32); |
| |
| /* FIXME - turn on Tx Fifo service interrupt |
| * check hardware fifo level, and other stuff |
| */ |
| for (i = 0; i < n; ) { |
| for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) { |
| mark = ns_pulse[i] & LEVEL_MASK; |
| fifo_pulse[j] = ns_to_pulse_width_count( |
| ns_pulse[i] & |
| ~LEVEL_MASK, |
| ir_state->txclk_divider); |
| if (mark) |
| fifo_pulse[j] &= FIFO_RXTX_LVL; |
| i++; |
| } |
| kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse, |
| j * sizeof(u32)); |
| } |
| *num = n * sizeof(u32); |
| #else |
| /* For now enable the Tx FIFO Service interrupt & pretend we did work */ |
| irqenable_tx(sd, IRQEN_TSE); |
| *num = count; |
| #endif |
| return 0; |
| } |
| |
| static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd, |
| struct v4l2_subdev_ir_parameters *p) |
| { |
| struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| |
| if (ir_state == NULL) |
| return -ENODEV; |
| |
| mutex_lock(&ir_state->tx_params_lock); |
| memcpy(p, &ir_state->tx_params, |
| sizeof(struct v4l2_subdev_ir_parameters)); |
| mutex_unlock(&ir_state->tx_params_lock); |
| return 0; |
| } |
| |
| static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd) |
| { |
| struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| struct i2c_client *c; |
| |
| if (ir_state == NULL) |
| return -ENODEV; |
| |
| c = ir_state->c; |
| mutex_lock(&ir_state->tx_params_lock); |
| |
| /* Disable or slow down all IR Tx circuits and counters */ |
| irqenable_tx(sd, 0); |
| control_tx_enable(c, false); |
| control_tx_modulation_enable(c, false); |
| cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD); |
| |
| ir_state->tx_params.shutdown = true; |
| |
| mutex_unlock(&ir_state->tx_params_lock); |
| return 0; |
| } |
| |
| static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd, |
| struct v4l2_subdev_ir_parameters *p) |
| { |
| struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| struct i2c_client *c; |
| struct v4l2_subdev_ir_parameters *o; |
| u16 txclk_divider; |
| |
| if (ir_state == NULL) |
| return -ENODEV; |
| |
| if (p->shutdown) |
| return cx25840_ir_tx_shutdown(sd); |
| |
| if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) |
| return -ENOSYS; |
| |
| c = ir_state->c; |
| o = &ir_state->tx_params; |
| mutex_lock(&ir_state->tx_params_lock); |
| |
| o->shutdown = p->shutdown; |
| |
| p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; |
| o->mode = p->mode; |
| |
| p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec); |
| o->bytes_per_data_element = p->bytes_per_data_element; |
| |
| /* Before we tweak the hardware, we have to disable the transmitter */ |
| irqenable_tx(sd, 0); |
| control_tx_enable(c, false); |
| |
| control_tx_modulation_enable(c, p->modulation); |
| o->modulation = p->modulation; |
| |
| if (p->modulation) { |
| p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq, |
| &txclk_divider); |
| o->carrier_freq = p->carrier_freq; |
| |
| p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle); |
| o->duty_cycle = p->duty_cycle; |
| |
| p->max_pulse_width = |
| (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider); |
| } else { |
| p->max_pulse_width = |
| txclk_tx_s_max_pulse_width(c, p->max_pulse_width, |
| &txclk_divider); |
| } |
| o->max_pulse_width = p->max_pulse_width; |
| atomic_set(&ir_state->txclk_divider, txclk_divider); |
| |
| p->resolution = clock_divider_to_resolution(txclk_divider); |
| o->resolution = p->resolution; |
| |
| /* FIXME - make this dependent on resolution for better performance */ |
| control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY); |
| |
| control_tx_polarity_invert(c, p->invert_carrier_sense); |
| o->invert_carrier_sense = p->invert_carrier_sense; |
| |
| /* |
| * FIXME: we don't have hardware help for IO pin level inversion |
| * here like we have on the CX23888. |
| * Act on this with some mix of logical inversion of data levels, |
| * carrier polarity, and carrier duty cycle. |
| */ |
| o->invert_level = p->invert_level; |
| |
| o->interrupt_enable = p->interrupt_enable; |
| o->enable = p->enable; |
| if (p->enable) { |
| /* reset tx_fifo here */ |
| if (p->interrupt_enable) |
| irqenable_tx(sd, IRQEN_TSE); |
| control_tx_enable(c, p->enable); |
| } |
| |
| mutex_unlock(&ir_state->tx_params_lock); |
| return 0; |
| } |
| |
| |
| /* |
| * V4L2 Subdevice Core Ops support |
| */ |
| int cx25840_ir_log_status(struct v4l2_subdev *sd) |
| { |
| struct cx25840_state *state = to_state(sd); |
| struct i2c_client *c = state->c; |
| char *s; |
| int i, j; |
| u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr; |
| |
| /* The CX23888 chip doesn't have an IR controller on the A/V core */ |
| if (is_cx23888(state)) |
| return 0; |
| |
| cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG); |
| txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD; |
| rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD; |
| cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC; |
| stats = cx25840_read4(c, CX25840_IR_STATS_REG); |
| irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG); |
| if (is_cx23885(state) || is_cx23887(state)) |
| irqen ^= IRQEN_MSK; |
| filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF; |
| |
| v4l2_info(sd, "IR Receiver:\n"); |
| v4l2_info(sd, "\tEnabled: %s\n", |
| cntrl & CNTRL_RXE ? "yes" : "no"); |
| v4l2_info(sd, "\tDemodulation from a carrier: %s\n", |
| cntrl & CNTRL_DMD ? "enabled" : "disabled"); |
| v4l2_info(sd, "\tFIFO: %s\n", |
| cntrl & CNTRL_RFE ? "enabled" : "disabled"); |
| switch (cntrl & CNTRL_EDG) { |
| case CNTRL_EDG_NONE: |
| s = "disabled"; |
| break; |
| case CNTRL_EDG_FALL: |
| s = "falling edge"; |
| break; |
| case CNTRL_EDG_RISE: |
| s = "rising edge"; |
| break; |
| case CNTRL_EDG_BOTH: |
| s = "rising & falling edges"; |
| break; |
| default: |
| s = "??? edge"; |
| break; |
| } |
| v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s); |
| v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n", |
| cntrl & CNTRL_R ? "not loaded" : "overflow marker"); |
| v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", |
| cntrl & CNTRL_RIC ? "not empty" : "half full or greater"); |
| v4l2_info(sd, "\tLoopback mode: %s\n", |
| cntrl & CNTRL_LBM ? "loopback active" : "normal receive"); |
| if (cntrl & CNTRL_DMD) { |
| v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n", |
| clock_divider_to_carrier_freq(rxclk)); |
| switch (cntrl & CNTRL_WIN) { |
| case CNTRL_WIN_3_3: |
| i = 3; |
| j = 3; |
| break; |
| case CNTRL_WIN_4_3: |
| i = 4; |
| j = 3; |
| break; |
| case CNTRL_WIN_3_4: |
| i = 3; |
| j = 4; |
| break; |
| case CNTRL_WIN_4_4: |
| i = 4; |
| j = 4; |
| break; |
| default: |
| i = 0; |
| j = 0; |
| break; |
| } |
| v4l2_info(sd, "\tNext carrier edge window: 16 clocks " |
| "-%1d/+%1d, %u to %u Hz\n", i, j, |
| clock_divider_to_freq(rxclk, 16 + j), |
| clock_divider_to_freq(rxclk, 16 - i)); |
| } |
| v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n", |
| pulse_width_count_to_us(FIFO_RXTX, rxclk), |
| pulse_width_count_to_ns(FIFO_RXTX, rxclk)); |
| v4l2_info(sd, "\tLow pass filter: %s\n", |
| filtr ? "enabled" : "disabled"); |
| if (filtr) |
| v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, " |
| "%u ns\n", |
| lpf_count_to_us(filtr), |
| lpf_count_to_ns(filtr)); |
| v4l2_info(sd, "\tPulse width timer timed-out: %s\n", |
| stats & STATS_RTO ? "yes" : "no"); |
| v4l2_info(sd, "\tPulse width timer time-out intr: %s\n", |
| irqen & IRQEN_RTE ? "enabled" : "disabled"); |
| v4l2_info(sd, "\tFIFO overrun: %s\n", |
| stats & STATS_ROR ? "yes" : "no"); |
| v4l2_info(sd, "\tFIFO overrun interrupt: %s\n", |
| irqen & IRQEN_ROE ? "enabled" : "disabled"); |
| v4l2_info(sd, "\tBusy: %s\n", |
| stats & STATS_RBY ? "yes" : "no"); |
| v4l2_info(sd, "\tFIFO service requested: %s\n", |
| stats & STATS_RSR ? "yes" : "no"); |
| v4l2_info(sd, "\tFIFO service request interrupt: %s\n", |
| irqen & IRQEN_RSE ? "enabled" : "disabled"); |
| |
| v4l2_info(sd, "IR Transmitter:\n"); |
| v4l2_info(sd, "\tEnabled: %s\n", |
| cntrl & CNTRL_TXE ? "yes" : "no"); |
| v4l2_info(sd, "\tModulation onto a carrier: %s\n", |
| cntrl & CNTRL_MOD ? "enabled" : "disabled"); |
| v4l2_info(sd, "\tFIFO: %s\n", |
| cntrl & CNTRL_TFE ? "enabled" : "disabled"); |
| v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", |
| cntrl & CNTRL_TIC ? "not empty" : "half full or less"); |
| v4l2_info(sd, "\tCarrier polarity: %s\n", |
| cntrl & CNTRL_CPL ? "space:burst mark:noburst" |
| : "space:noburst mark:burst"); |
| if (cntrl & CNTRL_MOD) { |
| v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n", |
| clock_divider_to_carrier_freq(txclk)); |
| v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n", |
| cduty + 1); |
| } |
| v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n", |
| pulse_width_count_to_us(FIFO_RXTX, txclk), |
| pulse_width_count_to_ns(FIFO_RXTX, txclk)); |
| v4l2_info(sd, "\tBusy: %s\n", |
| stats & STATS_TBY ? "yes" : "no"); |
| v4l2_info(sd, "\tFIFO service requested: %s\n", |
| stats & STATS_TSR ? "yes" : "no"); |
| v4l2_info(sd, "\tFIFO service request interrupt: %s\n", |
| irqen & IRQEN_TSE ? "enabled" : "disabled"); |
| |
| return 0; |
| } |
| |
| |
| const struct v4l2_subdev_ir_ops cx25840_ir_ops = { |
| .rx_read = cx25840_ir_rx_read, |
| .rx_g_parameters = cx25840_ir_rx_g_parameters, |
| .rx_s_parameters = cx25840_ir_rx_s_parameters, |
| |
| .tx_write = cx25840_ir_tx_write, |
| .tx_g_parameters = cx25840_ir_tx_g_parameters, |
| .tx_s_parameters = cx25840_ir_tx_s_parameters, |
| }; |
| |
| |
| static const struct v4l2_subdev_ir_parameters default_rx_params = { |
| .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec), |
| .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, |
| |
| .enable = false, |
| .interrupt_enable = false, |
| .shutdown = true, |
| |
| .modulation = true, |
| .carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */ |
| |
| /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */ |
| /* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */ |
| .noise_filter_min_width = 333333, /* ns */ |
| .carrier_range_lower = 35000, |
| .carrier_range_upper = 37000, |
| .invert_level = false, |
| }; |
| |
| static const struct v4l2_subdev_ir_parameters default_tx_params = { |
| .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec), |
| .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, |
| |
| .enable = false, |
| .interrupt_enable = false, |
| .shutdown = true, |
| |
| .modulation = true, |
| .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */ |
| .duty_cycle = 25, /* 25 % - RC-5 carrier */ |
| .invert_level = false, |
| .invert_carrier_sense = false, |
| }; |
| |
| int cx25840_ir_probe(struct v4l2_subdev *sd) |
| { |
| struct cx25840_state *state = to_state(sd); |
| struct cx25840_ir_state *ir_state; |
| struct v4l2_subdev_ir_parameters default_params; |
| |
| /* Only init the IR controller for the CX2388[57] AV Core for now */ |
| if (!(is_cx23885(state) || is_cx23887(state))) |
| return 0; |
| |
| ir_state = kzalloc(sizeof(struct cx25840_ir_state), GFP_KERNEL); |
| if (ir_state == NULL) |
| return -ENOMEM; |
| |
| spin_lock_init(&ir_state->rx_kfifo_lock); |
| if (kfifo_alloc(&ir_state->rx_kfifo, |
| CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL)) { |
| kfree(ir_state); |
| return -ENOMEM; |
| } |
| |
| ir_state->c = state->c; |
| state->ir_state = ir_state; |
| |
| /* Ensure no interrupts arrive yet */ |
| if (is_cx23885(state) || is_cx23887(state)) |
| cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK); |
| else |
| cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0); |
| |
| mutex_init(&ir_state->rx_params_lock); |
| memcpy(&default_params, &default_rx_params, |
| sizeof(struct v4l2_subdev_ir_parameters)); |
| v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params); |
| |
| mutex_init(&ir_state->tx_params_lock); |
| memcpy(&default_params, &default_tx_params, |
| sizeof(struct v4l2_subdev_ir_parameters)); |
| v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params); |
| |
| return 0; |
| } |
| |
| int cx25840_ir_remove(struct v4l2_subdev *sd) |
| { |
| struct cx25840_state *state = to_state(sd); |
| struct cx25840_ir_state *ir_state = to_ir_state(sd); |
| |
| if (ir_state == NULL) |
| return -ENODEV; |
| |
| cx25840_ir_rx_shutdown(sd); |
| cx25840_ir_tx_shutdown(sd); |
| |
| kfifo_free(&ir_state->rx_kfifo); |
| kfree(ir_state); |
| state->ir_state = NULL; |
| return 0; |
| } |