| /* |
| * QTI Crypto Engine driver. |
| * |
| * Copyright (c) 2012-2017, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| #define pr_fmt(fmt) "QCE50: %s: " fmt, __func__ |
| |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/device.h> |
| #include <linux/clk.h> |
| #include <linux/err.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/io.h> |
| #include <linux/platform_device.h> |
| #include <linux/spinlock.h> |
| #include <linux/delay.h> |
| #include <linux/crypto.h> |
| #include <linux/bitops.h> |
| #include <linux/clk/qcom.h> |
| #include <linux/qcrypto.h> |
| #include <crypto/hash.h> |
| #include <crypto/sha.h> |
| #include <soc/qcom/socinfo.h> |
| #include <asm/dma-iommu.h> |
| #include <linux/iommu.h> |
| |
| #include "qce.h" |
| #include "qce50.h" |
| #include "qcryptohw_50.h" |
| #include "qce_ota.h" |
| |
| #define CRYPTO_SMMU_IOVA_START 0x10000000 |
| #define CRYPTO_SMMU_IOVA_SIZE 0x40000000 |
| |
| #define CRYPTO_CONFIG_RESET 0xE01EF |
| #define MAX_SPS_DESC_FIFO_SIZE 0xfff0 |
| #define QCE_MAX_NUM_DSCR 0x200 |
| #define QCE_SECTOR_SIZE 0x200 |
| #define CE_CLK_100MHZ 100000000 |
| #define CE_CLK_DIV 1000000 |
| |
| #define CRYPTO_CORE_MAJOR_VER_NUM 0x05 |
| #define CRYPTO_CORE_MINOR_VER_NUM 0x03 |
| #define CRYPTO_CORE_STEP_VER_NUM 0x1 |
| |
| #define CRYPTO_REQ_USER_PAT 0xdead0000 |
| |
| static DEFINE_MUTEX(bam_register_lock); |
| static DEFINE_MUTEX(qce_iomap_mutex); |
| |
| struct bam_registration_info { |
| struct list_head qlist; |
| unsigned long handle; |
| uint32_t cnt; |
| uint32_t bam_mem; |
| void __iomem *bam_iobase; |
| bool support_cmd_dscr; |
| }; |
| static LIST_HEAD(qce50_bam_list); |
| |
| /* Used to determine the mode */ |
| #define MAX_BUNCH_MODE_REQ 2 |
| /* Max number of request supported */ |
| #define MAX_QCE_BAM_REQ 8 |
| /* Interrupt flag will be set for every SET_INTR_AT_REQ request */ |
| #define SET_INTR_AT_REQ (MAX_QCE_BAM_REQ / 2) |
| /* To create extra request space to hold dummy request */ |
| #define MAX_QCE_BAM_REQ_WITH_DUMMY_REQ (MAX_QCE_BAM_REQ + 1) |
| /* Allocate the memory for MAX_QCE_BAM_REQ + 1 (for dummy request) */ |
| #define MAX_QCE_ALLOC_BAM_REQ MAX_QCE_BAM_REQ_WITH_DUMMY_REQ |
| /* QCE driver modes */ |
| #define IN_INTERRUPT_MODE 0 |
| #define IN_BUNCH_MODE 1 |
| /* Dummy request data length */ |
| #define DUMMY_REQ_DATA_LEN 64 |
| /* Delay timer to expire when in bunch mode */ |
| #define DELAY_IN_JIFFIES 5 |
| /* Index to point the dummy request */ |
| #define DUMMY_REQ_INDEX MAX_QCE_BAM_REQ |
| |
| #define TOTAL_IOVEC_SPACE_PER_PIPE (QCE_MAX_NUM_DSCR * sizeof(struct sps_iovec)) |
| |
| enum qce_owner { |
| QCE_OWNER_NONE = 0, |
| QCE_OWNER_CLIENT = 1, |
| QCE_OWNER_TIMEOUT = 2 |
| }; |
| |
| struct dummy_request { |
| struct qce_sha_req sreq; |
| struct scatterlist sg; |
| struct ahash_request areq; |
| }; |
| |
| /* |
| * CE HW device structure. |
| * Each engine has an instance of the structure. |
| * Each engine can only handle one crypto operation at one time. It is up to |
| * the sw above to ensure single threading of operation on an engine. |
| */ |
| struct qce_device { |
| struct device *pdev; /* Handle to platform_device structure */ |
| struct bam_registration_info *pbam; |
| |
| unsigned char *coh_vmem; /* Allocated coherent virtual memory */ |
| dma_addr_t coh_pmem; /* Allocated coherent physical memory */ |
| int memsize; /* Memory allocated */ |
| unsigned char *iovec_vmem; /* Allocate iovec virtual memory */ |
| int iovec_memsize; /* Memory allocated */ |
| uint32_t bam_mem; /* bam physical address, from DT */ |
| uint32_t bam_mem_size; /* bam io size, from DT */ |
| int is_shared; /* CE HW is shared */ |
| bool support_cmd_dscr; |
| bool support_hw_key; |
| bool support_clk_mgmt_sus_res; |
| bool support_only_core_src_clk; |
| bool request_bw_before_clk; |
| |
| void __iomem *iobase; /* Virtual io base of CE HW */ |
| unsigned int phy_iobase; /* Physical io base of CE HW */ |
| |
| struct clk *ce_core_src_clk; /* Handle to CE src clk*/ |
| struct clk *ce_core_clk; /* Handle to CE clk */ |
| struct clk *ce_clk; /* Handle to CE clk */ |
| struct clk *ce_bus_clk; /* Handle to CE AXI clk*/ |
| bool no_get_around; |
| bool no_ccm_mac_status_get_around; |
| unsigned int ce_opp_freq_hz; |
| bool use_sw_aes_cbc_ecb_ctr_algo; |
| bool use_sw_aead_algo; |
| bool use_sw_aes_xts_algo; |
| bool use_sw_ahash_algo; |
| bool use_sw_hmac_algo; |
| bool use_sw_aes_ccm_algo; |
| uint32_t engines_avail; |
| struct qce_ce_cfg_reg_setting reg; |
| struct ce_bam_info ce_bam_info; |
| struct ce_request_info ce_request_info[MAX_QCE_ALLOC_BAM_REQ]; |
| unsigned int ce_request_index; |
| enum qce_owner owner; |
| atomic_t no_of_queued_req; |
| struct timer_list timer; |
| struct dummy_request dummyreq; |
| unsigned int mode; |
| unsigned int intr_cadence; |
| unsigned int dev_no; |
| struct qce_driver_stats qce_stats; |
| atomic_t bunch_cmd_seq; |
| atomic_t last_intr_seq; |
| bool cadence_flag; |
| uint8_t *dummyreq_in_buf; |
| struct dma_iommu_mapping *smmu_mapping; |
| bool enable_s1_smmu; |
| }; |
| |
| static void print_notify_debug(struct sps_event_notify *notify); |
| static void _sps_producer_callback(struct sps_event_notify *notify); |
| static int qce_dummy_req(struct qce_device *pce_dev); |
| |
| static int _qce50_disp_stats; |
| |
| /* Standard initialization vector for SHA-1, source: FIPS 180-2 */ |
| static uint32_t _std_init_vector_sha1[] = { |
| 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0 |
| }; |
| |
| /* Standard initialization vector for SHA-256, source: FIPS 180-2 */ |
| static uint32_t _std_init_vector_sha256[] = { |
| 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, |
| 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 |
| }; |
| |
| static void _byte_stream_to_net_words(uint32_t *iv, unsigned char *b, |
| unsigned int len) |
| { |
| unsigned int n; |
| |
| n = len / sizeof(uint32_t); |
| for (; n > 0; n--) { |
| *iv = ((*b << 24) & 0xff000000) | |
| (((*(b+1)) << 16) & 0xff0000) | |
| (((*(b+2)) << 8) & 0xff00) | |
| (*(b+3) & 0xff); |
| b += sizeof(uint32_t); |
| iv++; |
| } |
| |
| n = len % sizeof(uint32_t); |
| if (n == 3) { |
| *iv = ((*b << 24) & 0xff000000) | |
| (((*(b+1)) << 16) & 0xff0000) | |
| (((*(b+2)) << 8) & 0xff00); |
| } else if (n == 2) { |
| *iv = ((*b << 24) & 0xff000000) | |
| (((*(b+1)) << 16) & 0xff0000); |
| } else if (n == 1) { |
| *iv = ((*b << 24) & 0xff000000); |
| } |
| } |
| |
| static void _byte_stream_swap_to_net_words(uint32_t *iv, unsigned char *b, |
| unsigned int len) |
| { |
| unsigned int i, j; |
| unsigned char swap_iv[AES_IV_LENGTH]; |
| |
| memset(swap_iv, 0, AES_IV_LENGTH); |
| for (i = (AES_IV_LENGTH-len), j = len-1; i < AES_IV_LENGTH; i++, j--) |
| swap_iv[i] = b[j]; |
| _byte_stream_to_net_words(iv, swap_iv, AES_IV_LENGTH); |
| } |
| |
| static int count_sg(struct scatterlist *sg, int nbytes) |
| { |
| int i; |
| |
| for (i = 0; nbytes > 0; i++, sg = sg_next(sg)) |
| nbytes -= sg->length; |
| return i; |
| } |
| |
| static int qce_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, |
| enum dma_data_direction direction) |
| { |
| int i; |
| |
| for (i = 0; i < nents; ++i) { |
| dma_map_sg(dev, sg, 1, direction); |
| sg = sg_next(sg); |
| } |
| |
| return nents; |
| } |
| |
| static int qce_dma_unmap_sg(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction direction) |
| { |
| int i; |
| |
| for (i = 0; i < nents; ++i) { |
| dma_unmap_sg(dev, sg, 1, direction); |
| sg = sg_next(sg); |
| } |
| |
| return nents; |
| } |
| |
| static int _probe_ce_engine(struct qce_device *pce_dev) |
| { |
| unsigned int rev; |
| unsigned int maj_rev, min_rev, step_rev; |
| |
| rev = readl_relaxed(pce_dev->iobase + CRYPTO_VERSION_REG); |
| /* |
| * Ensure previous instructions (setting the GO register) |
| * was completed before checking the version. |
| */ |
| mb(); |
| maj_rev = (rev & CRYPTO_CORE_MAJOR_REV_MASK) >> CRYPTO_CORE_MAJOR_REV; |
| min_rev = (rev & CRYPTO_CORE_MINOR_REV_MASK) >> CRYPTO_CORE_MINOR_REV; |
| step_rev = (rev & CRYPTO_CORE_STEP_REV_MASK) >> CRYPTO_CORE_STEP_REV; |
| |
| if (maj_rev != CRYPTO_CORE_MAJOR_VER_NUM) { |
| pr_err("Unsupported QTI crypto device at 0x%x, rev %d.%d.%d\n", |
| pce_dev->phy_iobase, maj_rev, min_rev, step_rev); |
| return -EIO; |
| } |
| |
| /* |
| * The majority of crypto HW bugs have been fixed in 5.3.0 and |
| * above. That allows a single sps transfer of consumer |
| * pipe, and a single sps transfer of producer pipe |
| * for a crypto request. no_get_around flag indicates this. |
| * |
| * In 5.3.1, the CCM MAC_FAILED in result dump issue is |
| * fixed. no_ccm_mac_status_get_around flag indicates this. |
| */ |
| pce_dev->no_get_around = (min_rev >= |
| CRYPTO_CORE_MINOR_VER_NUM) ? true : false; |
| if (min_rev > CRYPTO_CORE_MINOR_VER_NUM) |
| pce_dev->no_ccm_mac_status_get_around = true; |
| else if ((min_rev == CRYPTO_CORE_MINOR_VER_NUM) && |
| (step_rev >= CRYPTO_CORE_STEP_VER_NUM)) |
| pce_dev->no_ccm_mac_status_get_around = true; |
| else |
| pce_dev->no_ccm_mac_status_get_around = false; |
| |
| pce_dev->ce_bam_info.minor_version = min_rev; |
| |
| pce_dev->engines_avail = readl_relaxed(pce_dev->iobase + |
| CRYPTO_ENGINES_AVAIL); |
| dev_info(pce_dev->pdev, "QTI Crypto %d.%d.%d device found @0x%x\n", |
| maj_rev, min_rev, step_rev, pce_dev->phy_iobase); |
| |
| pce_dev->ce_bam_info.ce_burst_size = MAX_CE_BAM_BURST_SIZE; |
| |
| dev_info(pce_dev->pdev, "CE device = %#x IO base, CE = %pK Consumer (IN) PIPE %d,\nProducer (OUT) PIPE %d IO base BAM = %pK\nBAM IRQ %d Engines Availability = %#x\n", |
| pce_dev->ce_bam_info.ce_device, pce_dev->iobase, |
| pce_dev->ce_bam_info.dest_pipe_index, |
| pce_dev->ce_bam_info.src_pipe_index, |
| pce_dev->ce_bam_info.bam_iobase, |
| pce_dev->ce_bam_info.bam_irq, pce_dev->engines_avail); |
| return 0; |
| }; |
| |
| static struct qce_cmdlist_info *_ce_get_hash_cmdlistinfo( |
| struct qce_device *pce_dev, |
| int req_info, struct qce_sha_req *sreq) |
| { |
| struct ce_sps_data *pce_sps_data; |
| struct qce_cmdlistptr_ops *cmdlistptr; |
| |
| pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps; |
| cmdlistptr = &pce_sps_data->cmdlistptr; |
| switch (sreq->alg) { |
| case QCE_HASH_SHA1: |
| return &cmdlistptr->auth_sha1; |
| case QCE_HASH_SHA256: |
| return &cmdlistptr->auth_sha256; |
| case QCE_HASH_SHA1_HMAC: |
| return &cmdlistptr->auth_sha1_hmac; |
| case QCE_HASH_SHA256_HMAC: |
| return &cmdlistptr->auth_sha256_hmac; |
| case QCE_HASH_AES_CMAC: |
| if (sreq->authklen == AES128_KEY_SIZE) |
| return &cmdlistptr->auth_aes_128_cmac; |
| return &cmdlistptr->auth_aes_256_cmac; |
| default: |
| return NULL; |
| } |
| return NULL; |
| } |
| |
| static int _ce_setup_hash(struct qce_device *pce_dev, |
| struct qce_sha_req *sreq, |
| struct qce_cmdlist_info *cmdlistinfo) |
| { |
| uint32_t auth32[SHA256_DIGEST_SIZE / sizeof(uint32_t)]; |
| uint32_t diglen; |
| int i; |
| uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| bool sha1 = false; |
| struct sps_command_element *pce = NULL; |
| bool use_hw_key = false; |
| bool use_pipe_key = false; |
| uint32_t authk_size_in_word = sreq->authklen/sizeof(uint32_t); |
| uint32_t auth_cfg; |
| |
| if ((sreq->alg == QCE_HASH_SHA1_HMAC) || |
| (sreq->alg == QCE_HASH_SHA256_HMAC) || |
| (sreq->alg == QCE_HASH_AES_CMAC)) { |
| |
| |
| /* no more check for null key. use flag */ |
| if ((sreq->flags & QCRYPTO_CTX_USE_HW_KEY) |
| == QCRYPTO_CTX_USE_HW_KEY) |
| use_hw_key = true; |
| else if ((sreq->flags & QCRYPTO_CTX_USE_PIPE_KEY) == |
| QCRYPTO_CTX_USE_PIPE_KEY) |
| use_pipe_key = true; |
| pce = cmdlistinfo->go_proc; |
| if (use_hw_key == true) { |
| pce->addr = (uint32_t)(CRYPTO_GOPROC_QC_KEY_REG + |
| pce_dev->phy_iobase); |
| } else { |
| pce->addr = (uint32_t)(CRYPTO_GOPROC_REG + |
| pce_dev->phy_iobase); |
| pce = cmdlistinfo->auth_key; |
| if (use_pipe_key == false) { |
| _byte_stream_to_net_words(mackey32, |
| sreq->authkey, |
| sreq->authklen); |
| for (i = 0; i < authk_size_in_word; i++, pce++) |
| pce->data = mackey32[i]; |
| } |
| } |
| } |
| |
| if (sreq->alg == QCE_HASH_AES_CMAC) |
| goto go_proc; |
| |
| /* if not the last, the size has to be on the block boundary */ |
| if (sreq->last_blk == 0 && (sreq->size % SHA256_BLOCK_SIZE)) |
| return -EIO; |
| |
| switch (sreq->alg) { |
| case QCE_HASH_SHA1: |
| case QCE_HASH_SHA1_HMAC: |
| diglen = SHA1_DIGEST_SIZE; |
| sha1 = true; |
| break; |
| case QCE_HASH_SHA256: |
| case QCE_HASH_SHA256_HMAC: |
| diglen = SHA256_DIGEST_SIZE; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* write 20/32 bytes, 5/8 words into auth_iv for SHA1/SHA256 */ |
| if (sreq->first_blk) { |
| if (sha1) { |
| for (i = 0; i < 5; i++) |
| auth32[i] = _std_init_vector_sha1[i]; |
| } else { |
| for (i = 0; i < 8; i++) |
| auth32[i] = _std_init_vector_sha256[i]; |
| } |
| } else { |
| _byte_stream_to_net_words(auth32, sreq->digest, diglen); |
| } |
| |
| pce = cmdlistinfo->auth_iv; |
| for (i = 0; i < 5; i++, pce++) |
| pce->data = auth32[i]; |
| |
| if ((sreq->alg == QCE_HASH_SHA256) || |
| (sreq->alg == QCE_HASH_SHA256_HMAC)) { |
| for (i = 5; i < 8; i++, pce++) |
| pce->data = auth32[i]; |
| } |
| |
| /* write auth_bytecnt 0/1, start with 0 */ |
| pce = cmdlistinfo->auth_bytecount; |
| for (i = 0; i < 2; i++, pce++) |
| pce->data = sreq->auth_data[i]; |
| |
| /* Set/reset last bit in CFG register */ |
| pce = cmdlistinfo->auth_seg_cfg; |
| auth_cfg = pce->data & ~(1 << CRYPTO_LAST | |
| 1 << CRYPTO_FIRST | |
| 1 << CRYPTO_USE_PIPE_KEY_AUTH | |
| 1 << CRYPTO_USE_HW_KEY_AUTH); |
| if (sreq->last_blk) |
| auth_cfg |= 1 << CRYPTO_LAST; |
| if (sreq->first_blk) |
| auth_cfg |= 1 << CRYPTO_FIRST; |
| if (use_hw_key) |
| auth_cfg |= 1 << CRYPTO_USE_HW_KEY_AUTH; |
| if (use_pipe_key) |
| auth_cfg |= 1 << CRYPTO_USE_PIPE_KEY_AUTH; |
| pce->data = auth_cfg; |
| go_proc: |
| /* write auth seg size */ |
| pce = cmdlistinfo->auth_seg_size; |
| pce->data = sreq->size; |
| |
| pce = cmdlistinfo->encr_seg_cfg; |
| pce->data = 0; |
| |
| /* write auth seg size start*/ |
| pce = cmdlistinfo->auth_seg_start; |
| pce->data = 0; |
| |
| /* write seg size */ |
| pce = cmdlistinfo->seg_size; |
| |
| /* always ensure there is input data. ZLT does not work for bam-ndp */ |
| if (sreq->size) |
| pce->data = sreq->size; |
| else |
| pce->data = pce_dev->ce_bam_info.ce_burst_size; |
| |
| return 0; |
| } |
| |
| static struct qce_cmdlist_info *_ce_get_aead_cmdlistinfo( |
| struct qce_device *pce_dev, |
| int req_info, struct qce_req *creq) |
| { |
| struct ce_sps_data *pce_sps_data; |
| struct qce_cmdlistptr_ops *cmdlistptr; |
| |
| pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps; |
| cmdlistptr = &pce_sps_data->cmdlistptr; |
| switch (creq->alg) { |
| case CIPHER_ALG_DES: |
| switch (creq->mode) { |
| case QCE_MODE_CBC: |
| if (creq->auth_alg == QCE_HASH_SHA1_HMAC) |
| return &cmdlistptr->aead_hmac_sha1_cbc_des; |
| else if (creq->auth_alg == QCE_HASH_SHA256_HMAC) |
| return &cmdlistptr->aead_hmac_sha256_cbc_des; |
| else |
| return NULL; |
| break; |
| default: |
| return NULL; |
| } |
| break; |
| case CIPHER_ALG_3DES: |
| switch (creq->mode) { |
| case QCE_MODE_CBC: |
| if (creq->auth_alg == QCE_HASH_SHA1_HMAC) |
| return &cmdlistptr->aead_hmac_sha1_cbc_3des; |
| else if (creq->auth_alg == QCE_HASH_SHA256_HMAC) |
| return &cmdlistptr->aead_hmac_sha256_cbc_3des; |
| else |
| return NULL; |
| break; |
| default: |
| return NULL; |
| } |
| break; |
| case CIPHER_ALG_AES: |
| switch (creq->mode) { |
| case QCE_MODE_CBC: |
| if (creq->encklen == AES128_KEY_SIZE) { |
| if (creq->auth_alg == QCE_HASH_SHA1_HMAC) |
| return &cmdlistptr-> |
| aead_hmac_sha1_cbc_aes_128; |
| else if (creq->auth_alg == |
| QCE_HASH_SHA256_HMAC) |
| return &cmdlistptr-> |
| aead_hmac_sha256_cbc_aes_128; |
| else |
| return NULL; |
| } else if (creq->encklen == AES256_KEY_SIZE) { |
| if (creq->auth_alg == QCE_HASH_SHA1_HMAC) |
| return &cmdlistptr-> |
| aead_hmac_sha1_cbc_aes_256; |
| else if (creq->auth_alg == |
| QCE_HASH_SHA256_HMAC) |
| return &cmdlistptr-> |
| aead_hmac_sha256_cbc_aes_256; |
| else |
| return NULL; |
| } else |
| return NULL; |
| break; |
| default: |
| return NULL; |
| } |
| break; |
| |
| default: |
| return NULL; |
| } |
| return NULL; |
| } |
| |
| static int _ce_setup_aead(struct qce_device *pce_dev, struct qce_req *q_req, |
| uint32_t totallen_in, uint32_t coffset, |
| struct qce_cmdlist_info *cmdlistinfo) |
| { |
| int32_t authk_size_in_word = SHA_HMAC_KEY_SIZE/sizeof(uint32_t); |
| int i; |
| uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {0}; |
| struct sps_command_element *pce; |
| uint32_t a_cfg; |
| uint32_t enckey32[(MAX_CIPHER_KEY_SIZE*2)/sizeof(uint32_t)] = {0}; |
| uint32_t enciv32[MAX_IV_LENGTH/sizeof(uint32_t)] = {0}; |
| uint32_t enck_size_in_word = 0; |
| uint32_t enciv_in_word; |
| uint32_t key_size; |
| uint32_t encr_cfg = 0; |
| uint32_t ivsize = q_req->ivsize; |
| |
| key_size = q_req->encklen; |
| enck_size_in_word = key_size/sizeof(uint32_t); |
| |
| switch (q_req->alg) { |
| case CIPHER_ALG_DES: |
| enciv_in_word = 2; |
| break; |
| case CIPHER_ALG_3DES: |
| enciv_in_word = 2; |
| break; |
| case CIPHER_ALG_AES: |
| if ((key_size != AES128_KEY_SIZE) && |
| (key_size != AES256_KEY_SIZE)) |
| return -EINVAL; |
| enciv_in_word = 4; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* only support cbc mode */ |
| if (q_req->mode != QCE_MODE_CBC) |
| return -EINVAL; |
| |
| _byte_stream_to_net_words(enciv32, q_req->iv, ivsize); |
| pce = cmdlistinfo->encr_cntr_iv; |
| for (i = 0; i < enciv_in_word; i++, pce++) |
| pce->data = enciv32[i]; |
| |
| /* |
| * write encr key |
| * do not use hw key or pipe key |
| */ |
| _byte_stream_to_net_words(enckey32, q_req->enckey, key_size); |
| pce = cmdlistinfo->encr_key; |
| for (i = 0; i < enck_size_in_word; i++, pce++) |
| pce->data = enckey32[i]; |
| |
| /* write encr seg cfg */ |
| pce = cmdlistinfo->encr_seg_cfg; |
| encr_cfg = pce->data; |
| if (q_req->dir == QCE_ENCRYPT) |
| encr_cfg |= (1 << CRYPTO_ENCODE); |
| else |
| encr_cfg &= ~(1 << CRYPTO_ENCODE); |
| pce->data = encr_cfg; |
| |
| /* we only support sha1-hmac and sha256-hmac at this point */ |
| _byte_stream_to_net_words(mackey32, q_req->authkey, |
| q_req->authklen); |
| pce = cmdlistinfo->auth_key; |
| for (i = 0; i < authk_size_in_word; i++, pce++) |
| pce->data = mackey32[i]; |
| pce = cmdlistinfo->auth_iv; |
| |
| if (q_req->auth_alg == QCE_HASH_SHA1_HMAC) |
| for (i = 0; i < 5; i++, pce++) |
| pce->data = _std_init_vector_sha1[i]; |
| else |
| for (i = 0; i < 8; i++, pce++) |
| pce->data = _std_init_vector_sha256[i]; |
| |
| /* write auth_bytecnt 0/1, start with 0 */ |
| pce = cmdlistinfo->auth_bytecount; |
| for (i = 0; i < 2; i++, pce++) |
| pce->data = 0; |
| |
| pce = cmdlistinfo->auth_seg_cfg; |
| a_cfg = pce->data; |
| a_cfg &= ~(CRYPTO_AUTH_POS_MASK); |
| if (q_req->dir == QCE_ENCRYPT) |
| a_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS); |
| else |
| a_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS); |
| pce->data = a_cfg; |
| |
| /* write auth seg size */ |
| pce = cmdlistinfo->auth_seg_size; |
| pce->data = totallen_in; |
| |
| /* write auth seg size start*/ |
| pce = cmdlistinfo->auth_seg_start; |
| pce->data = 0; |
| |
| /* write seg size */ |
| pce = cmdlistinfo->seg_size; |
| pce->data = totallen_in; |
| |
| /* write encr seg size */ |
| pce = cmdlistinfo->encr_seg_size; |
| pce->data = q_req->cryptlen; |
| |
| /* write encr seg start */ |
| pce = cmdlistinfo->encr_seg_start; |
| pce->data = (coffset & 0xffff); |
| |
| return 0; |
| |
| } |
| |
| static struct qce_cmdlist_info *_ce_get_cipher_cmdlistinfo( |
| struct qce_device *pce_dev, |
| int req_info, struct qce_req *creq) |
| { |
| struct ce_request_info *preq_info; |
| struct ce_sps_data *pce_sps_data; |
| struct qce_cmdlistptr_ops *cmdlistptr; |
| |
| preq_info = &pce_dev->ce_request_info[req_info]; |
| pce_sps_data = &preq_info->ce_sps; |
| cmdlistptr = &pce_sps_data->cmdlistptr; |
| if (creq->alg != CIPHER_ALG_AES) { |
| switch (creq->alg) { |
| case CIPHER_ALG_DES: |
| if (creq->mode == QCE_MODE_ECB) |
| return &cmdlistptr->cipher_des_ecb; |
| return &cmdlistptr->cipher_des_cbc; |
| case CIPHER_ALG_3DES: |
| if (creq->mode == QCE_MODE_ECB) |
| return &cmdlistptr->cipher_3des_ecb; |
| return &cmdlistptr->cipher_3des_cbc; |
| default: |
| return NULL; |
| } |
| } else { |
| switch (creq->mode) { |
| case QCE_MODE_ECB: |
| if (creq->encklen == AES128_KEY_SIZE) |
| return &cmdlistptr->cipher_aes_128_ecb; |
| return &cmdlistptr->cipher_aes_256_ecb; |
| case QCE_MODE_CBC: |
| case QCE_MODE_CTR: |
| if (creq->encklen == AES128_KEY_SIZE) |
| return &cmdlistptr->cipher_aes_128_cbc_ctr; |
| return &cmdlistptr->cipher_aes_256_cbc_ctr; |
| case QCE_MODE_XTS: |
| if (creq->encklen/2 == AES128_KEY_SIZE) |
| return &cmdlistptr->cipher_aes_128_xts; |
| return &cmdlistptr->cipher_aes_256_xts; |
| case QCE_MODE_CCM: |
| if (creq->encklen == AES128_KEY_SIZE) |
| return &cmdlistptr->aead_aes_128_ccm; |
| return &cmdlistptr->aead_aes_256_ccm; |
| default: |
| return NULL; |
| } |
| } |
| return NULL; |
| } |
| |
| static int _ce_setup_cipher(struct qce_device *pce_dev, struct qce_req *creq, |
| uint32_t totallen_in, uint32_t coffset, |
| struct qce_cmdlist_info *cmdlistinfo) |
| { |
| uint32_t enckey32[(MAX_CIPHER_KEY_SIZE * 2)/sizeof(uint32_t)] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| uint32_t enciv32[MAX_IV_LENGTH / sizeof(uint32_t)] = { |
| 0, 0, 0, 0}; |
| uint32_t enck_size_in_word = 0; |
| uint32_t key_size; |
| bool use_hw_key = false; |
| bool use_pipe_key = false; |
| uint32_t encr_cfg = 0; |
| uint32_t ivsize = creq->ivsize; |
| int i; |
| struct sps_command_element *pce = NULL; |
| |
| if (creq->mode == QCE_MODE_XTS) |
| key_size = creq->encklen/2; |
| else |
| key_size = creq->encklen; |
| |
| pce = cmdlistinfo->go_proc; |
| if ((creq->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) { |
| use_hw_key = true; |
| } else { |
| if ((creq->flags & QCRYPTO_CTX_USE_PIPE_KEY) == |
| QCRYPTO_CTX_USE_PIPE_KEY) |
| use_pipe_key = true; |
| } |
| pce = cmdlistinfo->go_proc; |
| if (use_hw_key == true) |
| pce->addr = (uint32_t)(CRYPTO_GOPROC_QC_KEY_REG + |
| pce_dev->phy_iobase); |
| else |
| pce->addr = (uint32_t)(CRYPTO_GOPROC_REG + |
| pce_dev->phy_iobase); |
| if ((use_pipe_key == false) && (use_hw_key == false)) { |
| _byte_stream_to_net_words(enckey32, creq->enckey, key_size); |
| enck_size_in_word = key_size/sizeof(uint32_t); |
| } |
| |
| if ((creq->op == QCE_REQ_AEAD) && (creq->mode == QCE_MODE_CCM)) { |
| uint32_t authklen32 = creq->encklen/sizeof(uint32_t); |
| uint32_t noncelen32 = MAX_NONCE/sizeof(uint32_t); |
| uint32_t nonce32[MAX_NONCE/sizeof(uint32_t)] = {0, 0, 0, 0}; |
| uint32_t auth_cfg = 0; |
| |
| /* write nonce */ |
| _byte_stream_to_net_words(nonce32, creq->nonce, MAX_NONCE); |
| pce = cmdlistinfo->auth_nonce_info; |
| for (i = 0; i < noncelen32; i++, pce++) |
| pce->data = nonce32[i]; |
| |
| if (creq->authklen == AES128_KEY_SIZE) |
| auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_128; |
| else { |
| if (creq->authklen == AES256_KEY_SIZE) |
| auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_256; |
| } |
| if (creq->dir == QCE_ENCRYPT) |
| auth_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS); |
| else |
| auth_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS); |
| auth_cfg |= ((creq->authsize - 1) << CRYPTO_AUTH_SIZE); |
| |
| if (use_hw_key == true) { |
| auth_cfg |= (1 << CRYPTO_USE_HW_KEY_AUTH); |
| } else { |
| auth_cfg &= ~(1 << CRYPTO_USE_HW_KEY_AUTH); |
| /* write auth key */ |
| pce = cmdlistinfo->auth_key; |
| for (i = 0; i < authklen32; i++, pce++) |
| pce->data = enckey32[i]; |
| } |
| |
| pce = cmdlistinfo->auth_seg_cfg; |
| pce->data = auth_cfg; |
| |
| pce = cmdlistinfo->auth_seg_size; |
| if (creq->dir == QCE_ENCRYPT) |
| pce->data = totallen_in; |
| else |
| pce->data = totallen_in - creq->authsize; |
| pce = cmdlistinfo->auth_seg_start; |
| pce->data = 0; |
| } else { |
| if (creq->op != QCE_REQ_AEAD) { |
| pce = cmdlistinfo->auth_seg_cfg; |
| pce->data = 0; |
| } |
| } |
| switch (creq->mode) { |
| case QCE_MODE_ECB: |
| if (key_size == AES128_KEY_SIZE) |
| encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_128; |
| else |
| encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_256; |
| break; |
| case QCE_MODE_CBC: |
| if (key_size == AES128_KEY_SIZE) |
| encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_128; |
| else |
| encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_256; |
| break; |
| case QCE_MODE_XTS: |
| if (key_size == AES128_KEY_SIZE) |
| encr_cfg = pce_dev->reg.encr_cfg_aes_xts_128; |
| else |
| encr_cfg = pce_dev->reg.encr_cfg_aes_xts_256; |
| break; |
| case QCE_MODE_CCM: |
| if (key_size == AES128_KEY_SIZE) |
| encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_128; |
| else |
| encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_256; |
| encr_cfg |= (CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE) | |
| (CRYPTO_LAST_CCM_XFR << CRYPTO_LAST_CCM); |
| break; |
| case QCE_MODE_CTR: |
| default: |
| if (key_size == AES128_KEY_SIZE) |
| encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_128; |
| else |
| encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_256; |
| break; |
| } |
| |
| switch (creq->alg) { |
| case CIPHER_ALG_DES: |
| if (creq->mode != QCE_MODE_ECB) { |
| _byte_stream_to_net_words(enciv32, creq->iv, ivsize); |
| pce = cmdlistinfo->encr_cntr_iv; |
| pce->data = enciv32[0]; |
| pce++; |
| pce->data = enciv32[1]; |
| } |
| if (use_hw_key == false) { |
| pce = cmdlistinfo->encr_key; |
| pce->data = enckey32[0]; |
| pce++; |
| pce->data = enckey32[1]; |
| } |
| break; |
| case CIPHER_ALG_3DES: |
| if (creq->mode != QCE_MODE_ECB) { |
| _byte_stream_to_net_words(enciv32, creq->iv, ivsize); |
| pce = cmdlistinfo->encr_cntr_iv; |
| pce->data = enciv32[0]; |
| pce++; |
| pce->data = enciv32[1]; |
| } |
| if (use_hw_key == false) { |
| /* write encr key */ |
| pce = cmdlistinfo->encr_key; |
| for (i = 0; i < 6; i++, pce++) |
| pce->data = enckey32[i]; |
| } |
| break; |
| case CIPHER_ALG_AES: |
| default: |
| if (creq->mode == QCE_MODE_XTS) { |
| uint32_t xtskey32[MAX_CIPHER_KEY_SIZE/sizeof(uint32_t)] |
| = {0, 0, 0, 0, 0, 0, 0, 0}; |
| uint32_t xtsklen = |
| creq->encklen/(2 * sizeof(uint32_t)); |
| |
| if ((use_hw_key == false) && (use_pipe_key == false)) { |
| _byte_stream_to_net_words(xtskey32, |
| (creq->enckey + creq->encklen/2), |
| creq->encklen/2); |
| /* write xts encr key */ |
| pce = cmdlistinfo->encr_xts_key; |
| for (i = 0; i < xtsklen; i++, pce++) |
| pce->data = xtskey32[i]; |
| } |
| /* write xts du size */ |
| pce = cmdlistinfo->encr_xts_du_size; |
| switch (creq->flags & QCRYPTO_CTX_XTS_MASK) { |
| case QCRYPTO_CTX_XTS_DU_SIZE_512B: |
| pce->data = min((unsigned int)QCE_SECTOR_SIZE, |
| creq->cryptlen); |
| break; |
| case QCRYPTO_CTX_XTS_DU_SIZE_1KB: |
| pce->data = |
| min((unsigned int)QCE_SECTOR_SIZE * 2, |
| creq->cryptlen); |
| break; |
| default: |
| pce->data = creq->cryptlen; |
| break; |
| } |
| } |
| if (creq->mode != QCE_MODE_ECB) { |
| if (creq->mode == QCE_MODE_XTS) |
| _byte_stream_swap_to_net_words(enciv32, |
| creq->iv, ivsize); |
| else |
| _byte_stream_to_net_words(enciv32, creq->iv, |
| ivsize); |
| /* write encr cntr iv */ |
| pce = cmdlistinfo->encr_cntr_iv; |
| for (i = 0; i < 4; i++, pce++) |
| pce->data = enciv32[i]; |
| |
| if (creq->mode == QCE_MODE_CCM) { |
| /* write cntr iv for ccm */ |
| pce = cmdlistinfo->encr_ccm_cntr_iv; |
| for (i = 0; i < 4; i++, pce++) |
| pce->data = enciv32[i]; |
| /* update cntr_iv[3] by one */ |
| pce = cmdlistinfo->encr_cntr_iv; |
| pce += 3; |
| pce->data += 1; |
| } |
| } |
| |
| if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) { |
| encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 << |
| CRYPTO_ENCR_KEY_SZ); |
| } else { |
| if (use_hw_key == false) { |
| /* write encr key */ |
| pce = cmdlistinfo->encr_key; |
| for (i = 0; i < enck_size_in_word; i++, pce++) |
| pce->data = enckey32[i]; |
| } |
| } /* else of if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) */ |
| break; |
| } /* end of switch (creq->mode) */ |
| |
| if (use_pipe_key) |
| encr_cfg |= (CRYPTO_USE_PIPE_KEY_ENCR_ENABLED |
| << CRYPTO_USE_PIPE_KEY_ENCR); |
| |
| /* write encr seg cfg */ |
| pce = cmdlistinfo->encr_seg_cfg; |
| if ((creq->alg == CIPHER_ALG_DES) || (creq->alg == CIPHER_ALG_3DES)) { |
| if (creq->dir == QCE_ENCRYPT) |
| pce->data |= (1 << CRYPTO_ENCODE); |
| else |
| pce->data &= ~(1 << CRYPTO_ENCODE); |
| encr_cfg = pce->data; |
| } else { |
| encr_cfg |= |
| ((creq->dir == QCE_ENCRYPT) ? 1 : 0) << CRYPTO_ENCODE; |
| } |
| if (use_hw_key == true) |
| encr_cfg |= (CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR); |
| else |
| encr_cfg &= ~(CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR); |
| pce->data = encr_cfg; |
| |
| /* write encr seg size */ |
| pce = cmdlistinfo->encr_seg_size; |
| if ((creq->mode == QCE_MODE_CCM) && (creq->dir == QCE_DECRYPT)) |
| pce->data = (creq->cryptlen + creq->authsize); |
| else |
| pce->data = creq->cryptlen; |
| |
| /* write encr seg start */ |
| pce = cmdlistinfo->encr_seg_start; |
| pce->data = (coffset & 0xffff); |
| |
| /* write seg size */ |
| pce = cmdlistinfo->seg_size; |
| pce->data = totallen_in; |
| |
| return 0; |
| }; |
| |
| static int _ce_f9_setup(struct qce_device *pce_dev, struct qce_f9_req *req, |
| struct qce_cmdlist_info *cmdlistinfo) |
| { |
| uint32_t ikey32[OTA_KEY_SIZE/sizeof(uint32_t)]; |
| uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t); |
| uint32_t cfg; |
| struct sps_command_element *pce; |
| int i; |
| |
| switch (req->algorithm) { |
| case QCE_OTA_ALGO_KASUMI: |
| cfg = pce_dev->reg.auth_cfg_kasumi; |
| break; |
| case QCE_OTA_ALGO_SNOW3G: |
| default: |
| cfg = pce_dev->reg.auth_cfg_snow3g; |
| break; |
| }; |
| |
| /* write key in CRYPTO_AUTH_IV0-3_REG */ |
| _byte_stream_to_net_words(ikey32, &req->ikey[0], OTA_KEY_SIZE); |
| pce = cmdlistinfo->auth_iv; |
| for (i = 0; i < key_size_in_word; i++, pce++) |
| pce->data = ikey32[i]; |
| |
| /* write last bits in CRYPTO_AUTH_IV4_REG */ |
| pce->data = req->last_bits; |
| |
| /* write fresh to CRYPTO_AUTH_BYTECNT0_REG */ |
| pce = cmdlistinfo->auth_bytecount; |
| pce->data = req->fresh; |
| |
| /* write count-i to CRYPTO_AUTH_BYTECNT1_REG */ |
| pce++; |
| pce->data = req->count_i; |
| |
| /* write auth seg cfg */ |
| pce = cmdlistinfo->auth_seg_cfg; |
| if (req->direction == QCE_OTA_DIR_DOWNLINK) |
| cfg |= BIT(CRYPTO_F9_DIRECTION); |
| pce->data = cfg; |
| |
| /* write auth seg size */ |
| pce = cmdlistinfo->auth_seg_size; |
| pce->data = req->msize; |
| |
| /* write auth seg start*/ |
| pce = cmdlistinfo->auth_seg_start; |
| pce->data = 0; |
| |
| /* write seg size */ |
| pce = cmdlistinfo->seg_size; |
| pce->data = req->msize; |
| |
| |
| /* write go */ |
| pce = cmdlistinfo->go_proc; |
| pce->addr = (uint32_t)(CRYPTO_GOPROC_REG + pce_dev->phy_iobase); |
| return 0; |
| } |
| |
| static int _ce_f8_setup(struct qce_device *pce_dev, struct qce_f8_req *req, |
| bool key_stream_mode, uint16_t npkts, uint16_t cipher_offset, |
| uint16_t cipher_size, |
| struct qce_cmdlist_info *cmdlistinfo) |
| { |
| uint32_t ckey32[OTA_KEY_SIZE/sizeof(uint32_t)]; |
| uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t); |
| uint32_t cfg; |
| struct sps_command_element *pce; |
| int i; |
| |
| switch (req->algorithm) { |
| case QCE_OTA_ALGO_KASUMI: |
| cfg = pce_dev->reg.encr_cfg_kasumi; |
| break; |
| case QCE_OTA_ALGO_SNOW3G: |
| default: |
| cfg = pce_dev->reg.encr_cfg_snow3g; |
| break; |
| }; |
| /* write key */ |
| _byte_stream_to_net_words(ckey32, &req->ckey[0], OTA_KEY_SIZE); |
| pce = cmdlistinfo->encr_key; |
| for (i = 0; i < key_size_in_word; i++, pce++) |
| pce->data = ckey32[i]; |
| |
| /* write encr seg cfg */ |
| pce = cmdlistinfo->encr_seg_cfg; |
| if (key_stream_mode) |
| cfg |= BIT(CRYPTO_F8_KEYSTREAM_ENABLE); |
| if (req->direction == QCE_OTA_DIR_DOWNLINK) |
| cfg |= BIT(CRYPTO_F8_DIRECTION); |
| pce->data = cfg; |
| |
| /* write encr seg start */ |
| pce = cmdlistinfo->encr_seg_start; |
| pce->data = (cipher_offset & 0xffff); |
| |
| /* write encr seg size */ |
| pce = cmdlistinfo->encr_seg_size; |
| pce->data = cipher_size; |
| |
| /* write seg size */ |
| pce = cmdlistinfo->seg_size; |
| pce->data = req->data_len; |
| |
| /* write cntr0_iv0 for countC */ |
| pce = cmdlistinfo->encr_cntr_iv; |
| pce->data = req->count_c; |
| /* write cntr1_iv1 for nPkts, and bearer */ |
| pce++; |
| if (npkts == 1) |
| npkts = 0; |
| pce->data = req->bearer << CRYPTO_CNTR1_IV1_REG_F8_BEARER | |
| npkts << CRYPTO_CNTR1_IV1_REG_F8_PKT_CNT; |
| |
| /* write go */ |
| pce = cmdlistinfo->go_proc; |
| pce->addr = (uint32_t)(CRYPTO_GOPROC_REG + pce_dev->phy_iobase); |
| |
| return 0; |
| } |
| |
| static void _qce_dump_descr_fifos(struct qce_device *pce_dev, int req_info) |
| { |
| int i, j, ents; |
| struct ce_sps_data *pce_sps_data; |
| struct sps_iovec *iovec; |
| uint32_t cmd_flags = SPS_IOVEC_FLAG_CMD; |
| |
| pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps; |
| iovec = pce_sps_data->in_transfer.iovec; |
| pr_info("==============================================\n"); |
| pr_info("CONSUMER (TX/IN/DEST) PIPE DESCRIPTOR\n"); |
| pr_info("==============================================\n"); |
| for (i = 0; i < pce_sps_data->in_transfer.iovec_count; i++) { |
| pr_info(" [%d] addr=0x%x size=0x%x flags=0x%x\n", i, |
| iovec->addr, iovec->size, iovec->flags); |
| if (iovec->flags & cmd_flags) { |
| struct sps_command_element *pced; |
| |
| pced = (struct sps_command_element *) |
| (GET_VIRT_ADDR(iovec->addr)); |
| ents = iovec->size/(sizeof(struct sps_command_element)); |
| for (j = 0; j < ents; j++) { |
| pr_info(" [%d] [0x%x] 0x%x\n", j, |
| pced->addr, pced->data); |
| pced++; |
| } |
| } |
| iovec++; |
| } |
| |
| pr_info("==============================================\n"); |
| pr_info("PRODUCER (RX/OUT/SRC) PIPE DESCRIPTOR\n"); |
| pr_info("==============================================\n"); |
| iovec = pce_sps_data->out_transfer.iovec; |
| for (i = 0; i < pce_sps_data->out_transfer.iovec_count; i++) { |
| pr_info(" [%d] addr=0x%x size=0x%x flags=0x%x\n", i, |
| iovec->addr, iovec->size, iovec->flags); |
| iovec++; |
| } |
| } |
| |
| #ifdef QCE_DEBUG |
| |
| static void _qce_dump_descr_fifos_dbg(struct qce_device *pce_dev, int req_info) |
| { |
| _qce_dump_descr_fifos(pce_dev, req_info); |
| } |
| |
| #define QCE_WRITE_REG(val, addr) \ |
| { \ |
| pr_info(" [0x%pK] 0x%x\n", addr, (uint32_t)val); \ |
| writel_relaxed(val, addr); \ |
| } |
| |
| #else |
| |
| static void _qce_dump_descr_fifos_dbg(struct qce_device *pce_dev, int req_info) |
| { |
| } |
| |
| #define QCE_WRITE_REG(val, addr) \ |
| writel_relaxed(val, addr) |
| |
| #endif |
| |
| static int _ce_setup_hash_direct(struct qce_device *pce_dev, |
| struct qce_sha_req *sreq) |
| { |
| uint32_t auth32[SHA256_DIGEST_SIZE / sizeof(uint32_t)]; |
| uint32_t diglen; |
| bool use_hw_key = false; |
| bool use_pipe_key = false; |
| int i; |
| uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| uint32_t authk_size_in_word = sreq->authklen/sizeof(uint32_t); |
| bool sha1 = false; |
| uint32_t auth_cfg = 0; |
| |
| /* clear status */ |
| QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG); |
| |
| QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase + |
| CRYPTO_CONFIG_REG)); |
| /* |
| * Ensure previous instructions (setting the CONFIG register) |
| * was completed before issuing starting to set other config register |
| * This is to ensure the configurations are done in correct endian-ness |
| * as set in the CONFIG registers |
| */ |
| mb(); |
| |
| if (sreq->alg == QCE_HASH_AES_CMAC) { |
| /* write seg_cfg */ |
| QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG); |
| /* write seg_cfg */ |
| QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG); |
| /* write seg_cfg */ |
| QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG); |
| |
| /* Clear auth_ivn, auth_keyn registers */ |
| for (i = 0; i < 16; i++) { |
| QCE_WRITE_REG(0, (pce_dev->iobase + |
| (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)))); |
| QCE_WRITE_REG(0, (pce_dev->iobase + |
| (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)))); |
| } |
| /* write auth_bytecnt 0/1/2/3, start with 0 */ |
| for (i = 0; i < 4; i++) |
| QCE_WRITE_REG(0, pce_dev->iobase + |
| CRYPTO_AUTH_BYTECNT0_REG + |
| i * sizeof(uint32_t)); |
| |
| if (sreq->authklen == AES128_KEY_SIZE) |
| auth_cfg = pce_dev->reg.auth_cfg_cmac_128; |
| else |
| auth_cfg = pce_dev->reg.auth_cfg_cmac_256; |
| } |
| |
| if ((sreq->alg == QCE_HASH_SHA1_HMAC) || |
| (sreq->alg == QCE_HASH_SHA256_HMAC) || |
| (sreq->alg == QCE_HASH_AES_CMAC)) { |
| |
| _byte_stream_to_net_words(mackey32, sreq->authkey, |
| sreq->authklen); |
| |
| /* no more check for null key. use flag to check*/ |
| |
| if ((sreq->flags & QCRYPTO_CTX_USE_HW_KEY) == |
| QCRYPTO_CTX_USE_HW_KEY) { |
| use_hw_key = true; |
| } else if ((sreq->flags & QCRYPTO_CTX_USE_PIPE_KEY) == |
| QCRYPTO_CTX_USE_PIPE_KEY) { |
| use_pipe_key = true; |
| } else { |
| /* setup key */ |
| for (i = 0; i < authk_size_in_word; i++) |
| QCE_WRITE_REG(mackey32[i], (pce_dev->iobase + |
| (CRYPTO_AUTH_KEY0_REG + |
| i*sizeof(uint32_t)))); |
| } |
| } |
| |
| if (sreq->alg == QCE_HASH_AES_CMAC) |
| goto go_proc; |
| |
| /* if not the last, the size has to be on the block boundary */ |
| if (sreq->last_blk == 0 && (sreq->size % SHA256_BLOCK_SIZE)) |
| return -EIO; |
| |
| switch (sreq->alg) { |
| case QCE_HASH_SHA1: |
| auth_cfg = pce_dev->reg.auth_cfg_sha1; |
| diglen = SHA1_DIGEST_SIZE; |
| sha1 = true; |
| break; |
| case QCE_HASH_SHA1_HMAC: |
| auth_cfg = pce_dev->reg.auth_cfg_hmac_sha1; |
| diglen = SHA1_DIGEST_SIZE; |
| sha1 = true; |
| break; |
| case QCE_HASH_SHA256: |
| auth_cfg = pce_dev->reg.auth_cfg_sha256; |
| diglen = SHA256_DIGEST_SIZE; |
| break; |
| case QCE_HASH_SHA256_HMAC: |
| auth_cfg = pce_dev->reg.auth_cfg_hmac_sha256; |
| diglen = SHA256_DIGEST_SIZE; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* write 20/32 bytes, 5/8 words into auth_iv for SHA1/SHA256 */ |
| if (sreq->first_blk) { |
| if (sha1) { |
| for (i = 0; i < 5; i++) |
| auth32[i] = _std_init_vector_sha1[i]; |
| } else { |
| for (i = 0; i < 8; i++) |
| auth32[i] = _std_init_vector_sha256[i]; |
| } |
| } else { |
| _byte_stream_to_net_words(auth32, sreq->digest, diglen); |
| } |
| |
| /* Set auth_ivn, auth_keyn registers */ |
| for (i = 0; i < 5; i++) |
| QCE_WRITE_REG(auth32[i], (pce_dev->iobase + |
| (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)))); |
| |
| if ((sreq->alg == QCE_HASH_SHA256) || |
| (sreq->alg == QCE_HASH_SHA256_HMAC)) { |
| for (i = 5; i < 8; i++) |
| QCE_WRITE_REG(auth32[i], (pce_dev->iobase + |
| (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)))); |
| } |
| |
| |
| /* write auth_bytecnt 0/1/2/3, start with 0 */ |
| for (i = 0; i < 2; i++) |
| QCE_WRITE_REG(sreq->auth_data[i], pce_dev->iobase + |
| CRYPTO_AUTH_BYTECNT0_REG + |
| i * sizeof(uint32_t)); |
| |
| /* Set/reset last bit in CFG register */ |
| if (sreq->last_blk) |
| auth_cfg |= 1 << CRYPTO_LAST; |
| else |
| auth_cfg &= ~(1 << CRYPTO_LAST); |
| if (sreq->first_blk) |
| auth_cfg |= 1 << CRYPTO_FIRST; |
| else |
| auth_cfg &= ~(1 << CRYPTO_FIRST); |
| if (use_hw_key) |
| auth_cfg |= 1 << CRYPTO_USE_HW_KEY_AUTH; |
| if (use_pipe_key) |
| auth_cfg |= 1 << CRYPTO_USE_PIPE_KEY_AUTH; |
| go_proc: |
| /* write seg_cfg */ |
| QCE_WRITE_REG(auth_cfg, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG); |
| /* write auth seg_size */ |
| QCE_WRITE_REG(sreq->size, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG); |
| |
| /* write auth_seg_start */ |
| QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG); |
| |
| /* reset encr seg_cfg */ |
| QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG); |
| |
| /* write seg_size */ |
| QCE_WRITE_REG(sreq->size, pce_dev->iobase + CRYPTO_SEG_SIZE_REG); |
| |
| QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase + |
| CRYPTO_CONFIG_REG)); |
| /* issue go to crypto */ |
| if (use_hw_key == false) { |
| QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) | |
| (1 << CRYPTO_CLR_CNTXT)), |
| pce_dev->iobase + CRYPTO_GOPROC_REG); |
| } else { |
| QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)), |
| pce_dev->iobase + CRYPTO_GOPROC_QC_KEY_REG); |
| } |
| /* |
| * Ensure previous instructions (setting the GO register) |
| * was completed before issuing a DMA transfer request |
| */ |
| mb(); |
| return 0; |
| } |
| |
| static int _ce_setup_aead_direct(struct qce_device *pce_dev, |
| struct qce_req *q_req, uint32_t totallen_in, uint32_t coffset) |
| { |
| int32_t authk_size_in_word = SHA_HMAC_KEY_SIZE/sizeof(uint32_t); |
| int i; |
| uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {0}; |
| uint32_t a_cfg; |
| uint32_t enckey32[(MAX_CIPHER_KEY_SIZE*2)/sizeof(uint32_t)] = {0}; |
| uint32_t enciv32[MAX_IV_LENGTH/sizeof(uint32_t)] = {0}; |
| uint32_t enck_size_in_word = 0; |
| uint32_t enciv_in_word; |
| uint32_t key_size; |
| uint32_t ivsize = q_req->ivsize; |
| uint32_t encr_cfg; |
| |
| |
| /* clear status */ |
| QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG); |
| |
| QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase + |
| CRYPTO_CONFIG_REG)); |
| /* |
| * Ensure previous instructions (setting the CONFIG register) |
| * was completed before issuing starting to set other config register |
| * This is to ensure the configurations are done in correct endian-ness |
| * as set in the CONFIG registers |
| */ |
| mb(); |
| |
| key_size = q_req->encklen; |
| enck_size_in_word = key_size/sizeof(uint32_t); |
| |
| switch (q_req->alg) { |
| |
| case CIPHER_ALG_DES: |
| |
| switch (q_req->mode) { |
| case QCE_MODE_CBC: |
| encr_cfg = pce_dev->reg.encr_cfg_des_cbc; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| enciv_in_word = 2; |
| break; |
| |
| case CIPHER_ALG_3DES: |
| |
| switch (q_req->mode) { |
| case QCE_MODE_CBC: |
| encr_cfg = pce_dev->reg.encr_cfg_3des_cbc; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| enciv_in_word = 2; |
| |
| break; |
| |
| case CIPHER_ALG_AES: |
| |
| switch (q_req->mode) { |
| case QCE_MODE_CBC: |
| if (key_size == AES128_KEY_SIZE) |
| encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_128; |
| else if (key_size == AES256_KEY_SIZE) |
| encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_256; |
| else |
| return -EINVAL; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| enciv_in_word = 4; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| |
| |
| |
| /* write CNTR0_IV0_REG */ |
| if (q_req->mode != QCE_MODE_ECB) { |
| _byte_stream_to_net_words(enciv32, q_req->iv, ivsize); |
| for (i = 0; i < enciv_in_word; i++) |
| QCE_WRITE_REG(enciv32[i], pce_dev->iobase + |
| (CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t))); |
| } |
| |
| /* |
| * write encr key |
| * do not use hw key or pipe key |
| */ |
| _byte_stream_to_net_words(enckey32, q_req->enckey, key_size); |
| for (i = 0; i < enck_size_in_word; i++) |
| QCE_WRITE_REG(enckey32[i], pce_dev->iobase + |
| (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t))); |
| |
| /* write encr seg cfg */ |
| if (q_req->dir == QCE_ENCRYPT) |
| encr_cfg |= (1 << CRYPTO_ENCODE); |
| QCE_WRITE_REG(encr_cfg, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG); |
| |
| /* we only support sha1-hmac and sha256-hmac at this point */ |
| _byte_stream_to_net_words(mackey32, q_req->authkey, |
| q_req->authklen); |
| for (i = 0; i < authk_size_in_word; i++) |
| QCE_WRITE_REG(mackey32[i], pce_dev->iobase + |
| (CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t))); |
| |
| if (q_req->auth_alg == QCE_HASH_SHA1_HMAC) { |
| for (i = 0; i < 5; i++) |
| QCE_WRITE_REG(_std_init_vector_sha1[i], |
| pce_dev->iobase + |
| (CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t))); |
| } else { |
| for (i = 0; i < 8; i++) |
| QCE_WRITE_REG(_std_init_vector_sha256[i], |
| pce_dev->iobase + |
| (CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t))); |
| } |
| |
| /* write auth_bytecnt 0/1, start with 0 */ |
| QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_BYTECNT0_REG); |
| QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_BYTECNT1_REG); |
| |
| /* write encr seg size */ |
| QCE_WRITE_REG(q_req->cryptlen, pce_dev->iobase + |
| CRYPTO_ENCR_SEG_SIZE_REG); |
| |
| /* write encr start */ |
| QCE_WRITE_REG(coffset & 0xffff, pce_dev->iobase + |
| CRYPTO_ENCR_SEG_START_REG); |
| |
| if (q_req->auth_alg == QCE_HASH_SHA1_HMAC) |
| a_cfg = pce_dev->reg.auth_cfg_aead_sha1_hmac; |
| else |
| a_cfg = pce_dev->reg.auth_cfg_aead_sha256_hmac; |
| |
| if (q_req->dir == QCE_ENCRYPT) |
| a_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS); |
| else |
| a_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS); |
| |
| /* write auth seg_cfg */ |
| QCE_WRITE_REG(a_cfg, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG); |
| |
| /* write auth seg_size */ |
| QCE_WRITE_REG(totallen_in, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG); |
| |
| /* write auth_seg_start */ |
| QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG); |
| |
| |
| /* write seg_size */ |
| QCE_WRITE_REG(totallen_in, pce_dev->iobase + CRYPTO_SEG_SIZE_REG); |
| |
| |
| QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase + |
| |
| CRYPTO_CONFIG_REG)); |
| /* issue go to crypto */ |
| QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) | |
| (1 << CRYPTO_CLR_CNTXT)), |
| pce_dev->iobase + CRYPTO_GOPROC_REG); |
| /* |
| * Ensure previous instructions (setting the GO register) |
| * was completed before issuing a DMA transfer request |
| */ |
| mb(); |
| return 0; |
| }; |
| |
| static int _ce_setup_cipher_direct(struct qce_device *pce_dev, |
| struct qce_req *creq, uint32_t totallen_in, uint32_t coffset) |
| { |
| uint32_t enckey32[(MAX_CIPHER_KEY_SIZE * 2)/sizeof(uint32_t)] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| uint32_t enciv32[MAX_IV_LENGTH / sizeof(uint32_t)] = { |
| 0, 0, 0, 0}; |
| uint32_t enck_size_in_word = 0; |
| uint32_t key_size; |
| bool use_hw_key = false; |
| bool use_pipe_key = false; |
| uint32_t encr_cfg = 0; |
| uint32_t ivsize = creq->ivsize; |
| int i; |
| |
| /* clear status */ |
| QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG); |
| |
| QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase + |
| CRYPTO_CONFIG_REG)); |
| /* |
| * Ensure previous instructions (setting the CONFIG register) |
| * was completed before issuing starting to set other config register |
| * This is to ensure the configurations are done in correct endian-ness |
| * as set in the CONFIG registers |
| */ |
| mb(); |
| |
| if (creq->mode == QCE_MODE_XTS) |
| key_size = creq->encklen/2; |
| else |
| key_size = creq->encklen; |
| |
| if ((creq->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) { |
| use_hw_key = true; |
| } else { |
| if ((creq->flags & QCRYPTO_CTX_USE_PIPE_KEY) == |
| QCRYPTO_CTX_USE_PIPE_KEY) |
| use_pipe_key = true; |
| } |
| if ((use_pipe_key == false) && (use_hw_key == false)) { |
| _byte_stream_to_net_words(enckey32, creq->enckey, key_size); |
| enck_size_in_word = key_size/sizeof(uint32_t); |
| } |
| if ((creq->op == QCE_REQ_AEAD) && (creq->mode == QCE_MODE_CCM)) { |
| uint32_t authklen32 = creq->encklen/sizeof(uint32_t); |
| uint32_t noncelen32 = MAX_NONCE/sizeof(uint32_t); |
| uint32_t nonce32[MAX_NONCE/sizeof(uint32_t)] = {0, 0, 0, 0}; |
| uint32_t auth_cfg = 0; |
| |
| /* Clear auth_ivn, auth_keyn registers */ |
| for (i = 0; i < 16; i++) { |
| QCE_WRITE_REG(0, (pce_dev->iobase + |
| (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)))); |
| QCE_WRITE_REG(0, (pce_dev->iobase + |
| (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)))); |
| } |
| /* write auth_bytecnt 0/1/2/3, start with 0 */ |
| for (i = 0; i < 4; i++) |
| QCE_WRITE_REG(0, pce_dev->iobase + |
| CRYPTO_AUTH_BYTECNT0_REG + |
| i * sizeof(uint32_t)); |
| /* write nonce */ |
| _byte_stream_to_net_words(nonce32, creq->nonce, MAX_NONCE); |
| for (i = 0; i < noncelen32; i++) |
| QCE_WRITE_REG(nonce32[i], pce_dev->iobase + |
| CRYPTO_AUTH_INFO_NONCE0_REG + |
| (i*sizeof(uint32_t))); |
| |
| if (creq->authklen == AES128_KEY_SIZE) |
| auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_128; |
| else { |
| if (creq->authklen == AES256_KEY_SIZE) |
| auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_256; |
| } |
| if (creq->dir == QCE_ENCRYPT) |
| auth_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS); |
| else |
| auth_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS); |
| auth_cfg |= ((creq->authsize - 1) << CRYPTO_AUTH_SIZE); |
| |
| if (use_hw_key == true) { |
| auth_cfg |= (1 << CRYPTO_USE_HW_KEY_AUTH); |
| } else { |
| auth_cfg &= ~(1 << CRYPTO_USE_HW_KEY_AUTH); |
| /* write auth key */ |
| for (i = 0; i < authklen32; i++) |
| QCE_WRITE_REG(enckey32[i], pce_dev->iobase + |
| CRYPTO_AUTH_KEY0_REG + (i*sizeof(uint32_t))); |
| } |
| QCE_WRITE_REG(auth_cfg, pce_dev->iobase + |
| CRYPTO_AUTH_SEG_CFG_REG); |
| if (creq->dir == QCE_ENCRYPT) { |
| QCE_WRITE_REG(totallen_in, pce_dev->iobase + |
| CRYPTO_AUTH_SEG_SIZE_REG); |
| } else { |
| QCE_WRITE_REG((totallen_in - creq->authsize), |
| pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG); |
| } |
| QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG); |
| } else { |
| if (creq->op != QCE_REQ_AEAD) |
| QCE_WRITE_REG(0, pce_dev->iobase + |
| CRYPTO_AUTH_SEG_CFG_REG); |
| } |
| /* |
| * Ensure previous instructions (write to all AUTH registers) |
| * was completed before accessing a register that is not in |
| * in the same 1K range. |
| */ |
| mb(); |
| switch (creq->mode) { |
| case QCE_MODE_ECB: |
| if (key_size == AES128_KEY_SIZE) |
| encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_128; |
| else |
| encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_256; |
| break; |
| case QCE_MODE_CBC: |
| if (key_size == AES128_KEY_SIZE) |
| encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_128; |
| else |
| encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_256; |
| break; |
| case QCE_MODE_XTS: |
| if (key_size == AES128_KEY_SIZE) |
| encr_cfg = pce_dev->reg.encr_cfg_aes_xts_128; |
| else |
| encr_cfg = pce_dev->reg.encr_cfg_aes_xts_256; |
| break; |
| case QCE_MODE_CCM: |
| if (key_size == AES128_KEY_SIZE) |
| encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_128; |
| else |
| encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_256; |
| break; |
| case QCE_MODE_CTR: |
| default: |
| if (key_size == AES128_KEY_SIZE) |
| encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_128; |
| else |
| encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_256; |
| break; |
| } |
| |
| switch (creq->alg) { |
| case CIPHER_ALG_DES: |
| if (creq->mode != QCE_MODE_ECB) { |
| encr_cfg = pce_dev->reg.encr_cfg_des_cbc; |
| _byte_stream_to_net_words(enciv32, creq->iv, ivsize); |
| QCE_WRITE_REG(enciv32[0], pce_dev->iobase + |
| CRYPTO_CNTR0_IV0_REG); |
| QCE_WRITE_REG(enciv32[1], pce_dev->iobase + |
| CRYPTO_CNTR1_IV1_REG); |
| } else { |
| encr_cfg = pce_dev->reg.encr_cfg_des_ecb; |
| } |
| if (use_hw_key == false) { |
| QCE_WRITE_REG(enckey32[0], pce_dev->iobase + |
| CRYPTO_ENCR_KEY0_REG); |
| QCE_WRITE_REG(enckey32[1], pce_dev->iobase + |
| CRYPTO_ENCR_KEY1_REG); |
| } |
| break; |
| case CIPHER_ALG_3DES: |
| if (creq->mode != QCE_MODE_ECB) { |
| _byte_stream_to_net_words(enciv32, creq->iv, ivsize); |
| QCE_WRITE_REG(enciv32[0], pce_dev->iobase + |
| CRYPTO_CNTR0_IV0_REG); |
| QCE_WRITE_REG(enciv32[1], pce_dev->iobase + |
| CRYPTO_CNTR1_IV1_REG); |
| encr_cfg = pce_dev->reg.encr_cfg_3des_cbc; |
| } else { |
| encr_cfg = pce_dev->reg.encr_cfg_3des_ecb; |
| } |
| if (use_hw_key == false) { |
| /* write encr key */ |
| for (i = 0; i < 6; i++) |
| QCE_WRITE_REG(enckey32[0], (pce_dev->iobase + |
| (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)))); |
| } |
| break; |
| case CIPHER_ALG_AES: |
| default: |
| if (creq->mode == QCE_MODE_XTS) { |
| uint32_t xtskey32[MAX_CIPHER_KEY_SIZE/sizeof(uint32_t)] |
| = {0, 0, 0, 0, 0, 0, 0, 0}; |
| uint32_t xtsklen = |
| creq->encklen/(2 * sizeof(uint32_t)); |
| |
| if ((use_hw_key == false) && (use_pipe_key == false)) { |
| _byte_stream_to_net_words(xtskey32, |
| (creq->enckey + creq->encklen/2), |
| creq->encklen/2); |
| /* write xts encr key */ |
| for (i = 0; i < xtsklen; i++) |
| QCE_WRITE_REG(xtskey32[i], |
| pce_dev->iobase + |
| CRYPTO_ENCR_XTS_KEY0_REG + |
| (i * sizeof(uint32_t))); |
| } |
| /* write xts du size */ |
| switch (creq->flags & QCRYPTO_CTX_XTS_MASK) { |
| case QCRYPTO_CTX_XTS_DU_SIZE_512B: |
| QCE_WRITE_REG( |
| min((uint32_t)QCE_SECTOR_SIZE, |
| creq->cryptlen), pce_dev->iobase + |
| CRYPTO_ENCR_XTS_DU_SIZE_REG); |
| break; |
| case QCRYPTO_CTX_XTS_DU_SIZE_1KB: |
| QCE_WRITE_REG( |
| min((uint32_t)(QCE_SECTOR_SIZE * 2), |
| creq->cryptlen), pce_dev->iobase + |
| CRYPTO_ENCR_XTS_DU_SIZE_REG); |
| break; |
| default: |
| QCE_WRITE_REG(creq->cryptlen, |
| pce_dev->iobase + |
| CRYPTO_ENCR_XTS_DU_SIZE_REG); |
| break; |
| } |
| } |
| if (creq->mode != QCE_MODE_ECB) { |
| if (creq->mode == QCE_MODE_XTS) |
| _byte_stream_swap_to_net_words(enciv32, |
| creq->iv, ivsize); |
| else |
| _byte_stream_to_net_words(enciv32, creq->iv, |
| ivsize); |
| |
| /* write encr cntr iv */ |
| for (i = 0; i <= 3; i++) |
| QCE_WRITE_REG(enciv32[i], pce_dev->iobase + |
| CRYPTO_CNTR0_IV0_REG + |
| (i * sizeof(uint32_t))); |
| |
| if (creq->mode == QCE_MODE_CCM) { |
| /* write cntr iv for ccm */ |
| for (i = 0; i <= 3; i++) |
| QCE_WRITE_REG(enciv32[i], |
| pce_dev->iobase + |
| CRYPTO_ENCR_CCM_INT_CNTR0_REG + |
| (i * sizeof(uint32_t))); |
| /* update cntr_iv[3] by one */ |
| QCE_WRITE_REG((enciv32[3] + 1), |
| pce_dev->iobase + |
| CRYPTO_CNTR0_IV0_REG + |
| (3 * sizeof(uint32_t))); |
| } |
| } |
| |
| if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) { |
| encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 << |
| CRYPTO_ENCR_KEY_SZ); |
| } else { |
| if ((use_hw_key == false) && (use_pipe_key == false)) { |
| for (i = 0; i < enck_size_in_word; i++) |
| QCE_WRITE_REG(enckey32[i], |
| pce_dev->iobase + |
| CRYPTO_ENCR_KEY0_REG + |
| (i * sizeof(uint32_t))); |
| } |
| } /* else of if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) */ |
| break; |
| } /* end of switch (creq->mode) */ |
| |
| if (use_pipe_key) |
| encr_cfg |= (CRYPTO_USE_PIPE_KEY_ENCR_ENABLED |
| << CRYPTO_USE_PIPE_KEY_ENCR); |
| |
| /* write encr seg cfg */ |
| encr_cfg |= ((creq->dir == QCE_ENCRYPT) ? 1 : 0) << CRYPTO_ENCODE; |
| if (use_hw_key == true) |
| encr_cfg |= (CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR); |
| else |
| encr_cfg &= ~(CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR); |
| /* write encr seg cfg */ |
| QCE_WRITE_REG(encr_cfg, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG); |
| |
| /* write encr seg size */ |
| if ((creq->mode == QCE_MODE_CCM) && (creq->dir == QCE_DECRYPT)) { |
| QCE_WRITE_REG((creq->cryptlen + creq->authsize), |
| pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG); |
| } else { |
| QCE_WRITE_REG(creq->cryptlen, |
| pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG); |
| } |
| |
| /* write encr seg start */ |
| QCE_WRITE_REG((coffset & 0xffff), |
| pce_dev->iobase + CRYPTO_ENCR_SEG_START_REG); |
| |
| /* write encr counter mask */ |
| QCE_WRITE_REG(0xffffffff, |
| pce_dev->iobase + CRYPTO_CNTR_MASK_REG); |
| QCE_WRITE_REG(0xffffffff, |
| pce_dev->iobase + CRYPTO_CNTR_MASK_REG0); |
| QCE_WRITE_REG(0xffffffff, |
| pce_dev->iobase + CRYPTO_CNTR_MASK_REG1); |
| QCE_WRITE_REG(0xffffffff, |
| pce_dev->iobase + CRYPTO_CNTR_MASK_REG2); |
| |
| /* write seg size */ |
| QCE_WRITE_REG(totallen_in, pce_dev->iobase + CRYPTO_SEG_SIZE_REG); |
| |
| QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase + |
| CRYPTO_CONFIG_REG)); |
| /* issue go to crypto */ |
| if (use_hw_key == false) { |
| QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) | |
| (1 << CRYPTO_CLR_CNTXT)), |
| pce_dev->iobase + CRYPTO_GOPROC_REG); |
| } else { |
| QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)), |
| pce_dev->iobase + CRYPTO_GOPROC_QC_KEY_REG); |
| } |
| /* |
| * Ensure previous instructions (setting the GO register) |
| * was completed before issuing a DMA transfer request |
| */ |
| mb(); |
| return 0; |
| }; |
| |
| static int _ce_f9_setup_direct(struct qce_device *pce_dev, |
| struct qce_f9_req *req) |
| { |
| uint32_t ikey32[OTA_KEY_SIZE/sizeof(uint32_t)]; |
| uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t); |
| uint32_t auth_cfg; |
| int i; |
| |
| switch (req->algorithm) { |
| case QCE_OTA_ALGO_KASUMI: |
| auth_cfg = pce_dev->reg.auth_cfg_kasumi; |
| break; |
| case QCE_OTA_ALGO_SNOW3G: |
| default: |
| auth_cfg = pce_dev->reg.auth_cfg_snow3g; |
| break; |
| }; |
| |
| /* clear status */ |
| QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG); |
| |
| /* set big endian configuration */ |
| QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase + |
| CRYPTO_CONFIG_REG)); |
| /* |
| * Ensure previous instructions (setting the CONFIG register) |
| * was completed before issuing starting to set other config register |
| * This is to ensure the configurations are done in correct endian-ness |
| * as set in the CONFIG registers |
| */ |
| mb(); |
| |
| /* write enc_seg_cfg */ |
| QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG); |
| |
| /* write ecn_seg_size */ |
| QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG); |
| |
| /* write key in CRYPTO_AUTH_IV0-3_REG */ |
| _byte_stream_to_net_words(ikey32, &req->ikey[0], OTA_KEY_SIZE); |
| for (i = 0; i < key_size_in_word; i++) |
| QCE_WRITE_REG(ikey32[i], (pce_dev->iobase + |
| (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)))); |
| |
| /* write last bits in CRYPTO_AUTH_IV4_REG */ |
| QCE_WRITE_REG(req->last_bits, (pce_dev->iobase + |
| CRYPTO_AUTH_IV4_REG)); |
| |
| /* write fresh to CRYPTO_AUTH_BYTECNT0_REG */ |
| QCE_WRITE_REG(req->fresh, (pce_dev->iobase + |
| CRYPTO_AUTH_BYTECNT0_REG)); |
| |
| /* write count-i to CRYPTO_AUTH_BYTECNT1_REG */ |
| QCE_WRITE_REG(req->count_i, (pce_dev->iobase + |
| CRYPTO_AUTH_BYTECNT1_REG)); |
| |
| /* write auth seg cfg */ |
| if (req->direction == QCE_OTA_DIR_DOWNLINK) |
| auth_cfg |= BIT(CRYPTO_F9_DIRECTION); |
| QCE_WRITE_REG(auth_cfg, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG); |
| |
| /* write auth seg size */ |
| QCE_WRITE_REG(req->msize, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG); |
| |
| /* write auth seg start*/ |
| QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG); |
| |
| /* write seg size */ |
| QCE_WRITE_REG(req->msize, pce_dev->iobase + CRYPTO_SEG_SIZE_REG); |
| |
| /* set little endian configuration before go*/ |
| QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase + |
| CRYPTO_CONFIG_REG)); |
| /* write go */ |
| QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) | |
| (1 << CRYPTO_CLR_CNTXT)), |
| pce_dev->iobase + CRYPTO_GOPROC_REG); |
| /* |
| * Ensure previous instructions (setting the GO register) |
| * was completed before issuing a DMA transfer request |
| */ |
| mb(); |
| return 0; |
| } |
| |
| static int _ce_f8_setup_direct(struct qce_device *pce_dev, |
| struct qce_f8_req *req, bool key_stream_mode, |
| uint16_t npkts, uint16_t cipher_offset, uint16_t cipher_size) |
| { |
| int i = 0; |
| uint32_t encr_cfg = 0; |
| uint32_t ckey32[OTA_KEY_SIZE/sizeof(uint32_t)]; |
| uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t); |
| |
| switch (req->algorithm) { |
| case QCE_OTA_ALGO_KASUMI: |
| encr_cfg = pce_dev->reg.encr_cfg_kasumi; |
| break; |
| case QCE_OTA_ALGO_SNOW3G: |
| default: |
| encr_cfg = pce_dev->reg.encr_cfg_snow3g; |
| break; |
| }; |
| /* clear status */ |
| QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG); |
| /* set big endian configuration */ |
| QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase + |
| CRYPTO_CONFIG_REG)); |
| /* write auth seg configuration */ |
| QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG); |
| /* write auth seg size */ |
| QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG); |
| |
| /* write key */ |
| _byte_stream_to_net_words(ckey32, &req->ckey[0], OTA_KEY_SIZE); |
| |
| for (i = 0; i < key_size_in_word; i++) |
| QCE_WRITE_REG(ckey32[i], (pce_dev->iobase + |
| (CRYPTO_ENCR_KEY0_REG + i*sizeof(uint32_t)))); |
| /* write encr seg cfg */ |
| if (key_stream_mode) |
| encr_cfg |= BIT(CRYPTO_F8_KEYSTREAM_ENABLE); |
| if (req->direction == QCE_OTA_DIR_DOWNLINK) |
| encr_cfg |= BIT(CRYPTO_F8_DIRECTION); |
| QCE_WRITE_REG(encr_cfg, pce_dev->iobase + |
| CRYPTO_ENCR_SEG_CFG_REG); |
| |
| /* write encr seg start */ |
| QCE_WRITE_REG((cipher_offset & 0xffff), pce_dev->iobase + |
| CRYPTO_ENCR_SEG_START_REG); |
| /* write encr seg size */ |
| QCE_WRITE_REG(cipher_size, pce_dev->iobase + |
| CRYPTO_ENCR_SEG_SIZE_REG); |
| |
| /* write seg size */ |
| QCE_WRITE_REG(req->data_len, pce_dev->iobase + |
| CRYPTO_SEG_SIZE_REG); |
| |
| /* write cntr0_iv0 for countC */ |
| QCE_WRITE_REG(req->count_c, pce_dev->iobase + |
| CRYPTO_CNTR0_IV0_REG); |
| /* write cntr1_iv1 for nPkts, and bearer */ |
| if (npkts == 1) |
| npkts = 0; |
| QCE_WRITE_REG(req->bearer << CRYPTO_CNTR1_IV1_REG_F8_BEARER | |
| npkts << CRYPTO_CNTR1_IV1_REG_F8_PKT_CNT, |
| pce_dev->iobase + CRYPTO_CNTR1_IV1_REG); |
| |
| /* set little endian configuration before go*/ |
| QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase + |
| CRYPTO_CONFIG_REG)); |
| /* write go */ |
| QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) | |
| (1 << CRYPTO_CLR_CNTXT)), |
| pce_dev->iobase + CRYPTO_GOPROC_REG); |
| /* |
| * Ensure previous instructions (setting the GO register) |
| * was completed before issuing a DMA transfer request |
| */ |
| mb(); |
| return 0; |
| } |
| |
| |
| static int _qce_unlock_other_pipes(struct qce_device *pce_dev, int req_info) |
| { |
| int rc = 0; |
| struct ce_sps_data *pce_sps_data = &pce_dev->ce_request_info |
| [req_info].ce_sps; |
| |
| if (pce_dev->no_get_around || pce_dev->support_cmd_dscr == false) |
| return rc; |
| |
| rc = sps_transfer_one(pce_dev->ce_bam_info.consumer.pipe, |
| GET_PHYS_ADDR(pce_sps_data-> |
| cmdlistptr.unlock_all_pipes.cmdlist), |
| 0, NULL, (SPS_IOVEC_FLAG_CMD | SPS_IOVEC_FLAG_UNLOCK)); |
| if (rc) { |
| pr_err("sps_xfr_one() fail rc=%d", rc); |
| rc = -EINVAL; |
| } |
| return rc; |
| } |
| |
| static inline void qce_free_req_info(struct qce_device *pce_dev, int req_info, |
| bool is_complete); |
| |
| static int _aead_complete(struct qce_device *pce_dev, int req_info) |
| { |
| struct aead_request *areq; |
| unsigned char mac[SHA256_DIGEST_SIZE]; |
| uint32_t ccm_fail_status = 0; |
| uint32_t result_dump_status; |
| int32_t result_status = 0; |
| struct ce_request_info *preq_info; |
| struct ce_sps_data *pce_sps_data; |
| qce_comp_func_ptr_t qce_callback; |
| |
| preq_info = &pce_dev->ce_request_info[req_info]; |
| pce_sps_data = &preq_info->ce_sps; |
| qce_callback = preq_info->qce_cb; |
| areq = (struct aead_request *) preq_info->areq; |
| if (areq->src != areq->dst) { |
| qce_dma_unmap_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents, |
| DMA_FROM_DEVICE); |
| } |
| qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents, |
| (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| DMA_TO_DEVICE); |
| |
| if (preq_info->asg) |
| qce_dma_unmap_sg(pce_dev->pdev, preq_info->asg, |
| preq_info->assoc_nents, DMA_TO_DEVICE); |
| /* check MAC */ |
| memcpy(mac, (char *)(&pce_sps_data->result->auth_iv[0]), |
| SHA256_DIGEST_SIZE); |
| |
| /* read status before unlock */ |
| if (preq_info->dir == QCE_DECRYPT) { |
| if (pce_dev->no_get_around) |
| if (pce_dev->no_ccm_mac_status_get_around) |
| ccm_fail_status = be32_to_cpu(pce_sps_data-> |
| result->status); |
| else |
| ccm_fail_status = be32_to_cpu(pce_sps_data-> |
| result_null->status); |
| else |
| ccm_fail_status = readl_relaxed(pce_dev->iobase + |
| CRYPTO_STATUS_REG); |
| } |
| if (_qce_unlock_other_pipes(pce_dev, req_info)) { |
| qce_free_req_info(pce_dev, req_info, true); |
| qce_callback(areq, mac, NULL, -ENXIO); |
| return -ENXIO; |
| } |
| result_dump_status = be32_to_cpu(pce_sps_data->result->status); |
| pce_sps_data->result->status = 0; |
| |
| if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR) |
| | (1 << CRYPTO_HSD_ERR))) { |
| pr_err("aead operation error. Status %x\n", result_dump_status); |
| result_status = -ENXIO; |
| } else if (pce_sps_data->consumer_status | |
| pce_sps_data->producer_status) { |
| pr_err("aead sps operation error. sps status %x %x\n", |
| pce_sps_data->consumer_status, |
| pce_sps_data->producer_status); |
| result_status = -ENXIO; |
| } |
| |
| if (preq_info->mode == QCE_MODE_CCM) { |
| /* |
| * Not from result dump, instead, use the status we just |
| * read of device for MAC_FAILED. |
| */ |
| if (result_status == 0 && (preq_info->dir == QCE_DECRYPT) && |
| (ccm_fail_status & (1 << CRYPTO_MAC_FAILED))) |
| result_status = -EBADMSG; |
| qce_free_req_info(pce_dev, req_info, true); |
| qce_callback(areq, mac, NULL, result_status); |
| |
| } else { |
| uint32_t ivsize = 0; |
| struct crypto_aead *aead; |
| unsigned char iv[NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE]; |
| |
| aead = crypto_aead_reqtfm(areq); |
| ivsize = crypto_aead_ivsize(aead); |
| memcpy(iv, (char *)(pce_sps_data->result->encr_cntr_iv), |
| sizeof(iv)); |
| qce_free_req_info(pce_dev, req_info, true); |
| qce_callback(areq, mac, iv, result_status); |
| |
| } |
| return 0; |
| }; |
| |
| static int _sha_complete(struct qce_device *pce_dev, int req_info) |
| { |
| struct ahash_request *areq; |
| unsigned char digest[SHA256_DIGEST_SIZE]; |
| uint32_t bytecount32[2]; |
| int32_t result_status = 0; |
| uint32_t result_dump_status; |
| struct ce_request_info *preq_info; |
| struct ce_sps_data *pce_sps_data; |
| qce_comp_func_ptr_t qce_callback; |
| |
| preq_info = &pce_dev->ce_request_info[req_info]; |
| pce_sps_data = &preq_info->ce_sps; |
| qce_callback = preq_info->qce_cb; |
| areq = (struct ahash_request *) preq_info->areq; |
| if (!areq) { |
| pr_err("sha operation error. areq is NULL\n"); |
| return -ENXIO; |
| } |
| qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents, |
| DMA_TO_DEVICE); |
| memcpy(digest, (char *)(&pce_sps_data->result->auth_iv[0]), |
| SHA256_DIGEST_SIZE); |
| _byte_stream_to_net_words(bytecount32, |
| (unsigned char *)pce_sps_data->result->auth_byte_count, |
| 2 * CRYPTO_REG_SIZE); |
| |
| if (_qce_unlock_other_pipes(pce_dev, req_info)) { |
| qce_free_req_info(pce_dev, req_info, true); |
| qce_callback(areq, digest, (char *)bytecount32, |
| -ENXIO); |
| return -ENXIO; |
| } |
| |
| result_dump_status = be32_to_cpu(pce_sps_data->result->status); |
| pce_sps_data->result->status = 0; |
| if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR) |
| | (1 << CRYPTO_HSD_ERR))) { |
| |
| pr_err("sha operation error. Status %x\n", result_dump_status); |
| result_status = -ENXIO; |
| } else if (pce_sps_data->consumer_status) { |
| pr_err("sha sps operation error. sps status %x\n", |
| pce_sps_data->consumer_status); |
| result_status = -ENXIO; |
| } |
| qce_free_req_info(pce_dev, req_info, true); |
| qce_callback(areq, digest, (char *)bytecount32, result_status); |
| return 0; |
| } |
| |
| static int _f9_complete(struct qce_device *pce_dev, int req_info) |
| { |
| uint32_t mac_i; |
| int32_t result_status = 0; |
| uint32_t result_dump_status; |
| struct ce_request_info *preq_info; |
| struct ce_sps_data *pce_sps_data; |
| qce_comp_func_ptr_t qce_callback; |
| void *areq; |
| |
| preq_info = &pce_dev->ce_request_info[req_info]; |
| pce_sps_data = &preq_info->ce_sps; |
| qce_callback = preq_info->qce_cb; |
| areq = preq_info->areq; |
| dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src, |
| preq_info->ota_size, DMA_TO_DEVICE); |
| _byte_stream_to_net_words(&mac_i, |
| (char *)(&pce_sps_data->result->auth_iv[0]), |
| CRYPTO_REG_SIZE); |
| |
| if (_qce_unlock_other_pipes(pce_dev, req_info)) { |
| qce_free_req_info(pce_dev, req_info, true); |
| qce_callback(areq, NULL, NULL, -ENXIO); |
| return -ENXIO; |
| } |
| |
| result_dump_status = be32_to_cpu(pce_sps_data->result->status); |
| pce_sps_data->result->status = 0; |
| if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR) |
| | (1 << CRYPTO_HSD_ERR))) { |
| pr_err("f9 operation error. Status %x\n", result_dump_status); |
| result_status = -ENXIO; |
| } else if (pce_sps_data->consumer_status | |
| pce_sps_data->producer_status) { |
| pr_err("f9 sps operation error. sps status %x %x\n", |
| pce_sps_data->consumer_status, |
| pce_sps_data->producer_status); |
| result_status = -ENXIO; |
| } |
| qce_free_req_info(pce_dev, req_info, true); |
| qce_callback(areq, (char *)&mac_i, NULL, result_status); |
| |
| return 0; |
| } |
| |
| static int _ablk_cipher_complete(struct qce_device *pce_dev, int req_info) |
| { |
| struct ablkcipher_request *areq; |
| unsigned char iv[NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE]; |
| int32_t result_status = 0; |
| uint32_t result_dump_status; |
| struct ce_request_info *preq_info; |
| struct ce_sps_data *pce_sps_data; |
| qce_comp_func_ptr_t qce_callback; |
| |
| preq_info = &pce_dev->ce_request_info[req_info]; |
| pce_sps_data = &preq_info->ce_sps; |
| qce_callback = preq_info->qce_cb; |
| areq = (struct ablkcipher_request *) preq_info->areq; |
| if (areq->src != areq->dst) { |
| qce_dma_unmap_sg(pce_dev->pdev, areq->dst, |
| preq_info->dst_nents, DMA_FROM_DEVICE); |
| } |
| qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents, |
| (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| DMA_TO_DEVICE); |
| |
| if (_qce_unlock_other_pipes(pce_dev, req_info)) { |
| qce_free_req_info(pce_dev, req_info, true); |
| qce_callback(areq, NULL, NULL, -ENXIO); |
| return -ENXIO; |
| } |
| result_dump_status = be32_to_cpu(pce_sps_data->result->status); |
| pce_sps_data->result->status = 0; |
| |
| if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR) |
| | (1 << CRYPTO_HSD_ERR))) { |
| pr_err("ablk_cipher operation error. Status %x\n", |
| result_dump_status); |
| result_status = -ENXIO; |
| } else if (pce_sps_data->consumer_status | |
| pce_sps_data->producer_status) { |
| pr_err("ablk_cipher sps operation error. sps status %x %x\n", |
| pce_sps_data->consumer_status, |
| pce_sps_data->producer_status); |
| result_status = -ENXIO; |
| } |
| |
| if (preq_info->mode == QCE_MODE_ECB) { |
| qce_free_req_info(pce_dev, req_info, true); |
| qce_callback(areq, NULL, NULL, pce_sps_data->consumer_status | |
| result_status); |
| } else { |
| if (pce_dev->ce_bam_info.minor_version == 0) { |
| if (preq_info->mode == QCE_MODE_CBC) { |
| if (preq_info->dir == QCE_DECRYPT) |
| memcpy(iv, (char *)preq_info->dec_iv, |
| sizeof(iv)); |
| else |
| memcpy(iv, (unsigned char *) |
| (sg_virt(areq->src) + |
| areq->src->length - 16), |
| sizeof(iv)); |
| } |
| if ((preq_info->mode == QCE_MODE_CTR) || |
| (preq_info->mode == QCE_MODE_XTS)) { |
| uint32_t num_blk = 0; |
| uint32_t cntr_iv3 = 0; |
| unsigned long long cntr_iv64 = 0; |
| unsigned char *b = (unsigned char *)(&cntr_iv3); |
| |
| memcpy(iv, areq->info, sizeof(iv)); |
| if (preq_info->mode != QCE_MODE_XTS) |
| num_blk = areq->nbytes/16; |
| else |
| num_blk = 1; |
| cntr_iv3 = ((*(iv + 12) << 24) & 0xff000000) | |
| (((*(iv + 13)) << 16) & 0xff0000) | |
| (((*(iv + 14)) << 8) & 0xff00) | |
| (*(iv + 15) & 0xff); |
| cntr_iv64 = |
| (((unsigned long long)cntr_iv3 & |
| 0xFFFFFFFFULL) + |
| (unsigned long long)num_blk) % |
| (unsigned long long)(0x100000000ULL); |
| |
| cntr_iv3 = (u32)(cntr_iv64 & 0xFFFFFFFF); |
| *(iv + 15) = (char)(*b); |
| *(iv + 14) = (char)(*(b + 1)); |
| *(iv + 13) = (char)(*(b + 2)); |
| *(iv + 12) = (char)(*(b + 3)); |
| } |
| } else { |
| memcpy(iv, |
| (char *)(pce_sps_data->result->encr_cntr_iv), |
| sizeof(iv)); |
| } |
| qce_free_req_info(pce_dev, req_info, true); |
| qce_callback(areq, NULL, iv, result_status); |
| } |
| return 0; |
| } |
| |
| static int _f8_complete(struct qce_device *pce_dev, int req_info) |
| { |
| int32_t result_status = 0; |
| uint32_t result_dump_status; |
| uint32_t result_dump_status2; |
| struct ce_request_info *preq_info; |
| struct ce_sps_data *pce_sps_data; |
| qce_comp_func_ptr_t qce_callback; |
| void *areq; |
| |
| preq_info = &pce_dev->ce_request_info[req_info]; |
| pce_sps_data = &preq_info->ce_sps; |
| qce_callback = preq_info->qce_cb; |
| areq = preq_info->areq; |
| if (preq_info->phy_ota_dst) |
| dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_dst, |
| preq_info->ota_size, DMA_FROM_DEVICE); |
| if (preq_info->phy_ota_src) |
| dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src, |
| preq_info->ota_size, (preq_info->phy_ota_dst) ? |
| DMA_TO_DEVICE : DMA_BIDIRECTIONAL); |
| |
| if (_qce_unlock_other_pipes(pce_dev, req_info)) { |
| qce_free_req_info(pce_dev, req_info, true); |
| qce_callback(areq, NULL, NULL, -ENXIO); |
| return -ENXIO; |
| } |
| result_dump_status = be32_to_cpu(pce_sps_data->result->status); |
| result_dump_status2 = be32_to_cpu(pce_sps_data->result->status2); |
| |
| if ((result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR) |
| | (1 << CRYPTO_HSD_ERR)))) { |
| pr_err( |
| "f8 oper error. Dump Sta %x Sta2 %x req %d\n", |
| result_dump_status, result_dump_status2, req_info); |
| result_status = -ENXIO; |
| } else if (pce_sps_data->consumer_status | |
| pce_sps_data->producer_status) { |
| pr_err("f8 sps operation error. sps status %x %x\n", |
| pce_sps_data->consumer_status, |
| pce_sps_data->producer_status); |
| result_status = -ENXIO; |
| } |
| pce_sps_data->result->status = 0; |
| pce_sps_data->result->status2 = 0; |
| qce_free_req_info(pce_dev, req_info, true); |
| qce_callback(areq, NULL, NULL, result_status); |
| return 0; |
| } |
| |
| static void _qce_sps_iovec_count_init(struct qce_device *pce_dev, int req_info) |
| { |
| struct ce_sps_data *pce_sps_data = &pce_dev->ce_request_info[req_info] |
| .ce_sps; |
| pce_sps_data->in_transfer.iovec_count = 0; |
| pce_sps_data->out_transfer.iovec_count = 0; |
| } |
| |
| static void _qce_set_flag(struct sps_transfer *sps_bam_pipe, uint32_t flag) |
| { |
| struct sps_iovec *iovec; |
| |
| if (sps_bam_pipe->iovec_count == 0) |
| return; |
| iovec = sps_bam_pipe->iovec + (sps_bam_pipe->iovec_count - 1); |
| iovec->flags |= flag; |
| } |
| |
| static int _qce_sps_add_data(dma_addr_t paddr, uint32_t len, |
| struct sps_transfer *sps_bam_pipe) |
| { |
| struct sps_iovec *iovec = sps_bam_pipe->iovec + |
| sps_bam_pipe->iovec_count; |
| uint32_t data_cnt; |
| |
| while (len > 0) { |
| if (sps_bam_pipe->iovec_count == QCE_MAX_NUM_DSCR) { |
| pr_err("Num of descrptor %d exceed max (%d)", |
| sps_bam_pipe->iovec_count, |
| (uint32_t)QCE_MAX_NUM_DSCR); |
| return -ENOMEM; |
| } |
| if (len > SPS_MAX_PKT_SIZE) |
| data_cnt = SPS_MAX_PKT_SIZE; |
| else |
| data_cnt = len; |
| iovec->size = data_cnt; |
| iovec->addr = SPS_GET_LOWER_ADDR(paddr); |
| iovec->flags = SPS_GET_UPPER_ADDR(paddr); |
| sps_bam_pipe->iovec_count++; |
| iovec++; |
| paddr += data_cnt; |
| len -= data_cnt; |
| } |
| return 0; |
| } |
| |
| static int _qce_sps_add_sg_data(struct qce_device *pce_dev, |
| struct scatterlist *sg_src, uint32_t nbytes, |
| struct sps_transfer *sps_bam_pipe) |
| { |
| uint32_t data_cnt, len; |
| dma_addr_t addr; |
| struct sps_iovec *iovec = sps_bam_pipe->iovec + |
| sps_bam_pipe->iovec_count; |
| |
| while (nbytes > 0) { |
| len = min(nbytes, sg_dma_len(sg_src)); |
| nbytes -= len; |
| addr = sg_dma_address(sg_src); |
| if (pce_dev->ce_bam_info.minor_version == 0) |
| len = ALIGN(len, pce_dev->ce_bam_info.ce_burst_size); |
| while (len > 0) { |
| if (sps_bam_pipe->iovec_count == QCE_MAX_NUM_DSCR) { |
| pr_err("Num of descrptor %d exceed max (%d)", |
| sps_bam_pipe->iovec_count, |
| (uint32_t)QCE_MAX_NUM_DSCR); |
| return -ENOMEM; |
| } |
| if (len > SPS_MAX_PKT_SIZE) { |
| data_cnt = SPS_MAX_PKT_SIZE; |
| iovec->size = data_cnt; |
| iovec->addr = SPS_GET_LOWER_ADDR(addr); |
| iovec->flags = SPS_GET_UPPER_ADDR(addr); |
| } else { |
| data_cnt = len; |
| iovec->size = data_cnt; |
| iovec->addr = SPS_GET_LOWER_ADDR(addr); |
| iovec->flags = SPS_GET_UPPER_ADDR(addr); |
| } |
| iovec++; |
| sps_bam_pipe->iovec_count++; |
| addr += data_cnt; |
| len -= data_cnt; |
| } |
| sg_src = sg_next(sg_src); |
| } |
| return 0; |
| } |
| |
| static int _qce_sps_add_sg_data_off(struct qce_device *pce_dev, |
| struct scatterlist *sg_src, uint32_t nbytes, uint32_t off, |
| struct sps_transfer *sps_bam_pipe) |
| { |
| uint32_t data_cnt, len; |
| dma_addr_t addr; |
| struct sps_iovec *iovec = sps_bam_pipe->iovec + |
| sps_bam_pipe->iovec_count; |
| unsigned int res_within_sg; |
| |
| if (!sg_src) |
| return -ENOENT; |
| res_within_sg = sg_dma_len(sg_src); |
| |
| while (off > 0) { |
| if (!sg_src) { |
| pr_err("broken sg list off %d nbytes %d\n", |
| off, nbytes); |
| return -ENOENT; |
| } |
| len = sg_dma_len(sg_src); |
| if (off < len) { |
| res_within_sg = len - off; |
| break; |
| } |
| off -= len; |
| sg_src = sg_next(sg_src); |
| if (sg_src) |
| res_within_sg = sg_dma_len(sg_src); |
| } |
| while (nbytes > 0 && sg_src) { |
| len = min(nbytes, res_within_sg); |
| nbytes -= len; |
| addr = sg_dma_address(sg_src) + off; |
| if (pce_dev->ce_bam_info.minor_version == 0) |
| len = ALIGN(len, pce_dev->ce_bam_info.ce_burst_size); |
| while (len > 0) { |
| if (sps_bam_pipe->iovec_count == QCE_MAX_NUM_DSCR) { |
| pr_err("Num of descrptor %d exceed max (%d)", |
| sps_bam_pipe->iovec_count, |
| (uint32_t)QCE_MAX_NUM_DSCR); |
| return -ENOMEM; |
| } |
| if (len > SPS_MAX_PKT_SIZE) { |
| data_cnt = SPS_MAX_PKT_SIZE; |
| iovec->size = data_cnt; |
| iovec->addr = SPS_GET_LOWER_ADDR(addr); |
| iovec->flags = SPS_GET_UPPER_ADDR(addr); |
| } else { |
| data_cnt = len; |
| iovec->size = data_cnt; |
| iovec->addr = SPS_GET_LOWER_ADDR(addr); |
| iovec->flags = SPS_GET_UPPER_ADDR(addr); |
| } |
| iovec++; |
| sps_bam_pipe->iovec_count++; |
| addr += data_cnt; |
| len -= data_cnt; |
| } |
| if (nbytes) { |
| sg_src = sg_next(sg_src); |
| if (!sg_src) { |
| pr_err("more data bytes %d\n", nbytes); |
| return -ENOMEM; |
| } |
| res_within_sg = sg_dma_len(sg_src); |
| off = 0; |
| } |
| } |
| return 0; |
| } |
| |
| static int _qce_sps_add_cmd(struct qce_device *pce_dev, uint32_t flag, |
| struct qce_cmdlist_info *cmdptr, |
| struct sps_transfer *sps_bam_pipe) |
| { |
| dma_addr_t paddr = GET_PHYS_ADDR(cmdptr->cmdlist); |
| struct sps_iovec *iovec = sps_bam_pipe->iovec + |
| sps_bam_pipe->iovec_count; |
| iovec->size = cmdptr->size; |
| iovec->addr = SPS_GET_LOWER_ADDR(paddr); |
| iovec->flags = SPS_GET_UPPER_ADDR(paddr) | SPS_IOVEC_FLAG_CMD | flag; |
| sps_bam_pipe->iovec_count++; |
| if (sps_bam_pipe->iovec_count >= QCE_MAX_NUM_DSCR) { |
| pr_err("Num of descrptor %d exceed max (%d)", |
| sps_bam_pipe->iovec_count, (uint32_t)QCE_MAX_NUM_DSCR); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static int _qce_sps_transfer(struct qce_device *pce_dev, int req_info) |
| { |
| int rc = 0; |
| struct ce_sps_data *pce_sps_data; |
| |
| pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps; |
| pce_sps_data->out_transfer.user = |
| (void *)((uintptr_t)(CRYPTO_REQ_USER_PAT | |
| (unsigned int) req_info)); |
| pce_sps_data->in_transfer.user = |
| (void *)((uintptr_t)(CRYPTO_REQ_USER_PAT | |
| (unsigned int) req_info)); |
| _qce_dump_descr_fifos_dbg(pce_dev, req_info); |
| |
| if (pce_sps_data->in_transfer.iovec_count) { |
| rc = sps_transfer(pce_dev->ce_bam_info.consumer.pipe, |
| &pce_sps_data->in_transfer); |
| if (rc) { |
| pr_err("sps_xfr() fail (consumer pipe=0x%lx) rc = %d\n", |
| (uintptr_t)pce_dev->ce_bam_info.consumer.pipe, |
| rc); |
| goto ret; |
| } |
| } |
| rc = sps_transfer(pce_dev->ce_bam_info.producer.pipe, |
| &pce_sps_data->out_transfer); |
| if (rc) |
| pr_err("sps_xfr() fail (producer pipe=0x%lx) rc = %d\n", |
| (uintptr_t)pce_dev->ce_bam_info.producer.pipe, rc); |
| ret: |
| if (rc) |
| _qce_dump_descr_fifos(pce_dev, req_info); |
| return rc; |
| } |
| |
| /** |
| * Allocate and Connect a CE peripheral's SPS endpoint |
| * |
| * This function allocates endpoint context and |
| * connect it with memory endpoint by calling |
| * appropriate SPS driver APIs. |
| * |
| * Also registers a SPS callback function with |
| * SPS driver |
| * |
| * This function should only be called once typically |
| * during driver probe. |
| * |
| * @pce_dev - Pointer to qce_device structure |
| * @ep - Pointer to sps endpoint data structure |
| * @is_produce - 1 means Producer endpoint |
| * 0 means Consumer endpoint |
| * |
| * @return - 0 if successful else negative value. |
| * |
| */ |
| static int qce_sps_init_ep_conn(struct qce_device *pce_dev, |
| struct qce_sps_ep_conn_data *ep, |
| bool is_producer) |
| { |
| int rc = 0; |
| struct sps_pipe *sps_pipe_info; |
| struct sps_connect *sps_connect_info = &ep->connect; |
| struct sps_register_event *sps_event = &ep->event; |
| |
| /* Allocate endpoint context */ |
| sps_pipe_info = sps_alloc_endpoint(); |
| if (!sps_pipe_info) { |
| pr_err("sps_alloc_endpoint() failed!!! is_producer=%d", |
| is_producer); |
| rc = -ENOMEM; |
| goto out; |
| } |
| /* Now save the sps pipe handle */ |
| ep->pipe = sps_pipe_info; |
| |
| /* Get default connection configuration for an endpoint */ |
| rc = sps_get_config(sps_pipe_info, sps_connect_info); |
| if (rc) { |
| pr_err("sps_get_config() fail pipe_handle=0x%lx, rc = %d\n", |
| (uintptr_t)sps_pipe_info, rc); |
| goto get_config_err; |
| } |
| |
| /* Modify the default connection configuration */ |
| if (is_producer) { |
| /* |
| * For CE producer transfer, source should be |
| * CE peripheral where as destination should |
| * be system memory. |
| */ |
| sps_connect_info->source = pce_dev->ce_bam_info.bam_handle; |
| sps_connect_info->destination = SPS_DEV_HANDLE_MEM; |
| /* Producer pipe will handle this connection */ |
| sps_connect_info->mode = SPS_MODE_SRC; |
| sps_connect_info->options = |
| SPS_O_AUTO_ENABLE | SPS_O_DESC_DONE; |
| } else { |
| /* For CE consumer transfer, source should be |
| * system memory where as destination should |
| * CE peripheral |
| */ |
| sps_connect_info->source = SPS_DEV_HANDLE_MEM; |
| sps_connect_info->destination = pce_dev->ce_bam_info.bam_handle; |
| sps_connect_info->mode = SPS_MODE_DEST; |
| sps_connect_info->options = |
| SPS_O_AUTO_ENABLE; |
| } |
| |
| /* Producer pipe index */ |
| sps_connect_info->src_pipe_index = |
| pce_dev->ce_bam_info.src_pipe_index; |
| /* Consumer pipe index */ |
| sps_connect_info->dest_pipe_index = |
| pce_dev->ce_bam_info.dest_pipe_index; |
| /* Set pipe group */ |
| sps_connect_info->lock_group = pce_dev->ce_bam_info.pipe_pair_index; |
| sps_connect_info->event_thresh = 0x10; |
| /* |
| * Max. no of scatter/gather buffers that can |
| * be passed by block layer = 32 (NR_SG). |
| * Each BAM descritor needs 64 bits (8 bytes). |
| * One BAM descriptor is required per buffer transfer. |
| * So we would require total 256 (32 * 8) bytes of descriptor FIFO. |
| * But due to HW limitation we need to allocate atleast one extra |
| * descriptor memory (256 bytes + 8 bytes). But in order to be |
| * in power of 2, we are allocating 512 bytes of memory. |
| */ |
| sps_connect_info->desc.size = QCE_MAX_NUM_DSCR * MAX_QCE_ALLOC_BAM_REQ * |
| sizeof(struct sps_iovec); |
| if (sps_connect_info->desc.size > MAX_SPS_DESC_FIFO_SIZE) |
| sps_connect_info->desc.size = MAX_SPS_DESC_FIFO_SIZE; |
| sps_connect_info->desc.base = dma_alloc_coherent(pce_dev->pdev, |
| sps_connect_info->desc.size, |
| &sps_connect_info->desc.phys_base, |
| GFP_KERNEL); |
| if (sps_connect_info->desc.base == NULL) { |
| rc = -ENOMEM; |
| pr_err("Can not allocate coherent memory for sps data\n"); |
| goto get_config_err; |
| } |
| |
| memset(sps_connect_info->desc.base, 0x00, sps_connect_info->desc.size); |
| |
| /* Establish connection between peripheral and memory endpoint */ |
| rc = sps_connect(sps_pipe_info, sps_connect_info); |
| if (rc) { |
| pr_err("sps_connect() fail pipe_handle=0x%lx, rc = %d\n", |
| (uintptr_t)sps_pipe_info, rc); |
| goto sps_connect_err; |
| } |
| |
| sps_event->mode = SPS_TRIGGER_CALLBACK; |
| sps_event->xfer_done = NULL; |
| sps_event->user = (void *)pce_dev; |
| if (is_producer) { |
| sps_event->options = SPS_O_EOT | SPS_O_DESC_DONE; |
| sps_event->callback = _sps_producer_callback; |
| rc = sps_register_event(ep->pipe, sps_event); |
| if (rc) { |
| pr_err("Producer callback registration failed rc=%d\n", |
| rc); |
| goto sps_connect_err; |
| } |
| } else { |
| sps_event->options = SPS_O_EOT; |
| sps_event->callback = NULL; |
| } |
| |
| pr_debug("success, %s : pipe_handle=0x%lx, desc fifo base (phy) = 0x%pK\n", |
| is_producer ? "PRODUCER(RX/OUT)" : "CONSUMER(TX/IN)", |
| (uintptr_t)sps_pipe_info, &sps_connect_info->desc.phys_base); |
| goto out; |
| |
| sps_connect_err: |
| dma_free_coherent(pce_dev->pdev, |
| sps_connect_info->desc.size, |
| sps_connect_info->desc.base, |
| sps_connect_info->desc.phys_base); |
| get_config_err: |
| sps_free_endpoint(sps_pipe_info); |
| out: |
| return rc; |
| } |
| |
| /** |
| * Disconnect and Deallocate a CE peripheral's SPS endpoint |
| * |
| * This function disconnect endpoint and deallocates |
| * endpoint context. |
| * |
| * This function should only be called once typically |
| * during driver remove. |
| * |
| * @pce_dev - Pointer to qce_device structure |
| * @ep - Pointer to sps endpoint data structure |
| * |
| */ |
| static void qce_sps_exit_ep_conn(struct qce_device *pce_dev, |
| struct qce_sps_ep_conn_data *ep) |
| { |
| struct sps_pipe *sps_pipe_info = ep->pipe; |
| struct sps_connect *sps_connect_info = &ep->connect; |
| |
| sps_disconnect(sps_pipe_info); |
| dma_free_coherent(pce_dev->pdev, |
| sps_connect_info->desc.size, |
| sps_connect_info->desc.base, |
| sps_connect_info->desc.phys_base); |
| sps_free_endpoint(sps_pipe_info); |
| } |
| |
| static void qce_sps_release_bam(struct qce_device *pce_dev) |
| { |
| struct bam_registration_info *pbam; |
| |
| mutex_lock(&bam_register_lock); |
| pbam = pce_dev->pbam; |
| if (pbam == NULL) |
| goto ret; |
| |
| pbam->cnt--; |
| if (pbam->cnt > 0) |
| goto ret; |
| |
| if (pce_dev->ce_bam_info.bam_handle) { |
| sps_deregister_bam_device(pce_dev->ce_bam_info.bam_handle); |
| |
| pr_debug("deregister bam handle 0x%lx\n", |
| pce_dev->ce_bam_info.bam_handle); |
| pce_dev->ce_bam_info.bam_handle = 0; |
| } |
| iounmap(pbam->bam_iobase); |
| pr_debug("delete bam 0x%x\n", pbam->bam_mem); |
| list_del(&pbam->qlist); |
| kfree(pbam); |
| |
| ret: |
| pce_dev->pbam = NULL; |
| mutex_unlock(&bam_register_lock); |
| } |
| |
| static int qce_sps_get_bam(struct qce_device *pce_dev) |
| { |
| int rc = 0; |
| struct sps_bam_props bam = {0}; |
| struct bam_registration_info *pbam = NULL; |
| struct bam_registration_info *p; |
| uint32_t bam_cfg = 0; |
| |
| |
| mutex_lock(&bam_register_lock); |
| |
| list_for_each_entry(p, &qce50_bam_list, qlist) { |
| if (p->bam_mem == pce_dev->bam_mem) { |
| pbam = p; /* found */ |
| break; |
| } |
| } |
| |
| if (pbam) { |
| pr_debug("found bam 0x%x\n", pbam->bam_mem); |
| pbam->cnt++; |
| pce_dev->ce_bam_info.bam_handle = pbam->handle; |
| pce_dev->ce_bam_info.bam_mem = pbam->bam_mem; |
| pce_dev->ce_bam_info.bam_iobase = pbam->bam_iobase; |
| pce_dev->pbam = pbam; |
| pce_dev->support_cmd_dscr = pbam->support_cmd_dscr; |
| goto ret; |
| } |
| |
| pbam = kzalloc(sizeof(struct bam_registration_info), GFP_KERNEL); |
| if (!pbam) { |
| rc = -ENOMEM; |
| goto ret; |
| } |
| pbam->cnt = 1; |
| pbam->bam_mem = pce_dev->bam_mem; |
| pbam->bam_iobase = ioremap_nocache(pce_dev->bam_mem, |
| pce_dev->bam_mem_size); |
| if (!pbam->bam_iobase) { |
| kfree(pbam); |
| rc = -ENOMEM; |
| pr_err("Can not map BAM io memory\n"); |
| goto ret; |
| } |
| pce_dev->ce_bam_info.bam_mem = pbam->bam_mem; |
| pce_dev->ce_bam_info.bam_iobase = pbam->bam_iobase; |
| pbam->handle = 0; |
| pr_debug("allocate bam 0x%x\n", pbam->bam_mem); |
| bam_cfg = readl_relaxed(pce_dev->ce_bam_info.bam_iobase + |
| CRYPTO_BAM_CNFG_BITS_REG); |
| pbam->support_cmd_dscr = (bam_cfg & CRYPTO_BAM_CD_ENABLE_MASK) ? |
| true : false; |
| if (pbam->support_cmd_dscr == false) { |
| pr_info("qce50 don't support command descriptor. bam_cfg%x\n", |
| bam_cfg); |
| pce_dev->no_get_around = false; |
| } |
| pce_dev->support_cmd_dscr = pbam->support_cmd_dscr; |
| |
| bam.phys_addr = pce_dev->ce_bam_info.bam_mem; |
| bam.virt_addr = pce_dev->ce_bam_info.bam_iobase; |
| |
| /* |
| * This event thresold value is only significant for BAM-to-BAM |
| * transfer. It's ignored for BAM-to-System mode transfer. |
| */ |
| bam.event_threshold = 0x10; /* Pipe event threshold */ |
| /* |
| * This threshold controls when the BAM publish |
| * the descriptor size on the sideband interface. |
| * SPS HW will only be used when |
| * data transfer size > 64 bytes. |
| */ |
| bam.summing_threshold = 64; |
| /* SPS driver wll handle the crypto BAM IRQ */ |
| bam.irq = (u32)pce_dev->ce_bam_info.bam_irq; |
| /* |
| * Set flag to indicate BAM global device control is managed |
| * remotely. |
| */ |
| if ((pce_dev->support_cmd_dscr == false) || (pce_dev->is_shared)) |
| bam.manage = SPS_BAM_MGR_DEVICE_REMOTE; |
| else |
| bam.manage = SPS_BAM_MGR_LOCAL; |
| |
| bam.ee = pce_dev->ce_bam_info.bam_ee; |
| bam.ipc_loglevel = QCE_BAM_DEFAULT_IPC_LOGLVL; |
| bam.options |= SPS_BAM_CACHED_WP; |
| pr_debug("bam physical base=0x%lx\n", (uintptr_t)bam.phys_addr); |
| pr_debug("bam virtual base=0x%pK\n", bam.virt_addr); |
| |
| /* Register CE Peripheral BAM device to SPS driver */ |
| rc = sps_register_bam_device(&bam, &pbam->handle); |
| if (rc) { |
| pr_err("sps_register_bam_device() failed! err=%d", rc); |
| rc = -EIO; |
| iounmap(pbam->bam_iobase); |
| kfree(pbam); |
| goto ret; |
| } |
| |
| pce_dev->pbam = pbam; |
| list_add_tail(&pbam->qlist, &qce50_bam_list); |
| pce_dev->ce_bam_info.bam_handle = pbam->handle; |
| |
| ret: |
| mutex_unlock(&bam_register_lock); |
| |
| return rc; |
| } |
| /** |
| * Initialize SPS HW connected with CE core |
| * |
| * This function register BAM HW resources with |
| * SPS driver and then initialize 2 SPS endpoints |
| * |
| * This function should only be called once typically |
| * during driver probe. |
| * |
| * @pce_dev - Pointer to qce_device structure |
| * |
| * @return - 0 if successful else negative value. |
| * |
| */ |
| static int qce_sps_init(struct qce_device *pce_dev) |
| { |
| int rc = 0; |
| |
| rc = qce_sps_get_bam(pce_dev); |
| if (rc) |
| return rc; |
| pr_debug("BAM device registered. bam_handle=0x%lx\n", |
| pce_dev->ce_bam_info.bam_handle); |
| |
| rc = qce_sps_init_ep_conn(pce_dev, |
| &pce_dev->ce_bam_info.producer, true); |
| if (rc) |
| goto sps_connect_producer_err; |
| rc = qce_sps_init_ep_conn(pce_dev, |
| &pce_dev->ce_bam_info.consumer, false); |
| if (rc) |
| goto sps_connect_consumer_err; |
| |
| pr_info(" QTI MSM CE-BAM at 0x%016llx irq %d\n", |
| (unsigned long long)pce_dev->ce_bam_info.bam_mem, |
| (unsigned int)pce_dev->ce_bam_info.bam_irq); |
| return rc; |
| |
| sps_connect_consumer_err: |
| qce_sps_exit_ep_conn(pce_dev, &pce_dev->ce_bam_info.producer); |
| sps_connect_producer_err: |
| qce_sps_release_bam(pce_dev); |
| return rc; |
| } |
| |
| static inline int qce_alloc_req_info(struct qce_device *pce_dev) |
| { |
| int i; |
| int request_index = pce_dev->ce_request_index; |
| |
| for (i = 0; i < MAX_QCE_BAM_REQ; i++) { |
| request_index++; |
| if (request_index >= MAX_QCE_BAM_REQ) |
| request_index = 0; |
| if (atomic_xchg(&pce_dev->ce_request_info[request_index]. |
| in_use, true) == false) { |
| pce_dev->ce_request_index = request_index; |
| return request_index; |
| } |
| } |
| pr_warn("pcedev %d no reqs available no_of_queued_req %d\n", |
| pce_dev->dev_no, atomic_read( |
| &pce_dev->no_of_queued_req)); |
| return -EBUSY; |
| } |
| |
| static inline void qce_free_req_info(struct qce_device *pce_dev, int req_info, |
| bool is_complete) |
| { |
| pce_dev->ce_request_info[req_info].xfer_type = QCE_XFER_TYPE_LAST; |
| if (atomic_xchg(&pce_dev->ce_request_info[req_info].in_use, |
| false) == true) { |
| if (req_info < MAX_QCE_BAM_REQ && is_complete) |
| atomic_dec(&pce_dev->no_of_queued_req); |
| } else |
| pr_warn("request info %d free already\n", req_info); |
| } |
| |
| static void print_notify_debug(struct sps_event_notify *notify) |
| { |
| phys_addr_t addr = |
| DESC_FULL_ADDR((phys_addr_t) notify->data.transfer.iovec.flags, |
| notify->data.transfer.iovec.addr); |
| pr_debug("sps ev_id=%d, addr=0x%pa, size=0x%x, flags=0x%x user=0x%pK\n", |
| notify->event_id, &addr, |
| notify->data.transfer.iovec.size, |
| notify->data.transfer.iovec.flags, |
| notify->data.transfer.user); |
| } |
| |
| static void _qce_req_complete(struct qce_device *pce_dev, unsigned int req_info) |
| { |
| struct ce_request_info *preq_info; |
| |
| preq_info = &pce_dev->ce_request_info[req_info]; |
| |
| switch (preq_info->xfer_type) { |
| case QCE_XFER_CIPHERING: |
| _ablk_cipher_complete(pce_dev, req_info); |
| break; |
| case QCE_XFER_HASHING: |
| _sha_complete(pce_dev, req_info); |
| break; |
| case QCE_XFER_AEAD: |
| _aead_complete(pce_dev, req_info); |
| break; |
| case QCE_XFER_F8: |
| _f8_complete(pce_dev, req_info); |
| break; |
| case QCE_XFER_F9: |
| _f9_complete(pce_dev, req_info); |
| break; |
| default: |
| qce_free_req_info(pce_dev, req_info, true); |
| break; |
| } |
| } |
| |
| static void qce_multireq_timeout(unsigned long data) |
| { |
| struct qce_device *pce_dev = (struct qce_device *)data; |
| int ret = 0; |
| int last_seq; |
| unsigned long flags; |
| |
| last_seq = atomic_read(&pce_dev->bunch_cmd_seq); |
| if (last_seq == 0 || |
| last_seq != atomic_read(&pce_dev->last_intr_seq)) { |
| atomic_set(&pce_dev->last_intr_seq, last_seq); |
| mod_timer(&(pce_dev->timer), (jiffies + DELAY_IN_JIFFIES)); |
| return; |
| } |
| /* last bunch mode command time out */ |
| |
| /* |
| * From here to dummy request finish sps request and set owner back |
| * to none, we disable interrupt. |
| * So it won't get preempted or interrupted. If bam inerrupts happen |
| * between, and completion callback gets called from BAM, a new |
| * request may be issued by the client driver. Deadlock may happen. |
| */ |
| local_irq_save(flags); |
| if (cmpxchg(&pce_dev->owner, QCE_OWNER_NONE, QCE_OWNER_TIMEOUT) |
| != QCE_OWNER_NONE) { |
| local_irq_restore(flags); |
| mod_timer(&(pce_dev->timer), (jiffies + DELAY_IN_JIFFIES)); |
| return; |
| } |
| |
| ret = qce_dummy_req(pce_dev); |
| if (ret) |
| pr_warn("pcedev %d: Failed to insert dummy req\n", |
| pce_dev->dev_no); |
| cmpxchg(&pce_dev->owner, QCE_OWNER_TIMEOUT, QCE_OWNER_NONE); |
| pce_dev->mode = IN_INTERRUPT_MODE; |
| local_irq_restore(flags); |
| |
| del_timer(&(pce_dev->timer)); |
| pce_dev->qce_stats.no_of_timeouts++; |
| pr_debug("pcedev %d mode switch to INTR\n", pce_dev->dev_no); |
| } |
| |
| void qce_get_driver_stats(void *handle) |
| { |
| struct qce_device *pce_dev = (struct qce_device *) handle; |
| |
| if (!_qce50_disp_stats) |
| return; |
| pr_info("Engine %d timeout occuured %d\n", pce_dev->dev_no, |
| pce_dev->qce_stats.no_of_timeouts); |
| pr_info("Engine %d dummy request inserted %d\n", pce_dev->dev_no, |
| pce_dev->qce_stats.no_of_dummy_reqs); |
| if (pce_dev->mode) |
| pr_info("Engine %d is in BUNCH MODE\n", pce_dev->dev_no); |
| else |
| pr_info("Engine %d is in INTERRUPT MODE\n", pce_dev->dev_no); |
| pr_info("Engine %d outstanding request %d\n", pce_dev->dev_no, |
| atomic_read(&pce_dev->no_of_queued_req)); |
| } |
| EXPORT_SYMBOL(qce_get_driver_stats); |
| |
| void qce_clear_driver_stats(void *handle) |
| { |
| struct qce_device *pce_dev = (struct qce_device *) handle; |
| |
| pce_dev->qce_stats.no_of_timeouts = 0; |
| pce_dev->qce_stats.no_of_dummy_reqs = 0; |
| } |
| EXPORT_SYMBOL(qce_clear_driver_stats); |
| |
| static void _sps_producer_callback(struct sps_event_notify *notify) |
| { |
| struct qce_device *pce_dev = (struct qce_device *) |
| ((struct sps_event_notify *)notify)->user; |
| int rc = 0; |
| unsigned int req_info; |
| struct ce_sps_data *pce_sps_data; |
| struct ce_request_info *preq_info; |
| |
| print_notify_debug(notify); |
| |
| req_info = (unsigned int)((uintptr_t)notify->data.transfer.user); |
| if ((req_info & 0xffff0000) != CRYPTO_REQ_USER_PAT) { |
| pr_warn("request information %d out of range\n", req_info); |
| return; |
| } |
| |
| req_info = req_info & 0x00ff; |
| if (req_info < 0 || req_info >= MAX_QCE_ALLOC_BAM_REQ) { |
| pr_warn("request information %d out of range\n", req_info); |
| return; |
| } |
| |
| preq_info = &pce_dev->ce_request_info[req_info]; |
| |
| pce_sps_data = &preq_info->ce_sps; |
| if ((preq_info->xfer_type == QCE_XFER_CIPHERING || |
| preq_info->xfer_type == QCE_XFER_AEAD) && |
| pce_sps_data->producer_state == QCE_PIPE_STATE_IDLE) { |
| pce_sps_data->producer_state = QCE_PIPE_STATE_COMP; |
| pce_sps_data->out_transfer.iovec_count = 0; |
| _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump), |
| CRYPTO_RESULT_DUMP_SIZE, |
| &pce_sps_data->out_transfer); |
| _qce_set_flag(&pce_sps_data->out_transfer, |
| SPS_IOVEC_FLAG_INT); |
| rc = sps_transfer(pce_dev->ce_bam_info.producer.pipe, |
| &pce_sps_data->out_transfer); |
| if (rc) { |
| pr_err("sps_xfr() fail (producer pipe=0x%lx) rc = %d\n", |
| (uintptr_t)pce_dev->ce_bam_info.producer.pipe, |
| rc); |
| } |
| return; |
| } |
| |
| _qce_req_complete(pce_dev, req_info); |
| } |
| |
| /** |
| * De-initialize SPS HW connected with CE core |
| * |
| * This function deinitialize SPS endpoints and then |
| * deregisters BAM resources from SPS driver. |
| * |
| * This function should only be called once typically |
| * during driver remove. |
| * |
| * @pce_dev - Pointer to qce_device structure |
| * |
| */ |
| static void qce_sps_exit(struct qce_device *pce_dev) |
| { |
| qce_sps_exit_ep_conn(pce_dev, &pce_dev->ce_bam_info.consumer); |
| qce_sps_exit_ep_conn(pce_dev, &pce_dev->ce_bam_info.producer); |
| qce_sps_release_bam(pce_dev); |
| } |
| |
| static void qce_add_cmd_element(struct qce_device *pdev, |
| struct sps_command_element **cmd_ptr, u32 addr, |
| u32 data, struct sps_command_element **populate) |
| { |
| (*cmd_ptr)->addr = (uint32_t)(addr + pdev->phy_iobase); |
| (*cmd_ptr)->command = 0; |
| (*cmd_ptr)->data = data; |
| (*cmd_ptr)->mask = 0xFFFFFFFF; |
| (*cmd_ptr)->reserved = 0; |
| if (populate != NULL) |
| *populate = *cmd_ptr; |
| (*cmd_ptr)++; |
| } |
| |
| static int _setup_cipher_aes_cmdlistptrs(struct qce_device *pdev, int cri_index, |
| unsigned char **pvaddr, enum qce_cipher_mode_enum mode, |
| bool key_128) |
| { |
| struct sps_command_element *ce_vaddr; |
| uintptr_t ce_vaddr_start; |
| struct qce_cmdlistptr_ops *cmdlistptr; |
| struct qce_cmdlist_info *pcl_info = NULL; |
| int i = 0; |
| uint32_t encr_cfg = 0; |
| uint32_t key_reg = 0; |
| uint32_t xts_key_reg = 0; |
| uint32_t iv_reg = 0; |
| |
| cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr; |
| *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)), |
| pdev->ce_bam_info.ce_burst_size); |
| ce_vaddr = (struct sps_command_element *)(*pvaddr); |
| ce_vaddr_start = (uintptr_t)(*pvaddr); |
| /* |
| * Designate chunks of the allocated memory to various |
| * command list pointers related to AES cipher operations defined |
| * in ce_cmdlistptrs_ops structure. |
| */ |
| switch (mode) { |
| case QCE_MODE_CBC: |
| case QCE_MODE_CTR: |
| if (key_128 == true) { |
| cmdlistptr->cipher_aes_128_cbc_ctr.cmdlist = |
| (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->cipher_aes_128_cbc_ctr); |
| if (mode == QCE_MODE_CBC) |
| encr_cfg = pdev->reg.encr_cfg_aes_cbc_128; |
| else |
| encr_cfg = pdev->reg.encr_cfg_aes_ctr_128; |
| iv_reg = 4; |
| key_reg = 4; |
| xts_key_reg = 0; |
| } else { |
| cmdlistptr->cipher_aes_256_cbc_ctr.cmdlist = |
| (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->cipher_aes_256_cbc_ctr); |
| |
| if (mode == QCE_MODE_CBC) |
| encr_cfg = pdev->reg.encr_cfg_aes_cbc_256; |
| else |
| encr_cfg = pdev->reg.encr_cfg_aes_ctr_256; |
| iv_reg = 4; |
| key_reg = 8; |
| xts_key_reg = 0; |
| } |
| break; |
| case QCE_MODE_ECB: |
| if (key_128 == true) { |
| cmdlistptr->cipher_aes_128_ecb.cmdlist = |
| (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->cipher_aes_128_ecb); |
| |
| encr_cfg = pdev->reg.encr_cfg_aes_ecb_128; |
| iv_reg = 0; |
| key_reg = 4; |
| xts_key_reg = 0; |
| } else { |
| cmdlistptr->cipher_aes_256_ecb.cmdlist = |
| (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->cipher_aes_256_ecb); |
| |
| encr_cfg = pdev->reg.encr_cfg_aes_ecb_256; |
| iv_reg = 0; |
| key_reg = 8; |
| xts_key_reg = 0; |
| } |
| break; |
| case QCE_MODE_XTS: |
| if (key_128 == true) { |
| cmdlistptr->cipher_aes_128_xts.cmdlist = |
| (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->cipher_aes_128_xts); |
| |
| encr_cfg = pdev->reg.encr_cfg_aes_xts_128; |
| iv_reg = 4; |
| key_reg = 4; |
| xts_key_reg = 4; |
| } else { |
| cmdlistptr->cipher_aes_256_xts.cmdlist = |
| (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->cipher_aes_256_xts); |
| |
| encr_cfg = pdev->reg.encr_cfg_aes_xts_256; |
| iv_reg = 4; |
| key_reg = 8; |
| xts_key_reg = 8; |
| } |
| break; |
| default: |
| pr_err("Unknown mode of operation %d received, exiting now\n", |
| mode); |
| return -EINVAL; |
| break; |
| } |
| |
| /* clear status register */ |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, |
| pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0, |
| &pcl_info->seg_size); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg, |
| &pcl_info->encr_seg_cfg); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0, |
| &pcl_info->encr_seg_size); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0, |
| &pcl_info->encr_seg_start); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG, |
| (uint32_t)0xffffffff, &pcl_info->encr_mask); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG0, |
| (uint32_t)0xffffffff, NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG1, |
| (uint32_t)0xffffffff, NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG2, |
| (uint32_t)0xffffffff, NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0, |
| &pcl_info->auth_seg_cfg); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0, |
| &pcl_info->encr_key); |
| for (i = 1; i < key_reg; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)), |
| 0, NULL); |
| if (xts_key_reg) { |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_XTS_KEY0_REG, |
| 0, &pcl_info->encr_xts_key); |
| for (i = 1; i < xts_key_reg; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_ENCR_XTS_KEY0_REG + |
| i * sizeof(uint32_t)), 0, NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| CRYPTO_ENCR_XTS_DU_SIZE_REG, 0, |
| &pcl_info->encr_xts_du_size); |
| } |
| if (iv_reg) { |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0, |
| &pcl_info->encr_cntr_iv); |
| for (i = 1; i < iv_reg; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)), |
| 0, NULL); |
| } |
| /* Add dummy to align size to burst-size multiple */ |
| if (mode == QCE_MODE_XTS) { |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, |
| 0, &pcl_info->auth_seg_size); |
| } else { |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, |
| 0, &pcl_info->auth_seg_size); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, |
| 0, &pcl_info->auth_seg_size); |
| } |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, |
| pdev->reg.crypto_cfg_le, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG, |
| ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) | |
| (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc); |
| |
| pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start; |
| *pvaddr = (unsigned char *) ce_vaddr; |
| |
| return 0; |
| } |
| |
| static int _setup_cipher_des_cmdlistptrs(struct qce_device *pdev, int cri_index, |
| unsigned char **pvaddr, enum qce_cipher_alg_enum alg, |
| bool mode_cbc) |
| { |
| |
| struct sps_command_element *ce_vaddr; |
| uintptr_t ce_vaddr_start; |
| struct qce_cmdlistptr_ops *cmdlistptr; |
| struct qce_cmdlist_info *pcl_info = NULL; |
| int i = 0; |
| uint32_t encr_cfg = 0; |
| uint32_t key_reg = 0; |
| uint32_t iv_reg = 0; |
| |
| cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr; |
| *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)), |
| pdev->ce_bam_info.ce_burst_size); |
| ce_vaddr = (struct sps_command_element *)(*pvaddr); |
| ce_vaddr_start = (uintptr_t)(*pvaddr); |
| |
| /* |
| * Designate chunks of the allocated memory to various |
| * command list pointers related to cipher operations defined |
| * in ce_cmdlistptrs_ops structure. |
| */ |
| switch (alg) { |
| case CIPHER_ALG_DES: |
| if (mode_cbc) { |
| cmdlistptr->cipher_des_cbc.cmdlist = |
| (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->cipher_des_cbc); |
| |
| |
| encr_cfg = pdev->reg.encr_cfg_des_cbc; |
| iv_reg = 2; |
| key_reg = 2; |
| } else { |
| cmdlistptr->cipher_des_ecb.cmdlist = |
| (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->cipher_des_ecb); |
| |
| encr_cfg = pdev->reg.encr_cfg_des_ecb; |
| iv_reg = 0; |
| key_reg = 2; |
| } |
| break; |
| case CIPHER_ALG_3DES: |
| if (mode_cbc) { |
| cmdlistptr->cipher_3des_cbc.cmdlist = |
| (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->cipher_3des_cbc); |
| |
| encr_cfg = pdev->reg.encr_cfg_3des_cbc; |
| iv_reg = 2; |
| key_reg = 6; |
| } else { |
| cmdlistptr->cipher_3des_ecb.cmdlist = |
| (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->cipher_3des_ecb); |
| |
| encr_cfg = pdev->reg.encr_cfg_3des_ecb; |
| iv_reg = 0; |
| key_reg = 6; |
| } |
| break; |
| default: |
| pr_err("Unknown algorithms %d received, exiting now\n", alg); |
| return -EINVAL; |
| break; |
| } |
| |
| /* clear status register */ |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, |
| pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0, |
| &pcl_info->seg_size); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg, |
| &pcl_info->encr_seg_cfg); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0, |
| &pcl_info->encr_seg_size); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0, |
| &pcl_info->encr_seg_start); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0, |
| &pcl_info->auth_seg_cfg); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0, |
| &pcl_info->encr_key); |
| for (i = 1; i < key_reg; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)), |
| 0, NULL); |
| if (iv_reg) { |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0, |
| &pcl_info->encr_cntr_iv); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR1_IV1_REG, 0, |
| NULL); |
| } |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, |
| pdev->reg.crypto_cfg_le, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG, |
| ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) | |
| (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc); |
| |
| pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start; |
| *pvaddr = (unsigned char *) ce_vaddr; |
| |
| return 0; |
| } |
| |
| static int _setup_cipher_null_cmdlistptrs(struct qce_device *pdev, |
| int cri_index, unsigned char **pvaddr) |
| { |
| struct sps_command_element *ce_vaddr; |
| uintptr_t ce_vaddr_start; |
| struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_request_info |
| [cri_index].ce_sps.cmdlistptr; |
| struct qce_cmdlist_info *pcl_info = NULL; |
| |
| *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)), |
| pdev->ce_bam_info.ce_burst_size); |
| ce_vaddr_start = (uintptr_t)(*pvaddr); |
| ce_vaddr = (struct sps_command_element *)(*pvaddr); |
| |
| cmdlistptr->cipher_null.cmdlist = (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->cipher_null); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, |
| pdev->ce_bam_info.ce_burst_size, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, |
| pdev->reg.encr_cfg_aes_ecb_128, NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0, |
| NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0, |
| NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, |
| 0, NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, |
| 0, NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0, |
| NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG, |
| ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) | |
| (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc); |
| |
| pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start; |
| *pvaddr = (unsigned char *) ce_vaddr; |
| return 0; |
| } |
| |
| static int _setup_auth_cmdlistptrs(struct qce_device *pdev, int cri_index, |
| unsigned char **pvaddr, enum qce_hash_alg_enum alg, |
| bool key_128) |
| { |
| struct sps_command_element *ce_vaddr; |
| uintptr_t ce_vaddr_start; |
| struct qce_cmdlistptr_ops *cmdlistptr; |
| struct qce_cmdlist_info *pcl_info = NULL; |
| int i = 0; |
| uint32_t key_reg = 0; |
| uint32_t auth_cfg = 0; |
| uint32_t iv_reg = 0; |
| |
| cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr; |
| *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)), |
| pdev->ce_bam_info.ce_burst_size); |
| ce_vaddr_start = (uintptr_t)(*pvaddr); |
| ce_vaddr = (struct sps_command_element *)(*pvaddr); |
| |
| /* |
| * Designate chunks of the allocated memory to various |
| * command list pointers related to authentication operations |
| * defined in ce_cmdlistptrs_ops structure. |
| */ |
| switch (alg) { |
| case QCE_HASH_SHA1: |
| cmdlistptr->auth_sha1.cmdlist = (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->auth_sha1); |
| |
| auth_cfg = pdev->reg.auth_cfg_sha1; |
| iv_reg = 5; |
| |
| /* clear status register */ |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, |
| 0, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, |
| pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg); |
| |
| break; |
| case QCE_HASH_SHA256: |
| cmdlistptr->auth_sha256.cmdlist = (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->auth_sha256); |
| |
| auth_cfg = pdev->reg.auth_cfg_sha256; |
| iv_reg = 8; |
| |
| /* clear status register */ |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, |
| 0, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, |
| pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg); |
| /* 1 dummy write */ |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, |
| 0, NULL); |
| break; |
| case QCE_HASH_SHA1_HMAC: |
| cmdlistptr->auth_sha1_hmac.cmdlist = (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->auth_sha1_hmac); |
| |
| auth_cfg = pdev->reg.auth_cfg_hmac_sha1; |
| key_reg = 16; |
| iv_reg = 5; |
| |
| /* clear status register */ |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, |
| 0, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, |
| pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg); |
| break; |
| case QCE_HASH_SHA256_HMAC: |
| cmdlistptr->auth_sha256_hmac.cmdlist = (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->auth_sha256_hmac); |
| |
| auth_cfg = pdev->reg.auth_cfg_hmac_sha256; |
| key_reg = 16; |
| iv_reg = 8; |
| |
| /* clear status register */ |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, |
| NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, |
| pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg); |
| /* 1 dummy write */ |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, |
| 0, NULL); |
| break; |
| case QCE_HASH_AES_CMAC: |
| if (key_128 == true) { |
| cmdlistptr->auth_aes_128_cmac.cmdlist = |
| (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->auth_aes_128_cmac); |
| |
| auth_cfg = pdev->reg.auth_cfg_cmac_128; |
| key_reg = 4; |
| } else { |
| cmdlistptr->auth_aes_256_cmac.cmdlist = |
| (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->auth_aes_256_cmac); |
| |
| auth_cfg = pdev->reg.auth_cfg_cmac_256; |
| key_reg = 8; |
| } |
| |
| /* clear status register */ |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, |
| NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, |
| pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg); |
| /* 1 dummy write */ |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, |
| 0, NULL); |
| break; |
| default: |
| pr_err("Unknown algorithms %d received, exiting now\n", alg); |
| return -EINVAL; |
| break; |
| } |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0, |
| &pcl_info->seg_size); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0, |
| &pcl_info->encr_seg_cfg); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, |
| auth_cfg, &pcl_info->auth_seg_cfg); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0, |
| &pcl_info->auth_seg_size); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0, |
| &pcl_info->auth_seg_start); |
| |
| if (alg == QCE_HASH_AES_CMAC) { |
| /* reset auth iv, bytecount and key registers */ |
| for (i = 0; i < 16; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)), |
| 0, NULL); |
| for (i = 0; i < 16; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)), |
| 0, NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG, |
| 0, NULL); |
| } else { |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0, |
| &pcl_info->auth_iv); |
| for (i = 1; i < iv_reg; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)), |
| 0, NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG, |
| 0, &pcl_info->auth_bytecount); |
| } |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL); |
| |
| if (key_reg) { |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| CRYPTO_AUTH_KEY0_REG, 0, &pcl_info->auth_key); |
| for (i = 1; i < key_reg; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)), |
| 0, NULL); |
| } |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, |
| pdev->reg.crypto_cfg_le, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG, |
| ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) | |
| (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc); |
| |
| pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start; |
| *pvaddr = (unsigned char *) ce_vaddr; |
| |
| return 0; |
| } |
| |
| static int _setup_aead_cmdlistptrs(struct qce_device *pdev, |
| int cri_index, |
| unsigned char **pvaddr, |
| uint32_t alg, |
| uint32_t mode, |
| uint32_t key_size, |
| bool sha1) |
| { |
| struct sps_command_element *ce_vaddr; |
| uintptr_t ce_vaddr_start; |
| struct qce_cmdlistptr_ops *cmdlistptr; |
| struct qce_cmdlist_info *pcl_info = NULL; |
| uint32_t key_reg; |
| uint32_t iv_reg; |
| uint32_t i; |
| uint32_t enciv_in_word; |
| uint32_t encr_cfg; |
| |
| cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr; |
| *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)), |
| pdev->ce_bam_info.ce_burst_size); |
| |
| ce_vaddr_start = (uintptr_t)(*pvaddr); |
| ce_vaddr = (struct sps_command_element *)(*pvaddr); |
| |
| switch (alg) { |
| |
| case CIPHER_ALG_DES: |
| |
| switch (mode) { |
| |
| case QCE_MODE_CBC: |
| if (sha1) { |
| cmdlistptr->aead_hmac_sha1_cbc_des.cmdlist = |
| (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr-> |
| aead_hmac_sha1_cbc_des); |
| } else { |
| cmdlistptr->aead_hmac_sha256_cbc_des.cmdlist = |
| (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr-> |
| aead_hmac_sha256_cbc_des); |
| } |
| encr_cfg = pdev->reg.encr_cfg_des_cbc; |
| break; |
| default: |
| return -EINVAL; |
| }; |
| |
| enciv_in_word = 2; |
| |
| break; |
| |
| case CIPHER_ALG_3DES: |
| switch (mode) { |
| |
| case QCE_MODE_CBC: |
| if (sha1) { |
| cmdlistptr->aead_hmac_sha1_cbc_3des.cmdlist = |
| (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr-> |
| aead_hmac_sha1_cbc_3des); |
| } else { |
| cmdlistptr->aead_hmac_sha256_cbc_3des.cmdlist = |
| (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr-> |
| aead_hmac_sha256_cbc_3des); |
| } |
| encr_cfg = pdev->reg.encr_cfg_3des_cbc; |
| break; |
| default: |
| return -EINVAL; |
| }; |
| |
| enciv_in_word = 2; |
| |
| break; |
| |
| case CIPHER_ALG_AES: |
| switch (mode) { |
| |
| case QCE_MODE_CBC: |
| if (key_size == AES128_KEY_SIZE) { |
| if (sha1) { |
| cmdlistptr-> |
| aead_hmac_sha1_cbc_aes_128. |
| cmdlist = (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr-> |
| aead_hmac_sha1_cbc_aes_128); |
| } else { |
| cmdlistptr-> |
| aead_hmac_sha256_cbc_aes_128. |
| cmdlist = (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr-> |
| aead_hmac_sha256_cbc_aes_128); |
| } |
| encr_cfg = pdev->reg.encr_cfg_aes_cbc_128; |
| } else if (key_size == AES256_KEY_SIZE) { |
| if (sha1) { |
| cmdlistptr-> |
| aead_hmac_sha1_cbc_aes_256. |
| cmdlist = (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr-> |
| aead_hmac_sha1_cbc_aes_256); |
| } else { |
| cmdlistptr-> |
| aead_hmac_sha256_cbc_aes_256. |
| cmdlist = (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr-> |
| aead_hmac_sha256_cbc_aes_256); |
| } |
| encr_cfg = pdev->reg.encr_cfg_aes_cbc_256; |
| } else { |
| return -EINVAL; |
| } |
| break; |
| default: |
| return -EINVAL; |
| }; |
| |
| enciv_in_word = 4; |
| |
| break; |
| |
| default: |
| return -EINVAL; |
| }; |
| |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, |
| pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg); |
| |
| |
| key_reg = key_size/sizeof(uint32_t); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0, |
| &pcl_info->encr_key); |
| for (i = 1; i < key_reg; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)), |
| 0, NULL); |
| |
| if (mode != QCE_MODE_ECB) { |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0, |
| &pcl_info->encr_cntr_iv); |
| for (i = 1; i < enciv_in_word; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)), |
| 0, NULL); |
| }; |
| |
| if (sha1) |
| iv_reg = 5; |
| else |
| iv_reg = 8; |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0, |
| &pcl_info->auth_iv); |
| for (i = 1; i < iv_reg; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)), |
| 0, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG, |
| 0, &pcl_info->auth_bytecount); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL); |
| |
| key_reg = SHA_HMAC_KEY_SIZE/sizeof(uint32_t); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_KEY0_REG, 0, |
| &pcl_info->auth_key); |
| for (i = 1; i < key_reg; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)), 0, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0, |
| &pcl_info->seg_size); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg, |
| &pcl_info->encr_seg_cfg); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0, |
| &pcl_info->encr_seg_size); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0, |
| &pcl_info->encr_seg_start); |
| |
| if (sha1) |
| qce_add_cmd_element( |
| pdev, |
| &ce_vaddr, |
| CRYPTO_AUTH_SEG_CFG_REG, |
| pdev->reg.auth_cfg_aead_sha1_hmac, |
| &pcl_info->auth_seg_cfg); |
| else |
| qce_add_cmd_element( |
| pdev, |
| &ce_vaddr, |
| CRYPTO_AUTH_SEG_CFG_REG, |
| pdev->reg.auth_cfg_aead_sha256_hmac, |
| &pcl_info->auth_seg_cfg); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0, |
| &pcl_info->auth_seg_size); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0, |
| &pcl_info->auth_seg_start); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, |
| pdev->reg.crypto_cfg_le, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG, |
| ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) | |
| (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc); |
| |
| pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start; |
| *pvaddr = (unsigned char *) ce_vaddr; |
| return 0; |
| } |
| |
| static int _setup_aead_ccm_cmdlistptrs(struct qce_device *pdev, int cri_index, |
| unsigned char **pvaddr, bool key_128) |
| { |
| struct sps_command_element *ce_vaddr; |
| uintptr_t ce_vaddr_start; |
| struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_request_info |
| [cri_index].ce_sps.cmdlistptr; |
| struct qce_cmdlist_info *pcl_info = NULL; |
| int i = 0; |
| uint32_t encr_cfg = 0; |
| uint32_t auth_cfg = 0; |
| uint32_t key_reg = 0; |
| |
| *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)), |
| pdev->ce_bam_info.ce_burst_size); |
| ce_vaddr_start = (uintptr_t)(*pvaddr); |
| ce_vaddr = (struct sps_command_element *)(*pvaddr); |
| |
| /* |
| * Designate chunks of the allocated memory to various |
| * command list pointers related to aead operations |
| * defined in ce_cmdlistptrs_ops structure. |
| */ |
| if (key_128 == true) { |
| cmdlistptr->aead_aes_128_ccm.cmdlist = |
| (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->aead_aes_128_ccm); |
| |
| auth_cfg = pdev->reg.auth_cfg_aes_ccm_128; |
| encr_cfg = pdev->reg.encr_cfg_aes_ccm_128; |
| key_reg = 4; |
| } else { |
| |
| cmdlistptr->aead_aes_256_ccm.cmdlist = |
| (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->aead_aes_256_ccm); |
| |
| auth_cfg = pdev->reg.auth_cfg_aes_ccm_256; |
| encr_cfg = pdev->reg.encr_cfg_aes_ccm_256; |
| |
| key_reg = 8; |
| } |
| |
| /* clear status register */ |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, |
| pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0, NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0, |
| NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0, |
| &pcl_info->seg_size); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, |
| encr_cfg, &pcl_info->encr_seg_cfg); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0, |
| &pcl_info->encr_seg_size); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0, |
| &pcl_info->encr_seg_start); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG, |
| (uint32_t)0xffffffff, &pcl_info->encr_mask); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG0, |
| (uint32_t)0xffffffff, NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG1, |
| (uint32_t)0xffffffff, NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG2, |
| (uint32_t)0xffffffff, NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, |
| auth_cfg, &pcl_info->auth_seg_cfg); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0, |
| &pcl_info->auth_seg_size); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0, |
| &pcl_info->auth_seg_start); |
| /* reset auth iv, bytecount and key registers */ |
| for (i = 0; i < 8; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)), |
| 0, NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG, |
| 0, NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, |
| 0, NULL); |
| for (i = 0; i < 16; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)), |
| 0, NULL); |
| /* set auth key */ |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_KEY0_REG, 0, |
| &pcl_info->auth_key); |
| for (i = 1; i < key_reg; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)), |
| 0, NULL); |
| /* set NONCE info */ |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_INFO_NONCE0_REG, 0, |
| &pcl_info->auth_nonce_info); |
| for (i = 1; i < 4; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_AUTH_INFO_NONCE0_REG + |
| i * sizeof(uint32_t)), 0, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0, |
| &pcl_info->encr_key); |
| for (i = 1; i < key_reg; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)), |
| 0, NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0, |
| &pcl_info->encr_cntr_iv); |
| for (i = 1; i < 4; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)), |
| 0, NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_CCM_INT_CNTR0_REG, 0, |
| &pcl_info->encr_ccm_cntr_iv); |
| for (i = 1; i < 4; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_ENCR_CCM_INT_CNTR0_REG + i * sizeof(uint32_t)), |
| 0, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, |
| pdev->reg.crypto_cfg_le, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG, |
| ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) | |
| (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc); |
| |
| pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start; |
| *pvaddr = (unsigned char *) ce_vaddr; |
| |
| return 0; |
| } |
| |
| static int _setup_f8_cmdlistptrs(struct qce_device *pdev, int cri_index, |
| unsigned char **pvaddr, enum qce_ota_algo_enum alg) |
| { |
| struct sps_command_element *ce_vaddr; |
| uintptr_t ce_vaddr_start; |
| struct qce_cmdlistptr_ops *cmdlistptr; |
| struct qce_cmdlist_info *pcl_info = NULL; |
| int i = 0; |
| uint32_t encr_cfg = 0; |
| uint32_t key_reg = 4; |
| |
| cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr; |
| *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)), |
| pdev->ce_bam_info.ce_burst_size); |
| ce_vaddr = (struct sps_command_element *)(*pvaddr); |
| ce_vaddr_start = (uintptr_t)(*pvaddr); |
| |
| /* |
| * Designate chunks of the allocated memory to various |
| * command list pointers related to f8 cipher algorithm defined |
| * in ce_cmdlistptrs_ops structure. |
| */ |
| |
| switch (alg) { |
| case QCE_OTA_ALGO_KASUMI: |
| cmdlistptr->f8_kasumi.cmdlist = (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->f8_kasumi); |
| encr_cfg = pdev->reg.encr_cfg_kasumi; |
| break; |
| |
| case QCE_OTA_ALGO_SNOW3G: |
| default: |
| cmdlistptr->f8_snow3g.cmdlist = (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->f8_snow3g); |
| encr_cfg = pdev->reg.encr_cfg_snow3g; |
| break; |
| } |
| /* clear status register */ |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, |
| 0, NULL); |
| /* set config to big endian */ |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, |
| pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0, |
| &pcl_info->seg_size); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg, |
| &pcl_info->encr_seg_cfg); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0, |
| &pcl_info->encr_seg_size); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0, |
| &pcl_info->encr_seg_start); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0, |
| &pcl_info->auth_seg_cfg); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, |
| 0, &pcl_info->auth_seg_size); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, |
| 0, &pcl_info->auth_seg_start); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0, |
| &pcl_info->encr_key); |
| for (i = 1; i < key_reg; i++) |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)), |
| 0, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0, |
| &pcl_info->encr_cntr_iv); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR1_IV1_REG, 0, |
| NULL); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, |
| pdev->reg.crypto_cfg_le, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG, |
| ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) | |
| (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc); |
| |
| pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start; |
| *pvaddr = (unsigned char *) ce_vaddr; |
| |
| return 0; |
| } |
| |
| static int _setup_f9_cmdlistptrs(struct qce_device *pdev, int cri_index, |
| unsigned char **pvaddr, enum qce_ota_algo_enum alg) |
| { |
| struct sps_command_element *ce_vaddr; |
| uintptr_t ce_vaddr_start; |
| struct qce_cmdlistptr_ops *cmdlistptr; |
| struct qce_cmdlist_info *pcl_info = NULL; |
| int i = 0; |
| uint32_t auth_cfg = 0; |
| uint32_t iv_reg = 0; |
| |
| cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr; |
| *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)), |
| pdev->ce_bam_info.ce_burst_size); |
| ce_vaddr_start = (uintptr_t)(*pvaddr); |
| ce_vaddr = (struct sps_command_element *)(*pvaddr); |
| |
| /* |
| * Designate chunks of the allocated memory to various |
| * command list pointers related to authentication operations |
| * defined in ce_cmdlistptrs_ops structure. |
| */ |
| switch (alg) { |
| case QCE_OTA_ALGO_KASUMI: |
| cmdlistptr->f9_kasumi.cmdlist = (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->f9_kasumi); |
| auth_cfg = pdev->reg.auth_cfg_kasumi; |
| break; |
| |
| case QCE_OTA_ALGO_SNOW3G: |
| default: |
| cmdlistptr->f9_snow3g.cmdlist = (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->f9_snow3g); |
| auth_cfg = pdev->reg.auth_cfg_snow3g; |
| }; |
| |
| /* clear status register */ |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, |
| 0, NULL); |
| /* set config to big endian */ |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, |
| pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg); |
| |
| iv_reg = 5; |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0, |
| &pcl_info->seg_size); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0, |
| &pcl_info->encr_seg_cfg); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, |
| auth_cfg, &pcl_info->auth_seg_cfg); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0, |
| &pcl_info->auth_seg_size); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0, |
| &pcl_info->auth_seg_start); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0, |
| &pcl_info->auth_iv); |
| for (i = 1; i < iv_reg; i++) { |
| qce_add_cmd_element(pdev, &ce_vaddr, |
| (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)), |
| 0, NULL); |
| } |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG, |
| 0, &pcl_info->auth_bytecount); |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, |
| pdev->reg.crypto_cfg_le, NULL); |
| |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG, |
| ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) | |
| (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc); |
| |
| pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start; |
| *pvaddr = (unsigned char *) ce_vaddr; |
| |
| return 0; |
| } |
| |
| static int _setup_unlock_pipe_cmdlistptrs(struct qce_device *pdev, |
| int cri_index, unsigned char **pvaddr) |
| { |
| struct sps_command_element *ce_vaddr; |
| uintptr_t ce_vaddr_start = (uintptr_t)(*pvaddr); |
| struct qce_cmdlistptr_ops *cmdlistptr; |
| struct qce_cmdlist_info *pcl_info = NULL; |
| |
| cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr; |
| *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)), |
| pdev->ce_bam_info.ce_burst_size); |
| ce_vaddr = (struct sps_command_element *)(*pvaddr); |
| cmdlistptr->unlock_all_pipes.cmdlist = (uintptr_t)ce_vaddr; |
| pcl_info = &(cmdlistptr->unlock_all_pipes); |
| |
| /* |
| * Designate chunks of the allocated memory to command list |
| * to unlock pipes. |
| */ |
| qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, |
| CRYPTO_CONFIG_RESET, NULL); |
| pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start; |
| *pvaddr = (unsigned char *) ce_vaddr; |
| |
| return 0; |
| } |
| |
| static int qce_setup_cmdlistptrs(struct qce_device *pdev, int cri_index, |
| unsigned char **pvaddr) |
| { |
| struct sps_command_element *ce_vaddr = |
| (struct sps_command_element *)(*pvaddr); |
| /* |
| * Designate chunks of the allocated memory to various |
| * command list pointers related to operations defined |
| * in ce_cmdlistptrs_ops structure. |
| */ |
| ce_vaddr = |
| (struct sps_command_element *)ALIGN(((uintptr_t) ce_vaddr), |
| pdev->ce_bam_info.ce_burst_size); |
| *pvaddr = (unsigned char *) ce_vaddr; |
| |
| _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CBC, |
| true); |
| _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CTR, |
| true); |
| _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_ECB, |
| true); |
| _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_XTS, |
| true); |
| _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CBC, |
| false); |
| _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CTR, |
| false); |
| _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_ECB, |
| false); |
| _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_XTS, |
| false); |
| |
| _setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES, |
| true); |
| _setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES, |
| false); |
| _setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES, |
| true); |
| _setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES, |
| false); |
| |
| _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA1, |
| false); |
| _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA256, |
| false); |
| |
| _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA1_HMAC, |
| false); |
| _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA256_HMAC, |
| false); |
| |
| _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_AES_CMAC, |
| true); |
| _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_AES_CMAC, |
| false); |
| |
| _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES, |
| QCE_MODE_CBC, DES_KEY_SIZE, true); |
| _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES, |
| QCE_MODE_CBC, DES3_EDE_KEY_SIZE, true); |
| _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES, |
| QCE_MODE_CBC, AES128_KEY_SIZE, true); |
| _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES, |
| QCE_MODE_CBC, AES256_KEY_SIZE, true); |
| _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES, |
| QCE_MODE_CBC, DES_KEY_SIZE, false); |
| _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES, |
| QCE_MODE_CBC, DES3_EDE_KEY_SIZE, false); |
| _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES, |
| QCE_MODE_CBC, AES128_KEY_SIZE, false); |
| _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES, |
| QCE_MODE_CBC, AES256_KEY_SIZE, false); |
| |
| _setup_cipher_null_cmdlistptrs(pdev, cri_index, pvaddr); |
| |
| _setup_aead_ccm_cmdlistptrs(pdev, cri_index, pvaddr, true); |
| _setup_aead_ccm_cmdlistptrs(pdev, cri_index, pvaddr, false); |
| _setup_f8_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_KASUMI); |
| _setup_f8_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_SNOW3G); |
| _setup_f9_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_KASUMI); |
| _setup_f9_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_SNOW3G); |
| _setup_unlock_pipe_cmdlistptrs(pdev, cri_index, pvaddr); |
| |
| return 0; |
| } |
| |
| static int qce_setup_ce_sps_data(struct qce_device *pce_dev) |
| { |
| unsigned char *vaddr; |
| int i; |
| unsigned char *iovec_vaddr; |
| int iovec_memsize; |
| |
| vaddr = pce_dev->coh_vmem; |
| vaddr = (unsigned char *)ALIGN(((uintptr_t)vaddr), |
| pce_dev->ce_bam_info.ce_burst_size); |
| iovec_vaddr = pce_dev->iovec_vmem; |
| iovec_memsize = pce_dev->iovec_memsize; |
| for (i = 0; i < MAX_QCE_ALLOC_BAM_REQ; i++) { |
| /* Allow for 256 descriptor (cmd and data) entries per pipe */ |
| pce_dev->ce_request_info[i].ce_sps.in_transfer.iovec = |
| (struct sps_iovec *)iovec_vaddr; |
| pce_dev->ce_request_info[i].ce_sps.in_transfer.iovec_phys = |
| virt_to_phys(pce_dev->ce_request_info[i]. |
| ce_sps.in_transfer.iovec); |
| iovec_vaddr += TOTAL_IOVEC_SPACE_PER_PIPE; |
| iovec_memsize -= TOTAL_IOVEC_SPACE_PER_PIPE; |
| pce_dev->ce_request_info[i].ce_sps.out_transfer.iovec = |
| (struct sps_iovec *)iovec_vaddr; |
| pce_dev->ce_request_info[i].ce_sps.out_transfer.iovec_phys = |
| virt_to_phys(pce_dev->ce_request_info[i]. |
| ce_sps.out_transfer.iovec); |
| iovec_vaddr += TOTAL_IOVEC_SPACE_PER_PIPE; |
| iovec_memsize -= TOTAL_IOVEC_SPACE_PER_PIPE; |
| if (pce_dev->support_cmd_dscr) |
| qce_setup_cmdlistptrs(pce_dev, i, &vaddr); |
| vaddr = (unsigned char *)ALIGN(((uintptr_t)vaddr), |
| pce_dev->ce_bam_info.ce_burst_size); |
| pce_dev->ce_request_info[i].ce_sps.result_dump = |
| (uintptr_t)vaddr; |
| pce_dev->ce_request_info[i].ce_sps.result_dump_phy = |
| GET_PHYS_ADDR((uintptr_t)vaddr); |
| pce_dev->ce_request_info[i].ce_sps.result = |
| (struct ce_result_dump_format *)vaddr; |
| vaddr += CRYPTO_RESULT_DUMP_SIZE; |
| |
| pce_dev->ce_request_info[i].ce_sps.result_dump_null = |
| (uintptr_t)vaddr; |
| pce_dev->ce_request_info[i].ce_sps.result_dump_null_phy = |
| GET_PHYS_ADDR((uintptr_t)vaddr); |
| pce_dev->ce_request_info[i].ce_sps.result_null = |
| (struct ce_result_dump_format *)vaddr; |
| vaddr += CRYPTO_RESULT_DUMP_SIZE; |
| |
| pce_dev->ce_request_info[i].ce_sps.ignore_buffer = |
| (uintptr_t)vaddr; |
| vaddr += pce_dev->ce_bam_info.ce_burst_size * 2; |
| } |
| if ((vaddr - pce_dev->coh_vmem) > pce_dev->memsize || |
| iovec_memsize < 0) |
| panic("qce50: Not enough coherent memory. Allocate %x , need %lx\n", |
| pce_dev->memsize, (uintptr_t)vaddr - |
| (uintptr_t)pce_dev->coh_vmem); |
| return 0; |
| } |
| |
| static int qce_init_ce_cfg_val(struct qce_device *pce_dev) |
| { |
| uint32_t beats = (pce_dev->ce_bam_info.ce_burst_size >> 3) - 1; |
| uint32_t pipe_pair = pce_dev->ce_bam_info.pipe_pair_index; |
| |
| pce_dev->reg.crypto_cfg_be = (beats << CRYPTO_REQ_SIZE) | |
| BIT(CRYPTO_MASK_DOUT_INTR) | BIT(CRYPTO_MASK_DIN_INTR) | |
| BIT(CRYPTO_MASK_OP_DONE_INTR) | (0 << CRYPTO_HIGH_SPD_EN_N) | |
| (pipe_pair << CRYPTO_PIPE_SET_SELECT); |
| |
| pce_dev->reg.crypto_cfg_le = |
| (pce_dev->reg.crypto_cfg_be | CRYPTO_LITTLE_ENDIAN_MASK); |
| |
| /* Initialize encr_cfg register for AES alg */ |
| pce_dev->reg.encr_cfg_aes_cbc_128 = |
| (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) | |
| (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) | |
| (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE); |
| |
| pce_dev->reg.encr_cfg_aes_cbc_256 = |
| (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) | |
| (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) | |
| (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE); |
| |
| pce_dev->reg.encr_cfg_aes_ctr_128 = |
| (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) | |
| (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) | |
| (CRYPTO_ENCR_MODE_CTR << CRYPTO_ENCR_MODE); |
| |
| pce_dev->reg.encr_cfg_aes_ctr_256 = |
| (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) | |
| (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) | |
| (CRYPTO_ENCR_MODE_CTR << CRYPTO_ENCR_MODE); |
| |
| pce_dev->reg.encr_cfg_aes_xts_128 = |
| (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) | |
| (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) | |
| (CRYPTO_ENCR_MODE_XTS << CRYPTO_ENCR_MODE); |
| |
| pce_dev->reg.encr_cfg_aes_xts_256 = |
| (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) | |
| (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) | |
| (CRYPTO_ENCR_MODE_XTS << CRYPTO_ENCR_MODE); |
| |
| pce_dev->reg.encr_cfg_aes_ecb_128 = |
| (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) | |
| (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) | |
| (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE); |
| |
| pce_dev->reg.encr_cfg_aes_ecb_256 = |
| (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) | |
| (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) | |
| (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE); |
| |
| pce_dev->reg.encr_cfg_aes_ccm_128 = |
| (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) | |
| (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) | |
| (CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE)| |
| (CRYPTO_LAST_CCM_XFR << CRYPTO_LAST_CCM); |
| |
| pce_dev->reg.encr_cfg_aes_ccm_256 = |
| (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) | |
| (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) | |
| (CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE) | |
| (CRYPTO_LAST_CCM_XFR << CRYPTO_LAST_CCM); |
| |
| /* Initialize encr_cfg register for DES alg */ |
| pce_dev->reg.encr_cfg_des_ecb = |
| (CRYPTO_ENCR_KEY_SZ_DES << CRYPTO_ENCR_KEY_SZ) | |
| (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) | |
| (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE); |
| |
| pce_dev->reg.encr_cfg_des_cbc = |
| (CRYPTO_ENCR_KEY_SZ_DES << CRYPTO_ENCR_KEY_SZ) | |
| (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) | |
| (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE); |
| |
| pce_dev->reg.encr_cfg_3des_ecb = |
| (CRYPTO_ENCR_KEY_SZ_3DES << CRYPTO_ENCR_KEY_SZ) | |
| (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) | |
| (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE); |
| |
| pce_dev->reg.encr_cfg_3des_cbc = |
| (CRYPTO_ENCR_KEY_SZ_3DES << CRYPTO_ENCR_KEY_SZ) | |
| (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) | |
| (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE); |
| |
| /* Initialize encr_cfg register for kasumi/snow3g alg */ |
| pce_dev->reg.encr_cfg_kasumi = |
| (CRYPTO_ENCR_ALG_KASUMI << CRYPTO_ENCR_ALG); |
| |
| pce_dev->reg.encr_cfg_snow3g = |
| (CRYPTO_ENCR_ALG_SNOW_3G << CRYPTO_ENCR_ALG); |
| |
| /* Initialize auth_cfg register for CMAC alg */ |
| pce_dev->reg.auth_cfg_cmac_128 = |
| (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) | |
| (CRYPTO_AUTH_MODE_CMAC << CRYPTO_AUTH_MODE)| |
| (CRYPTO_AUTH_SIZE_ENUM_16_BYTES << CRYPTO_AUTH_SIZE) | |
| (CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) | |
| (CRYPTO_AUTH_KEY_SZ_AES128 << CRYPTO_AUTH_KEY_SIZE); |
| |
| pce_dev->reg.auth_cfg_cmac_256 = |
| (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) | |
| (CRYPTO_AUTH_MODE_CMAC << CRYPTO_AUTH_MODE)| |
| (CRYPTO_AUTH_SIZE_ENUM_16_BYTES << CRYPTO_AUTH_SIZE) | |
| (CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) | |
| (CRYPTO_AUTH_KEY_SZ_AES256 << CRYPTO_AUTH_KEY_SIZE); |
| |
| /* Initialize auth_cfg register for HMAC alg */ |
| pce_dev->reg.auth_cfg_hmac_sha1 = |
| (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)| |
| (CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) | |
| (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) | |
| (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS); |
| |
| pce_dev->reg.auth_cfg_hmac_sha256 = |
| (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)| |
| (CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) | |
| (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) | |
| (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS); |
| |
| /* Initialize auth_cfg register for SHA1/256 alg */ |
| pce_dev->reg.auth_cfg_sha1 = |
| (CRYPTO_AUTH_MODE_HASH << CRYPTO_AUTH_MODE)| |
| (CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) | |
| (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) | |
| (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS); |
| |
| pce_dev->reg.auth_cfg_sha256 = |
| (CRYPTO_AUTH_MODE_HASH << CRYPTO_AUTH_MODE)| |
| (CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) | |
| (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) | |
| (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS); |
| |
| /* Initialize auth_cfg register for AEAD alg */ |
| pce_dev->reg.auth_cfg_aead_sha1_hmac = |
| (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)| |
| (CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) | |
| (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) | |
| (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST); |
| |
| pce_dev->reg.auth_cfg_aead_sha256_hmac = |
| (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)| |
| (CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) | |
| (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) | |
| (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST); |
| |
| pce_dev->reg.auth_cfg_aes_ccm_128 = |
| (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) | |
| (CRYPTO_AUTH_MODE_CCM << CRYPTO_AUTH_MODE)| |
| (CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) | |
| (CRYPTO_AUTH_KEY_SZ_AES128 << CRYPTO_AUTH_KEY_SIZE) | |
| ((MAX_NONCE/sizeof(uint32_t)) << CRYPTO_AUTH_NONCE_NUM_WORDS); |
| pce_dev->reg.auth_cfg_aes_ccm_128 &= ~(1 << CRYPTO_USE_HW_KEY_AUTH); |
| |
| pce_dev->reg.auth_cfg_aes_ccm_256 = |
| (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) | |
| (CRYPTO_AUTH_MODE_CCM << CRYPTO_AUTH_MODE)| |
| (CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) | |
| (CRYPTO_AUTH_KEY_SZ_AES256 << CRYPTO_AUTH_KEY_SIZE) | |
| ((MAX_NONCE/sizeof(uint32_t)) << CRYPTO_AUTH_NONCE_NUM_WORDS); |
| pce_dev->reg.auth_cfg_aes_ccm_256 &= ~(1 << CRYPTO_USE_HW_KEY_AUTH); |
| |
| /* Initialize auth_cfg register for kasumi/snow3g */ |
| pce_dev->reg.auth_cfg_kasumi = |
| (CRYPTO_AUTH_ALG_KASUMI << CRYPTO_AUTH_ALG) | |
| BIT(CRYPTO_FIRST) | BIT(CRYPTO_LAST); |
| pce_dev->reg.auth_cfg_snow3g = |
| (CRYPTO_AUTH_ALG_SNOW3G << CRYPTO_AUTH_ALG) | |
| BIT(CRYPTO_FIRST) | BIT(CRYPTO_LAST); |
| return 0; |
| } |
| |
| static void _qce_ccm_get_around_input(struct qce_device *pce_dev, |
| struct ce_request_info *preq_info, enum qce_cipher_dir_enum dir) |
| { |
| struct qce_cmdlist_info *cmdlistinfo; |
| struct ce_sps_data *pce_sps_data; |
| |
| pce_sps_data = &preq_info->ce_sps; |
| if ((dir == QCE_DECRYPT) && pce_dev->no_get_around && |
| !(pce_dev->no_ccm_mac_status_get_around)) { |
| cmdlistinfo = &pce_sps_data->cmdlistptr.cipher_null; |
| _qce_sps_add_cmd(pce_dev, 0, cmdlistinfo, |
| &pce_sps_data->in_transfer); |
| _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->ignore_buffer), |
| pce_dev->ce_bam_info.ce_burst_size, |
| &pce_sps_data->in_transfer); |
| _qce_set_flag(&pce_sps_data->in_transfer, |
| SPS_IOVEC_FLAG_EOT | SPS_IOVEC_FLAG_NWD); |
| } |
| } |
| |
| static void _qce_ccm_get_around_output(struct qce_device *pce_dev, |
| struct ce_request_info *preq_info, enum qce_cipher_dir_enum dir) |
| { |
| struct ce_sps_data *pce_sps_data; |
| |
| pce_sps_data = &preq_info->ce_sps; |
| |
| if ((dir == QCE_DECRYPT) && pce_dev->no_get_around && |
| !(pce_dev->no_ccm_mac_status_get_around)) { |
| _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->ignore_buffer), |
| pce_dev->ce_bam_info.ce_burst_size, |
| &pce_sps_data->out_transfer); |
| _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump_null), |
| CRYPTO_RESULT_DUMP_SIZE, &pce_sps_data->out_transfer); |
| } |
| } |
| |
| /* QCE_DUMMY_REQ */ |
| static void qce_dummy_complete(void *cookie, unsigned char *digest, |
| unsigned char *authdata, int ret) |
| { |
| if (!cookie) |
| pr_err("invalid cookie\n"); |
| } |
| |
| static int qce_dummy_req(struct qce_device *pce_dev) |
| { |
| int ret = 0; |
| |
| if (!(atomic_xchg(&pce_dev->ce_request_info[DUMMY_REQ_INDEX]. |
| in_use, true) == false)) |
| return -EBUSY; |
| ret = qce_process_sha_req(pce_dev, NULL); |
| pce_dev->qce_stats.no_of_dummy_reqs++; |
| return ret; |
| } |
| |
| static int select_mode(struct qce_device *pce_dev, |
| struct ce_request_info *preq_info) |
| { |
| struct ce_sps_data *pce_sps_data = &preq_info->ce_sps; |
| unsigned int no_of_queued_req; |
| unsigned int cadence; |
| |
| if (!pce_dev->no_get_around) { |
| _qce_set_flag(&pce_sps_data->out_transfer, SPS_IOVEC_FLAG_INT); |
| return 0; |
| } |
| |
| /* |
| * claim ownership of device |
| */ |
| again: |
| if (cmpxchg(&pce_dev->owner, QCE_OWNER_NONE, QCE_OWNER_CLIENT) |
| != QCE_OWNER_NONE) { |
| ndelay(40); |
| goto again; |
| } |
| no_of_queued_req = atomic_inc_return(&pce_dev->no_of_queued_req); |
| if (pce_dev->mode == IN_INTERRUPT_MODE) { |
| if (no_of_queued_req >= MAX_BUNCH_MODE_REQ) { |
| pce_dev->mode = IN_BUNCH_MODE; |
| pr_debug("pcedev %d mode switch to BUNCH\n", |
| pce_dev->dev_no); |
| _qce_set_flag(&pce_sps_data->out_transfer, |
| SPS_IOVEC_FLAG_INT); |
| pce_dev->intr_cadence = 0; |
| atomic_set(&pce_dev->bunch_cmd_seq, 1); |
| atomic_set(&pce_dev->last_intr_seq, 1); |
| mod_timer(&(pce_dev->timer), |
| (jiffies + DELAY_IN_JIFFIES)); |
| } else { |
| _qce_set_flag(&pce_sps_data->out_transfer, |
| SPS_IOVEC_FLAG_INT); |
| } |
| } else { |
| pce_dev->intr_cadence++; |
| cadence = (preq_info->req_len >> 7) + 1; |
| if (cadence > SET_INTR_AT_REQ) |
| cadence = SET_INTR_AT_REQ; |
| if (pce_dev->intr_cadence < cadence || ((pce_dev->intr_cadence |
| == cadence) && pce_dev->cadence_flag)) |
| atomic_inc(&pce_dev->bunch_cmd_seq); |
| else { |
| _qce_set_flag(&pce_sps_data->out_transfer, |
| SPS_IOVEC_FLAG_INT); |
| pce_dev->intr_cadence = 0; |
| atomic_set(&pce_dev->bunch_cmd_seq, 0); |
| atomic_set(&pce_dev->last_intr_seq, 0); |
| pce_dev->cadence_flag = ~pce_dev->cadence_flag; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int _qce_aead_ccm_req(void *handle, struct qce_req *q_req) |
| { |
| int rc = 0; |
| struct qce_device *pce_dev = (struct qce_device *) handle; |
| struct aead_request *areq = (struct aead_request *) q_req->areq; |
| uint32_t authsize = q_req->authsize; |
| uint32_t totallen_in, out_len; |
| uint32_t hw_pad_out = 0; |
| int ce_burst_size; |
| struct qce_cmdlist_info *cmdlistinfo = NULL; |
| int req_info = -1; |
| struct ce_request_info *preq_info; |
| struct ce_sps_data *pce_sps_data; |
| |
| req_info = qce_alloc_req_info(pce_dev); |
| if (req_info < 0) |
| return -EBUSY; |
| preq_info = &pce_dev->ce_request_info[req_info]; |
| pce_sps_data = &preq_info->ce_sps; |
| |
| ce_burst_size = pce_dev->ce_bam_info.ce_burst_size; |
| totallen_in = areq->cryptlen + q_req->assoclen; |
| if (q_req->dir == QCE_ENCRYPT) { |
| q_req->cryptlen = areq->cryptlen; |
| out_len = areq->cryptlen + authsize; |
| hw_pad_out = ALIGN(authsize, ce_burst_size) - authsize; |
| } else { |
| q_req->cryptlen = areq->cryptlen - authsize; |
| out_len = q_req->cryptlen; |
| hw_pad_out = authsize; |
| } |
| |
| /* |
| * For crypto 5.0 that has burst size alignment requirement |
| * for data descritpor, |
| * the agent above(qcrypto) prepares the src scatter list with |
| * memory starting with associated data, followed by |
| * data stream to be ciphered. |
| * The destination scatter list is pointing to the same |
| * data area as source. |
| */ |
| if (pce_dev->ce_bam_info.minor_version == 0) |
| preq_info->src_nents = count_sg(areq->src, totallen_in); |
| else |
| preq_info->src_nents = count_sg(areq->src, areq->cryptlen + |
| areq->assoclen); |
| |
| if (q_req->assoclen) { |
| preq_info->assoc_nents = count_sg(q_req->asg, q_req->assoclen); |
| |
| /* formatted associated data input */ |
| qce_dma_map_sg(pce_dev->pdev, q_req->asg, |
| preq_info->assoc_nents, DMA_TO_DEVICE); |
| preq_info->asg = q_req->asg; |
| } else { |
| preq_info->assoc_nents = 0; |
| preq_info->asg = NULL; |
| } |
| /* cipher input */ |
| qce_dma_map_sg(pce_dev->pdev, areq->src, preq_info->src_nents, |
| (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| DMA_TO_DEVICE); |
| /* cipher + mac output for encryption */ |
| if (areq->src != areq->dst) { |
| if (pce_dev->ce_bam_info.minor_version == 0) |
| /* |
| * The destination scatter list is pointing to the same |
| * data area as src. |
| * Note, the associated data will be pass-through |
| * at the beginning of destination area. |
| */ |
| preq_info->dst_nents = count_sg(areq->dst, |
| out_len + areq->assoclen); |
| else |
| preq_info->dst_nents = count_sg(areq->dst, out_len + |
| areq->assoclen); |
| |
| qce_dma_map_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents, |
| DMA_FROM_DEVICE); |
| } else { |
| preq_info->dst_nents = preq_info->src_nents; |
| } |
| |
| if (pce_dev->support_cmd_dscr) { |
| cmdlistinfo = _ce_get_cipher_cmdlistinfo(pce_dev, req_info, |
| q_req); |
| if (cmdlistinfo == NULL) { |
| pr_err("Unsupported cipher algorithm %d, mode %d\n", |
| q_req->alg, q_req->mode); |
| qce_free_req_info(pce_dev, req_info, false); |
| return -EINVAL; |
| } |
| /* set up crypto device */ |
| rc = _ce_setup_cipher(pce_dev, q_req, totallen_in, |
| q_req->assoclen, cmdlistinfo); |
| } else { |
| /* set up crypto device */ |
| rc = _ce_setup_cipher_direct(pce_dev, q_req, totallen_in, |
| q_req->assoclen); |
| } |
| |
| if (rc < 0) |
| goto bad; |
| |
| preq_info->mode = q_req->mode; |
| |
| /* setup for callback, and issue command to bam */ |
| preq_info->areq = q_req->areq; |
| preq_info->qce_cb = q_req->qce_cb; |
| preq_info->dir = q_req->dir; |
| |
| /* setup xfer type for producer callback handling */ |
| preq_info->xfer_type = QCE_XFER_AEAD; |
| preq_info->req_len = totallen_in; |
| |
| _qce_sps_iovec_count_init(pce_dev, req_info); |
| |
| if (pce_dev->support_cmd_dscr) |
| _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo, |
| &pce_sps_data->in_transfer); |
| |
| if (pce_dev->ce_bam_info.minor_version == 0) { |
| goto bad; |
| } else { |
| if (q_req->assoclen && (_qce_sps_add_sg_data( |
| pce_dev, q_req->asg, q_req->assoclen, |
| &pce_sps_data->in_transfer))) |
| goto bad; |
| if (_qce_sps_add_sg_data_off(pce_dev, areq->src, areq->cryptlen, |
| areq->assoclen, |
| &pce_sps_data->in_transfer)) |
| goto bad; |
| _qce_set_flag(&pce_sps_data->in_transfer, |
| SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD); |
| |
| _qce_ccm_get_around_input(pce_dev, preq_info, q_req->dir); |
| |
| if (pce_dev->no_get_around) |
| _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK, |
| &pce_sps_data->cmdlistptr.unlock_all_pipes, |
| &pce_sps_data->in_transfer); |
| |
| /* Pass through to ignore associated data*/ |
| if (_qce_sps_add_data( |
| GET_PHYS_ADDR(pce_sps_data->ignore_buffer), |
| q_req->assoclen, |
| &pce_sps_data->out_transfer)) |
| goto bad; |
| if (_qce_sps_add_sg_data_off(pce_dev, areq->dst, out_len, |
| areq->assoclen, |
| &pce_sps_data->out_transfer)) |
| goto bad; |
| /* Pass through to ignore hw_pad (padding of the MAC data) */ |
| if (_qce_sps_add_data( |
| GET_PHYS_ADDR(pce_sps_data->ignore_buffer), |
| hw_pad_out, &pce_sps_data->out_transfer)) |
| goto bad; |
| if (pce_dev->no_get_around || |
| totallen_in <= SPS_MAX_PKT_SIZE) { |
| if (_qce_sps_add_data( |
| GET_PHYS_ADDR(pce_sps_data->result_dump), |
| CRYPTO_RESULT_DUMP_SIZE, |
| &pce_sps_data->out_transfer)) |
| goto bad; |
| pce_sps_data->producer_state = QCE_PIPE_STATE_COMP; |
| } else { |
| pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE; |
| } |
| |
| _qce_ccm_get_around_output(pce_dev, preq_info, q_req->dir); |
| |
| select_mode(pce_dev, preq_info); |
| rc = _qce_sps_transfer(pce_dev, req_info); |
| cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE); |
| } |
| if (rc) |
| goto bad; |
| return 0; |
| |
| bad: |
| if (preq_info->assoc_nents) { |
| qce_dma_unmap_sg(pce_dev->pdev, q_req->asg, |
| preq_info->assoc_nents, DMA_TO_DEVICE); |
| } |
| if (preq_info->src_nents) { |
| qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents, |
| (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| DMA_TO_DEVICE); |
| } |
| if (areq->src != areq->dst) { |
| qce_dma_unmap_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents, |
| DMA_FROM_DEVICE); |
| } |
| qce_free_req_info(pce_dev, req_info, false); |
| return rc; |
| } |
| |
| static int _qce_suspend(void *handle) |
| { |
| struct qce_device *pce_dev = (struct qce_device *)handle; |
| struct sps_pipe *sps_pipe_info; |
| |
| if (handle == NULL) |
| return -ENODEV; |
| |
| sps_pipe_info = pce_dev->ce_bam_info.consumer.pipe; |
| sps_disconnect(sps_pipe_info); |
| |
| sps_pipe_info = pce_dev->ce_bam_info.producer.pipe; |
| sps_disconnect(sps_pipe_info); |
| |
| return 0; |
| } |
| |
| static int _qce_resume(void *handle) |
| { |
| struct qce_device *pce_dev = (struct qce_device *)handle; |
| struct sps_pipe *sps_pipe_info; |
| struct sps_connect *sps_connect_info; |
| int rc; |
| |
| if (handle == NULL) |
| return -ENODEV; |
| |
| sps_pipe_info = pce_dev->ce_bam_info.consumer.pipe; |
| sps_connect_info = &pce_dev->ce_bam_info.consumer.connect; |
| memset(sps_connect_info->desc.base, 0x00, sps_connect_info->desc.size); |
| rc = sps_connect(sps_pipe_info, sps_connect_info); |
| if (rc) { |
| pr_err("sps_connect() fail pipe_handle=0x%lx, rc = %d\n", |
| (uintptr_t)sps_pipe_info, rc); |
| return rc; |
| } |
| sps_pipe_info = pce_dev->ce_bam_info.producer.pipe; |
| sps_connect_info = &pce_dev->ce_bam_info.producer.connect; |
| memset(sps_connect_info->desc.base, 0x00, sps_connect_info->desc.size); |
| rc = sps_connect(sps_pipe_info, sps_connect_info); |
| if (rc) |
| pr_err("sps_connect() fail pipe_handle=0x%lx, rc = %d\n", |
| (uintptr_t)sps_pipe_info, rc); |
| |
| rc = sps_register_event(sps_pipe_info, |
| &pce_dev->ce_bam_info.producer.event); |
| if (rc) |
| pr_err("Producer callback registration failed rc = %d\n", rc); |
| |
| return rc; |
| } |
| |
| struct qce_pm_table qce_pm_table = {_qce_suspend, _qce_resume}; |
| EXPORT_SYMBOL(qce_pm_table); |
| |
| int qce_aead_req(void *handle, struct qce_req *q_req) |
| { |
| struct qce_device *pce_dev = (struct qce_device *)handle; |
| struct aead_request *areq; |
| uint32_t authsize; |
| struct crypto_aead *aead; |
| uint32_t ivsize; |
| uint32_t totallen; |
| int rc = 0; |
| struct qce_cmdlist_info *cmdlistinfo = NULL; |
| int req_info = -1; |
| struct ce_sps_data *pce_sps_data; |
| struct ce_request_info *preq_info; |
| |
| if (q_req->mode == QCE_MODE_CCM) |
| return _qce_aead_ccm_req(handle, q_req); |
| |
| req_info = qce_alloc_req_info(pce_dev); |
| if (req_info < 0) |
| return -EBUSY; |
| preq_info = &pce_dev->ce_request_info[req_info]; |
| pce_sps_data = &preq_info->ce_sps; |
| areq = (struct aead_request *) q_req->areq; |
| aead = crypto_aead_reqtfm(areq); |
| ivsize = crypto_aead_ivsize(aead); |
| q_req->ivsize = ivsize; |
| authsize = q_req->authsize; |
| if (q_req->dir == QCE_ENCRYPT) |
| q_req->cryptlen = areq->cryptlen; |
| else |
| q_req->cryptlen = areq->cryptlen - authsize; |
| |
| if (q_req->cryptlen > UINT_MAX - areq->assoclen) { |
| pr_err("Integer overflow on total aead req length.\n"); |
| return -EINVAL; |
| } |
| |
| totallen = q_req->cryptlen + areq->assoclen; |
| |
| if (pce_dev->support_cmd_dscr) { |
| cmdlistinfo = _ce_get_aead_cmdlistinfo(pce_dev, |
| req_info, q_req); |
| if (cmdlistinfo == NULL) { |
| pr_err("Unsupported aead ciphering algorithm %d, mode %d, ciphering key length %d, auth digest size %d\n", |
| q_req->alg, q_req->mode, q_req->encklen, |
| q_req->authsize); |
| qce_free_req_info(pce_dev, req_info, false); |
| return -EINVAL; |
| } |
| /* set up crypto device */ |
| rc = _ce_setup_aead(pce_dev, q_req, totallen, |
| areq->assoclen, cmdlistinfo); |
| if (rc < 0) { |
| qce_free_req_info(pce_dev, req_info, false); |
| return -EINVAL; |
| } |
| } |
| |
| /* |
| * For crypto 5.0 that has burst size alignment requirement |
| * for data descritpor, |
| * the agent above(qcrypto) prepares the src scatter list with |
| * memory starting with associated data, followed by |
| * iv, and data stream to be ciphered. |
| */ |
| preq_info->src_nents = count_sg(areq->src, totallen); |
| |
| |
| /* cipher input */ |
| qce_dma_map_sg(pce_dev->pdev, areq->src, preq_info->src_nents, |
| (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| DMA_TO_DEVICE); |
| /* cipher output for encryption */ |
| if (areq->src != areq->dst) { |
| preq_info->dst_nents = count_sg(areq->dst, totallen); |
| |
| qce_dma_map_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents, |
| DMA_FROM_DEVICE); |
| } |
| |
| |
| /* setup for callback, and issue command to bam */ |
| preq_info->areq = q_req->areq; |
| preq_info->qce_cb = q_req->qce_cb; |
| preq_info->dir = q_req->dir; |
| preq_info->asg = NULL; |
| |
| /* setup xfer type for producer callback handling */ |
| preq_info->xfer_type = QCE_XFER_AEAD; |
| preq_info->req_len = totallen; |
| |
| _qce_sps_iovec_count_init(pce_dev, req_info); |
| |
| if (pce_dev->support_cmd_dscr) { |
| _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo, |
| &pce_sps_data->in_transfer); |
| } else { |
| rc = _ce_setup_aead_direct(pce_dev, q_req, totallen, |
| areq->assoclen); |
| if (rc) |
| goto bad; |
| } |
| |
| preq_info->mode = q_req->mode; |
| |
| if (pce_dev->ce_bam_info.minor_version == 0) { |
| if (_qce_sps_add_sg_data(pce_dev, areq->src, totallen, |
| &pce_sps_data->in_transfer)) |
| goto bad; |
| |
| _qce_set_flag(&pce_sps_data->in_transfer, |
| SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD); |
| |
| if (_qce_sps_add_sg_data(pce_dev, areq->dst, totallen, |
| &pce_sps_data->out_transfer)) |
| goto bad; |
| if (totallen > SPS_MAX_PKT_SIZE) { |
| _qce_set_flag(&pce_sps_data->out_transfer, |
| SPS_IOVEC_FLAG_INT); |
| pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE; |
| } else { |
| if (_qce_sps_add_data(GET_PHYS_ADDR( |
| pce_sps_data->result_dump), |
| CRYPTO_RESULT_DUMP_SIZE, |
| &pce_sps_data->out_transfer)) |
| goto bad; |
| _qce_set_flag(&pce_sps_data->out_transfer, |
| SPS_IOVEC_FLAG_INT); |
| pce_sps_data->producer_state = QCE_PIPE_STATE_COMP; |
| } |
| rc = _qce_sps_transfer(pce_dev, req_info); |
| } else { |
| if (_qce_sps_add_sg_data(pce_dev, areq->src, totallen, |
| &pce_sps_data->in_transfer)) |
| goto bad; |
| _qce_set_flag(&pce_sps_data->in_transfer, |
| SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD); |
| |
| if (pce_dev->no_get_around) |
| _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK, |
| &pce_sps_data->cmdlistptr.unlock_all_pipes, |
| &pce_sps_data->in_transfer); |
| |
| if (_qce_sps_add_sg_data(pce_dev, areq->dst, totallen, |
| &pce_sps_data->out_transfer)) |
| goto bad; |
| |
| if (pce_dev->no_get_around || totallen <= SPS_MAX_PKT_SIZE) { |
| if (_qce_sps_add_data( |
| GET_PHYS_ADDR(pce_sps_data->result_dump), |
| CRYPTO_RESULT_DUMP_SIZE, |
| &pce_sps_data->out_transfer)) |
| goto bad; |
| pce_sps_data->producer_state = QCE_PIPE_STATE_COMP; |
| } else { |
| pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE; |
| } |
| select_mode(pce_dev, preq_info); |
| rc = _qce_sps_transfer(pce_dev, req_info); |
| cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE); |
| } |
| if (rc) |
| goto bad; |
| return 0; |
| |
| bad: |
| if (preq_info->src_nents) |
| qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents, |
| (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| DMA_TO_DEVICE); |
| if (areq->src != areq->dst) |
| qce_dma_unmap_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents, |
| DMA_FROM_DEVICE); |
| qce_free_req_info(pce_dev, req_info, false); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL(qce_aead_req); |
| |
| int qce_ablk_cipher_req(void *handle, struct qce_req *c_req) |
| { |
| int rc = 0; |
| struct qce_device *pce_dev = (struct qce_device *) handle; |
| struct ablkcipher_request *areq = (struct ablkcipher_request *) |
| c_req->areq; |
| struct qce_cmdlist_info *cmdlistinfo = NULL; |
| int req_info = -1; |
| struct ce_sps_data *pce_sps_data; |
| struct ce_request_info *preq_info; |
| |
| req_info = qce_alloc_req_info(pce_dev); |
| if (req_info < 0) |
| return -EBUSY; |
| preq_info = &pce_dev->ce_request_info[req_info]; |
| pce_sps_data = &preq_info->ce_sps; |
| |
| preq_info->src_nents = 0; |
| preq_info->dst_nents = 0; |
| |
| /* cipher input */ |
| preq_info->src_nents = count_sg(areq->src, areq->nbytes); |
| |
| qce_dma_map_sg(pce_dev->pdev, areq->src, preq_info->src_nents, |
| (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| DMA_TO_DEVICE); |
| /* cipher output */ |
| if (areq->src != areq->dst) { |
| preq_info->dst_nents = count_sg(areq->dst, areq->nbytes); |
| qce_dma_map_sg(pce_dev->pdev, areq->dst, |
| preq_info->dst_nents, DMA_FROM_DEVICE); |
| } else { |
| preq_info->dst_nents = preq_info->src_nents; |
| } |
| preq_info->dir = c_req->dir; |
| if ((pce_dev->ce_bam_info.minor_version == 0) && |
| (preq_info->dir == QCE_DECRYPT) && |
| (c_req->mode == QCE_MODE_CBC)) { |
| memcpy(preq_info->dec_iv, (unsigned char *) |
| sg_virt(areq->src) + areq->src->length - 16, |
| NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE); |
| } |
| |
| /* set up crypto device */ |
| if (pce_dev->support_cmd_dscr) { |
| cmdlistinfo = _ce_get_cipher_cmdlistinfo(pce_dev, |
| req_info, c_req); |
| if (cmdlistinfo == NULL) { |
| pr_err("Unsupported cipher algorithm %d, mode %d\n", |
| c_req->alg, c_req->mode); |
| qce_free_req_info(pce_dev, req_info, false); |
| return -EINVAL; |
| } |
| rc = _ce_setup_cipher(pce_dev, c_req, areq->nbytes, 0, |
| cmdlistinfo); |
| } else { |
| rc = _ce_setup_cipher_direct(pce_dev, c_req, areq->nbytes, 0); |
| } |
| if (rc < 0) |
| goto bad; |
| |
| preq_info->mode = c_req->mode; |
| |
| /* setup for client callback, and issue command to BAM */ |
| preq_info->areq = areq; |
| preq_info->qce_cb = c_req->qce_cb; |
| |
| /* setup xfer type for producer callback handling */ |
| preq_info->xfer_type = QCE_XFER_CIPHERING; |
| preq_info->req_len = areq->nbytes; |
| |
| _qce_sps_iovec_count_init(pce_dev, req_info); |
| if (pce_dev->support_cmd_dscr) |
| _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo, |
| &pce_sps_data->in_transfer); |
| if (_qce_sps_add_sg_data(pce_dev, areq->src, areq->nbytes, |
| &pce_sps_data->in_transfer)) |
| goto bad; |
| _qce_set_flag(&pce_sps_data->in_transfer, |
| SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD); |
| |
| if (pce_dev->no_get_around) |
| _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK, |
| &pce_sps_data->cmdlistptr.unlock_all_pipes, |
| &pce_sps_data->in_transfer); |
| |
| if (_qce_sps_add_sg_data(pce_dev, areq->dst, areq->nbytes, |
| &pce_sps_data->out_transfer)) |
| goto bad; |
| if (pce_dev->no_get_around || areq->nbytes <= SPS_MAX_PKT_SIZE) { |
| pce_sps_data->producer_state = QCE_PIPE_STATE_COMP; |
| if (_qce_sps_add_data( |
| GET_PHYS_ADDR(pce_sps_data->result_dump), |
| CRYPTO_RESULT_DUMP_SIZE, |
| &pce_sps_data->out_transfer)) |
| goto bad; |
| } else { |
| pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE; |
| } |
| |
| select_mode(pce_dev, preq_info); |
| rc = _qce_sps_transfer(pce_dev, req_info); |
| cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE); |
| if (rc) |
| goto bad; |
| |
| return 0; |
| bad: |
| if (areq->src != areq->dst) { |
| if (preq_info->dst_nents) { |
| qce_dma_unmap_sg(pce_dev->pdev, areq->dst, |
| preq_info->dst_nents, DMA_FROM_DEVICE); |
| } |
| } |
| if (preq_info->src_nents) { |
| qce_dma_unmap_sg(pce_dev->pdev, areq->src, |
| preq_info->src_nents, |
| (areq->src == areq->dst) ? |
| DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| } |
| qce_free_req_info(pce_dev, req_info, false); |
| return rc; |
| } |
| EXPORT_SYMBOL(qce_ablk_cipher_req); |
| |
| int qce_process_sha_req(void *handle, struct qce_sha_req *sreq) |
| { |
| struct qce_device *pce_dev = (struct qce_device *) handle; |
| int rc; |
| |
| struct ahash_request *areq; |
| struct qce_cmdlist_info *cmdlistinfo = NULL; |
| int req_info = -1; |
| struct ce_sps_data *pce_sps_data; |
| struct ce_request_info *preq_info; |
| bool is_dummy = false; |
| |
| if (!sreq) { |
| sreq = &(pce_dev->dummyreq.sreq); |
| req_info = DUMMY_REQ_INDEX; |
| is_dummy = true; |
| } else { |
| req_info = qce_alloc_req_info(pce_dev); |
| if (req_info < 0) |
| return -EBUSY; |
| } |
| |
| areq = (struct ahash_request *)sreq->areq; |
| preq_info = &pce_dev->ce_request_info[req_info]; |
| pce_sps_data = &preq_info->ce_sps; |
| |
| preq_info->src_nents = count_sg(sreq->src, sreq->size); |
| qce_dma_map_sg(pce_dev->pdev, sreq->src, preq_info->src_nents, |
| DMA_TO_DEVICE); |
| |
| if (pce_dev->support_cmd_dscr) { |
| cmdlistinfo = _ce_get_hash_cmdlistinfo(pce_dev, req_info, sreq); |
| if (cmdlistinfo == NULL) { |
| pr_err("Unsupported hash algorithm %d\n", sreq->alg); |
| qce_free_req_info(pce_dev, req_info, false); |
| return -EINVAL; |
| } |
| rc = _ce_setup_hash(pce_dev, sreq, cmdlistinfo); |
| } else { |
| rc = _ce_setup_hash_direct(pce_dev, sreq); |
| } |
| if (rc < 0) |
| goto bad; |
| |
| preq_info->areq = areq; |
| preq_info->qce_cb = sreq->qce_cb; |
| |
| /* setup xfer type for producer callback handling */ |
| preq_info->xfer_type = QCE_XFER_HASHING; |
| preq_info->req_len = sreq->size; |
| |
| _qce_sps_iovec_count_init(pce_dev, req_info); |
| |
| if (pce_dev->support_cmd_dscr) |
| _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo, |
| &pce_sps_data->in_transfer); |
| if (_qce_sps_add_sg_data(pce_dev, areq->src, areq->nbytes, |
| &pce_sps_data->in_transfer)) |
| goto bad; |
| |
| /* always ensure there is input data. ZLT does not work for bam-ndp */ |
| if (!areq->nbytes) |
| _qce_sps_add_data( |
| GET_PHYS_ADDR(pce_sps_data->ignore_buffer), |
| pce_dev->ce_bam_info.ce_burst_size, |
| &pce_sps_data->in_transfer); |
| _qce_set_flag(&pce_sps_data->in_transfer, |
| SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD); |
| if (pce_dev->no_get_around) |
| _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK, |
| &pce_sps_data->cmdlistptr.unlock_all_pipes, |
| &pce_sps_data->in_transfer); |
| |
| if (_qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump), |
| CRYPTO_RESULT_DUMP_SIZE, |
| &pce_sps_data->out_transfer)) |
| goto bad; |
| |
| if (is_dummy) { |
| _qce_set_flag(&pce_sps_data->out_transfer, SPS_IOVEC_FLAG_INT); |
| rc = _qce_sps_transfer(pce_dev, req_info); |
| } else { |
| select_mode(pce_dev, preq_info); |
| rc = _qce_sps_transfer(pce_dev, req_info); |
| cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE); |
| } |
| if (rc) |
| goto bad; |
| return 0; |
| bad: |
| if (preq_info->src_nents) { |
| qce_dma_unmap_sg(pce_dev->pdev, sreq->src, |
| preq_info->src_nents, DMA_TO_DEVICE); |
| } |
| qce_free_req_info(pce_dev, req_info, false); |
| return rc; |
| } |
| EXPORT_SYMBOL(qce_process_sha_req); |
| |
| int qce_f8_req(void *handle, struct qce_f8_req *req, |
| void *cookie, qce_comp_func_ptr_t qce_cb) |
| { |
| struct qce_device *pce_dev = (struct qce_device *) handle; |
| bool key_stream_mode; |
| dma_addr_t dst; |
| int rc; |
| struct qce_cmdlist_info *cmdlistinfo; |
| int req_info = -1; |
| struct ce_request_info *preq_info; |
| struct ce_sps_data *pce_sps_data; |
| |
| req_info = qce_alloc_req_info(pce_dev); |
| if (req_info < 0) |
| return -EBUSY; |
| preq_info = &pce_dev->ce_request_info[req_info]; |
| pce_sps_data = &preq_info->ce_sps; |
| |
| switch (req->algorithm) { |
| case QCE_OTA_ALGO_KASUMI: |
| cmdlistinfo = &pce_sps_data->cmdlistptr.f8_kasumi; |
| break; |
| case QCE_OTA_ALGO_SNOW3G: |
| cmdlistinfo = &pce_sps_data->cmdlistptr.f8_snow3g; |
| break; |
| default: |
| qce_free_req_info(pce_dev, req_info, false); |
| return -EINVAL; |
| }; |
| |
| key_stream_mode = (req->data_in == NULL); |
| |
| /* don't support key stream mode */ |
| |
| if (key_stream_mode || (req->bearer >= QCE_OTA_MAX_BEARER)) { |
| qce_free_req_info(pce_dev, req_info, false); |
| return -EINVAL; |
| } |
| |
| /* F8 cipher input */ |
| preq_info->phy_ota_src = dma_map_single(pce_dev->pdev, |
| req->data_in, req->data_len, |
| (req->data_in == req->data_out) ? |
| DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| |
| /* F8 cipher output */ |
| if (req->data_in != req->data_out) { |
| dst = dma_map_single(pce_dev->pdev, req->data_out, |
| req->data_len, DMA_FROM_DEVICE); |
| preq_info->phy_ota_dst = dst; |
| } else { |
| /* in place ciphering */ |
| dst = preq_info->phy_ota_src; |
| preq_info->phy_ota_dst = 0; |
| } |
| preq_info->ota_size = req->data_len; |
| |
| |
| /* set up crypto device */ |
| if (pce_dev->support_cmd_dscr) |
| rc = _ce_f8_setup(pce_dev, req, key_stream_mode, 1, 0, |
| req->data_len, cmdlistinfo); |
| else |
| rc = _ce_f8_setup_direct(pce_dev, req, key_stream_mode, 1, 0, |
| req->data_len); |
| if (rc < 0) |
| goto bad; |
| |
| /* setup for callback, and issue command to sps */ |
| preq_info->areq = cookie; |
| preq_info->qce_cb = qce_cb; |
| |
| /* setup xfer type for producer callback handling */ |
| preq_info->xfer_type = QCE_XFER_F8; |
| preq_info->req_len = req->data_len; |
| |
| _qce_sps_iovec_count_init(pce_dev, req_info); |
| |
| if (pce_dev->support_cmd_dscr) |
| _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo, |
| &pce_sps_data->in_transfer); |
| |
| _qce_sps_add_data((uint32_t)preq_info->phy_ota_src, req->data_len, |
| &pce_sps_data->in_transfer); |
| |
| _qce_set_flag(&pce_sps_data->in_transfer, |
| SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD); |
| |
| _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK, |
| &pce_sps_data->cmdlistptr.unlock_all_pipes, |
| &pce_sps_data->in_transfer); |
| |
| _qce_sps_add_data((uint32_t)dst, req->data_len, |
| &pce_sps_data->out_transfer); |
| |
| _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump), |
| CRYPTO_RESULT_DUMP_SIZE, |
| &pce_sps_data->out_transfer); |
| |
| select_mode(pce_dev, preq_info); |
| rc = _qce_sps_transfer(pce_dev, req_info); |
| cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE); |
| if (rc) |
| goto bad; |
| return 0; |
| bad: |
| if (preq_info->phy_ota_dst != 0) |
| dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_dst, |
| req->data_len, DMA_FROM_DEVICE); |
| if (preq_info->phy_ota_src != 0) |
| dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src, |
| req->data_len, |
| (req->data_in == req->data_out) ? |
| DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| qce_free_req_info(pce_dev, req_info, false); |
| return rc; |
| } |
| EXPORT_SYMBOL(qce_f8_req); |
| |
| int qce_f8_multi_pkt_req(void *handle, struct qce_f8_multi_pkt_req *mreq, |
| void *cookie, qce_comp_func_ptr_t qce_cb) |
| { |
| struct qce_device *pce_dev = (struct qce_device *) handle; |
| uint16_t num_pkt = mreq->num_pkt; |
| uint16_t cipher_start = mreq->cipher_start; |
| uint16_t cipher_size = mreq->cipher_size; |
| struct qce_f8_req *req = &mreq->qce_f8_req; |
| uint32_t total; |
| dma_addr_t dst = 0; |
| int rc = 0; |
| struct qce_cmdlist_info *cmdlistinfo; |
| int req_info = -1; |
| struct ce_request_info *preq_info; |
| struct ce_sps_data *pce_sps_data; |
| |
| req_info = qce_alloc_req_info(pce_dev); |
| if (req_info < 0) |
| return -EBUSY; |
| preq_info = &pce_dev->ce_request_info[req_info]; |
| pce_sps_data = &preq_info->ce_sps; |
| |
| switch (req->algorithm) { |
| case QCE_OTA_ALGO_KASUMI: |
| cmdlistinfo = &pce_sps_data->cmdlistptr.f8_kasumi; |
| break; |
| case QCE_OTA_ALGO_SNOW3G: |
| cmdlistinfo = &pce_sps_data->cmdlistptr.f8_snow3g; |
| break; |
| default: |
| qce_free_req_info(pce_dev, req_info, false); |
| return -EINVAL; |
| }; |
| |
| total = num_pkt * req->data_len; |
| |
| /* F8 cipher input */ |
| preq_info->phy_ota_src = dma_map_single(pce_dev->pdev, |
| req->data_in, total, |
| (req->data_in == req->data_out) ? |
| DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| |
| /* F8 cipher output */ |
| if (req->data_in != req->data_out) { |
| dst = dma_map_single(pce_dev->pdev, req->data_out, total, |
| DMA_FROM_DEVICE); |
| preq_info->phy_ota_dst = dst; |
| } else { |
| /* in place ciphering */ |
| dst = preq_info->phy_ota_src; |
| preq_info->phy_ota_dst = 0; |
| } |
| |
| preq_info->ota_size = total; |
| |
| /* set up crypto device */ |
| if (pce_dev->support_cmd_dscr) |
| rc = _ce_f8_setup(pce_dev, req, false, num_pkt, cipher_start, |
| cipher_size, cmdlistinfo); |
| else |
| rc = _ce_f8_setup_direct(pce_dev, req, false, num_pkt, |
| cipher_start, cipher_size); |
| if (rc) |
| goto bad; |
| |
| /* setup for callback, and issue command to sps */ |
| preq_info->areq = cookie; |
| preq_info->qce_cb = qce_cb; |
| |
| /* setup xfer type for producer callback handling */ |
| preq_info->xfer_type = QCE_XFER_F8; |
| preq_info->req_len = total; |
| |
| _qce_sps_iovec_count_init(pce_dev, req_info); |
| |
| if (pce_dev->support_cmd_dscr) |
| _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo, |
| &pce_sps_data->in_transfer); |
| |
| _qce_sps_add_data((uint32_t)preq_info->phy_ota_src, total, |
| &pce_sps_data->in_transfer); |
| _qce_set_flag(&pce_sps_data->in_transfer, |
| SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD); |
| |
| _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK, |
| &pce_sps_data->cmdlistptr.unlock_all_pipes, |
| &pce_sps_data->in_transfer); |
| |
| _qce_sps_add_data((uint32_t)dst, total, |
| &pce_sps_data->out_transfer); |
| |
| _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump), |
| CRYPTO_RESULT_DUMP_SIZE, |
| &pce_sps_data->out_transfer); |
| |
| select_mode(pce_dev, preq_info); |
| rc = _qce_sps_transfer(pce_dev, req_info); |
| cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE); |
| |
| if (rc == 0) |
| return 0; |
| bad: |
| if (preq_info->phy_ota_dst) |
| dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_dst, total, |
| DMA_FROM_DEVICE); |
| dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src, total, |
| (req->data_in == req->data_out) ? |
| DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| qce_free_req_info(pce_dev, req_info, false); |
| return rc; |
| } |
| EXPORT_SYMBOL(qce_f8_multi_pkt_req); |
| |
| int qce_f9_req(void *handle, struct qce_f9_req *req, void *cookie, |
| qce_comp_func_ptr_t qce_cb) |
| { |
| struct qce_device *pce_dev = (struct qce_device *) handle; |
| int rc; |
| struct qce_cmdlist_info *cmdlistinfo; |
| int req_info = -1; |
| struct ce_sps_data *pce_sps_data; |
| struct ce_request_info *preq_info; |
| |
| req_info = qce_alloc_req_info(pce_dev); |
| if (req_info < 0) |
| return -EBUSY; |
| preq_info = &pce_dev->ce_request_info[req_info]; |
| pce_sps_data = &preq_info->ce_sps; |
| switch (req->algorithm) { |
| case QCE_OTA_ALGO_KASUMI: |
| cmdlistinfo = &pce_sps_data->cmdlistptr.f9_kasumi; |
| break; |
| case QCE_OTA_ALGO_SNOW3G: |
| cmdlistinfo = &pce_sps_data->cmdlistptr.f9_snow3g; |
| break; |
| default: |
| qce_free_req_info(pce_dev, req_info, false); |
| return -EINVAL; |
| }; |
| |
| preq_info->phy_ota_src = dma_map_single(pce_dev->pdev, req->message, |
| req->msize, DMA_TO_DEVICE); |
| |
| preq_info->ota_size = req->msize; |
| |
| if (pce_dev->support_cmd_dscr) |
| rc = _ce_f9_setup(pce_dev, req, cmdlistinfo); |
| else |
| rc = _ce_f9_setup_direct(pce_dev, req); |
| if (rc < 0) |
| goto bad; |
| |
| /* setup for callback, and issue command to sps */ |
| preq_info->areq = cookie; |
| preq_info->qce_cb = qce_cb; |
| |
| /* setup xfer type for producer callback handling */ |
| preq_info->xfer_type = QCE_XFER_F9; |
| preq_info->req_len = req->msize; |
| |
| _qce_sps_iovec_count_init(pce_dev, req_info); |
| if (pce_dev->support_cmd_dscr) |
| _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo, |
| &pce_sps_data->in_transfer); |
| _qce_sps_add_data((uint32_t)preq_info->phy_ota_src, req->msize, |
| &pce_sps_data->in_transfer); |
| _qce_set_flag(&pce_sps_data->in_transfer, |
| SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD); |
| |
| _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK, |
| &pce_sps_data->cmdlistptr.unlock_all_pipes, |
| &pce_sps_data->in_transfer); |
| |
| _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump), |
| CRYPTO_RESULT_DUMP_SIZE, |
| &pce_sps_data->out_transfer); |
| |
| select_mode(pce_dev, preq_info); |
| rc = _qce_sps_transfer(pce_dev, req_info); |
| cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE); |
| if (rc) |
| goto bad; |
| return 0; |
| bad: |
| dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src, |
| req->msize, DMA_TO_DEVICE); |
| qce_free_req_info(pce_dev, req_info, false); |
| return rc; |
| } |
| EXPORT_SYMBOL(qce_f9_req); |
| |
| static int __qce_get_device_tree_data(struct platform_device *pdev, |
| struct qce_device *pce_dev) |
| { |
| struct resource *resource; |
| int rc = 0; |
| |
| pce_dev->is_shared = of_property_read_bool((&pdev->dev)->of_node, |
| "qcom,ce-hw-shared"); |
| pce_dev->support_hw_key = of_property_read_bool((&pdev->dev)->of_node, |
| "qcom,ce-hw-key"); |
| |
| pce_dev->use_sw_aes_cbc_ecb_ctr_algo = |
| of_property_read_bool((&pdev->dev)->of_node, |
| "qcom,use-sw-aes-cbc-ecb-ctr-algo"); |
| pce_dev->use_sw_aead_algo = |
| of_property_read_bool((&pdev->dev)->of_node, |
| "qcom,use-sw-aead-algo"); |
| pce_dev->use_sw_aes_xts_algo = |
| of_property_read_bool((&pdev->dev)->of_node, |
| "qcom,use-sw-aes-xts-algo"); |
| pce_dev->use_sw_ahash_algo = |
| of_property_read_bool((&pdev->dev)->of_node, |
| "qcom,use-sw-ahash-algo"); |
| pce_dev->use_sw_hmac_algo = |
| of_property_read_bool((&pdev->dev)->of_node, |
| "qcom,use-sw-hmac-algo"); |
| pce_dev->use_sw_aes_ccm_algo = |
| of_property_read_bool((&pdev->dev)->of_node, |
| "qcom,use-sw-aes-ccm-algo"); |
| pce_dev->support_clk_mgmt_sus_res = of_property_read_bool( |
| (&pdev->dev)->of_node, "qcom,clk-mgmt-sus-res"); |
| pce_dev->support_only_core_src_clk = of_property_read_bool( |
| (&pdev->dev)->of_node, "qcom,support-core-clk-only"); |
| pce_dev->request_bw_before_clk = of_property_read_bool( |
| (&pdev->dev)->of_node, "qcom,request-bw-before-clk"); |
| |
| if (of_property_read_u32((&pdev->dev)->of_node, |
| "qcom,bam-pipe-pair", |
| &pce_dev->ce_bam_info.pipe_pair_index)) { |
| pr_err("Fail to get bam pipe pair information.\n"); |
| return -EINVAL; |
| } |
| if (of_property_read_u32((&pdev->dev)->of_node, |
| "qcom,ce-device", |
| &pce_dev->ce_bam_info.ce_device)) { |
| pr_err("Fail to get CE device information.\n"); |
| return -EINVAL; |
| } |
| if (of_property_read_u32((&pdev->dev)->of_node, |
| "qcom,ce-hw-instance", |
| &pce_dev->ce_bam_info.ce_hw_instance)) { |
| pr_err("Fail to get CE hw instance information.\n"); |
| return -EINVAL; |
| } |
| if (of_property_read_u32((&pdev->dev)->of_node, |
| "qcom,bam-ee", |
| &pce_dev->ce_bam_info.bam_ee)) { |
| pr_info("BAM Apps EE is not defined, setting to default 1\n"); |
| pce_dev->ce_bam_info.bam_ee = 1; |
| } |
| if (of_property_read_u32((&pdev->dev)->of_node, |
| "qcom,ce-opp-freq", |
| &pce_dev->ce_opp_freq_hz)) { |
| pr_info("CE operating frequency is not defined, setting to default 100MHZ\n"); |
| pce_dev->ce_opp_freq_hz = CE_CLK_100MHZ; |
| } |
| |
| if (of_property_read_bool((&pdev->dev)->of_node, "qcom,smmu-s1-enable")) |
| pce_dev->enable_s1_smmu = true; |
| |
| pce_dev->ce_bam_info.dest_pipe_index = |
| 2 * pce_dev->ce_bam_info.pipe_pair_index; |
| pce_dev->ce_bam_info.src_pipe_index = |
| pce_dev->ce_bam_info.dest_pipe_index + 1; |
| |
| resource = platform_get_resource_byname(pdev, IORESOURCE_MEM, |
| "crypto-base"); |
| if (resource) { |
| pce_dev->phy_iobase = resource->start; |
| pce_dev->iobase = ioremap_nocache(resource->start, |
| resource_size(resource)); |
| if (!pce_dev->iobase) { |
| pr_err("Can not map CRYPTO io memory\n"); |
| return -ENOMEM; |
| } |
| } else { |
| pr_err("CRYPTO HW mem unavailable.\n"); |
| return -ENODEV; |
| } |
| |
| resource = platform_get_resource_byname(pdev, IORESOURCE_MEM, |
| "crypto-bam-base"); |
| if (resource) { |
| pce_dev->bam_mem = resource->start; |
| pce_dev->bam_mem_size = resource_size(resource); |
| } else { |
| pr_err("CRYPTO BAM mem unavailable.\n"); |
| rc = -ENODEV; |
| goto err_getting_bam_info; |
| } |
| |
| resource = platform_get_resource(pdev, IORESOURCE_IRQ, 0); |
| if (resource) { |
| pce_dev->ce_bam_info.bam_irq = resource->start; |
| } else { |
| pr_err("CRYPTO BAM IRQ unavailable.\n"); |
| goto err_dev; |
| } |
| return rc; |
| err_dev: |
| if (pce_dev->ce_bam_info.bam_iobase) |
| iounmap(pce_dev->ce_bam_info.bam_iobase); |
| |
| err_getting_bam_info: |
| if (pce_dev->iobase) |
| iounmap(pce_dev->iobase); |
| |
| return rc; |
| } |
| |
| static int __qce_init_clk(struct qce_device *pce_dev) |
| { |
| int rc = 0; |
| |
| pce_dev->ce_core_src_clk = clk_get(pce_dev->pdev, "core_clk_src"); |
| if (!IS_ERR(pce_dev->ce_core_src_clk)) { |
| if (pce_dev->request_bw_before_clk) |
| goto skip_set_rate; |
| |
| rc = clk_set_rate(pce_dev->ce_core_src_clk, |
| pce_dev->ce_opp_freq_hz); |
| if (rc) { |
| pr_err("Unable to set the core src clk @%uMhz.\n", |
| pce_dev->ce_opp_freq_hz/CE_CLK_DIV); |
| goto exit_put_core_src_clk; |
| } |
| } else { |
| if (pce_dev->support_only_core_src_clk) { |
| rc = PTR_ERR(pce_dev->ce_core_src_clk); |
| pce_dev->ce_core_src_clk = NULL; |
| pr_err("Unable to get CE core src clk\n"); |
| return rc; |
| } |
| pr_warn("Unable to get CE core src clk, set to NULL\n"); |
| pce_dev->ce_core_src_clk = NULL; |
| } |
| |
| skip_set_rate: |
| if (pce_dev->support_only_core_src_clk) { |
| pce_dev->ce_core_clk = NULL; |
| pce_dev->ce_clk = NULL; |
| pce_dev->ce_bus_clk = NULL; |
| } else { |
| pce_dev->ce_core_clk = clk_get(pce_dev->pdev, "core_clk"); |
| if (IS_ERR(pce_dev->ce_core_clk)) { |
| rc = PTR_ERR(pce_dev->ce_core_clk); |
| pr_err("Unable to get CE core clk\n"); |
| goto exit_put_core_src_clk; |
| } |
| pce_dev->ce_clk = clk_get(pce_dev->pdev, "iface_clk"); |
| if (IS_ERR(pce_dev->ce_clk)) { |
| rc = PTR_ERR(pce_dev->ce_clk); |
| pr_err("Unable to get CE interface clk\n"); |
| goto exit_put_core_clk; |
| } |
| |
| pce_dev->ce_bus_clk = clk_get(pce_dev->pdev, "bus_clk"); |
| if (IS_ERR(pce_dev->ce_bus_clk)) { |
| rc = PTR_ERR(pce_dev->ce_bus_clk); |
| pr_err("Unable to get CE BUS interface clk\n"); |
| goto exit_put_iface_clk; |
| } |
| } |
| return rc; |
| |
| exit_put_iface_clk: |
| if (pce_dev->ce_clk) |
| clk_put(pce_dev->ce_clk); |
| exit_put_core_clk: |
| if (pce_dev->ce_core_clk) |
| clk_put(pce_dev->ce_core_clk); |
| exit_put_core_src_clk: |
| if (pce_dev->ce_core_src_clk) |
| clk_put(pce_dev->ce_core_src_clk); |
| pr_err("Unable to init CE clks, rc = %d\n", rc); |
| return rc; |
| } |
| |
| static void __qce_deinit_clk(struct qce_device *pce_dev) |
| { |
| if (pce_dev->ce_bus_clk) |
| clk_put(pce_dev->ce_bus_clk); |
| if (pce_dev->ce_clk) |
| clk_put(pce_dev->ce_clk); |
| if (pce_dev->ce_core_clk) |
| clk_put(pce_dev->ce_core_clk); |
| if (pce_dev->ce_core_src_clk) |
| clk_put(pce_dev->ce_core_src_clk); |
| } |
| |
| int qce_enable_clk(void *handle) |
| { |
| struct qce_device *pce_dev = (struct qce_device *)handle; |
| int rc = 0; |
| |
| if (pce_dev->ce_core_src_clk) { |
| rc = clk_prepare_enable(pce_dev->ce_core_src_clk); |
| if (rc) { |
| pr_err("Unable to enable/prepare CE core src clk\n"); |
| return rc; |
| } |
| } |
| |
| if (pce_dev->support_only_core_src_clk) |
| return rc; |
| |
| if (pce_dev->ce_core_clk) { |
| rc = clk_prepare_enable(pce_dev->ce_core_clk); |
| if (rc) { |
| pr_err("Unable to enable/prepare CE core clk\n"); |
| goto exit_disable_core_src_clk; |
| } |
| } |
| |
| if (pce_dev->ce_clk) { |
| rc = clk_prepare_enable(pce_dev->ce_clk); |
| if (rc) { |
| pr_err("Unable to enable/prepare CE iface clk\n"); |
| goto exit_disable_core_clk; |
| } |
| } |
| |
| if (pce_dev->ce_bus_clk) { |
| rc = clk_prepare_enable(pce_dev->ce_bus_clk); |
| if (rc) { |
| pr_err("Unable to enable/prepare CE BUS clk\n"); |
| goto exit_disable_ce_clk; |
| } |
| } |
| return rc; |
| |
| exit_disable_ce_clk: |
| if (pce_dev->ce_clk) |
| clk_disable_unprepare(pce_dev->ce_clk); |
| exit_disable_core_clk: |
| if (pce_dev->ce_core_clk) |
| clk_disable_unprepare(pce_dev->ce_core_clk); |
| exit_disable_core_src_clk: |
| if (pce_dev->ce_core_src_clk) |
| clk_disable_unprepare(pce_dev->ce_core_src_clk); |
| return rc; |
| } |
| EXPORT_SYMBOL(qce_enable_clk); |
| |
| int qce_disable_clk(void *handle) |
| { |
| struct qce_device *pce_dev = (struct qce_device *) handle; |
| int rc = 0; |
| |
| if (pce_dev->ce_bus_clk) |
| clk_disable_unprepare(pce_dev->ce_bus_clk); |
| if (pce_dev->ce_clk) |
| clk_disable_unprepare(pce_dev->ce_clk); |
| if (pce_dev->ce_core_clk) |
| clk_disable_unprepare(pce_dev->ce_core_clk); |
| if (pce_dev->ce_core_src_clk) |
| clk_disable_unprepare(pce_dev->ce_core_src_clk); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL(qce_disable_clk); |
| |
| /* dummy req setup */ |
| static int setup_dummy_req(struct qce_device *pce_dev) |
| { |
| char *input = |
| "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopqopqrpqrs"; |
| int len = DUMMY_REQ_DATA_LEN; |
| |
| memcpy(pce_dev->dummyreq_in_buf, input, len); |
| sg_set_buf(&pce_dev->dummyreq.sg, pce_dev->dummyreq_in_buf, len); |
| sg_mark_end(&pce_dev->dummyreq.sg); |
| |
| pce_dev->dummyreq.sreq.alg = QCE_HASH_SHA1; |
| pce_dev->dummyreq.sreq.qce_cb = qce_dummy_complete; |
| pce_dev->dummyreq.sreq.src = &pce_dev->dummyreq.sg; |
| pce_dev->dummyreq.sreq.auth_data[0] = 0; |
| pce_dev->dummyreq.sreq.auth_data[1] = 0; |
| pce_dev->dummyreq.sreq.auth_data[2] = 0; |
| pce_dev->dummyreq.sreq.auth_data[3] = 0; |
| pce_dev->dummyreq.sreq.first_blk = 1; |
| pce_dev->dummyreq.sreq.last_blk = 1; |
| pce_dev->dummyreq.sreq.size = len; |
| pce_dev->dummyreq.sreq.areq = &pce_dev->dummyreq.areq; |
| pce_dev->dummyreq.sreq.flags = 0; |
| pce_dev->dummyreq.sreq.authkey = NULL; |
| |
| pce_dev->dummyreq.areq.src = pce_dev->dummyreq.sreq.src; |
| pce_dev->dummyreq.areq.nbytes = pce_dev->dummyreq.sreq.size; |
| |
| return 0; |
| } |
| |
| static void qce_iommu_release_iomapping(struct qce_device *pce_dev) |
| { |
| if (pce_dev->smmu_mapping) |
| arm_iommu_release_mapping(pce_dev->smmu_mapping); |
| |
| pce_dev->smmu_mapping = NULL; |
| } |
| |
| static int qce_smmu_init(struct qce_device *pce_dev) |
| { |
| struct dma_iommu_mapping *mapping; |
| int attr = 1; |
| int ret = 0; |
| |
| mapping = arm_iommu_create_mapping(&platform_bus_type, |
| CRYPTO_SMMU_IOVA_START, CRYPTO_SMMU_IOVA_SIZE); |
| if (IS_ERR(mapping)) { |
| ret = PTR_ERR(mapping); |
| pr_err("Create mapping failed, err = %d\n", ret); |
| return ret; |
| } |
| |
| ret = iommu_domain_set_attr(mapping->domain, |
| DOMAIN_ATTR_ATOMIC, &attr); |
| if (ret < 0) { |
| pr_err("Set ATOMIC attr failed, err = %d\n", ret); |
| goto ext_fail_set_attr; |
| } |
| |
| ret = iommu_domain_set_attr(mapping->domain, |
| DOMAIN_ATTR_UPSTREAM_IOVA_ALLOCATOR, &attr); |
| if (ret < 0) { |
| pr_err("Set UPSTREAM_IOVA_ALLOCATOR failed, err = %d\n", ret); |
| goto ext_fail_set_attr; |
| } |
| |
| ret = arm_iommu_attach_device(pce_dev->pdev, mapping); |
| if (ret < 0) { |
| pr_err("Attach device failed, err = %d\n", ret); |
| goto ext_fail_set_attr; |
| } |
| pce_dev->smmu_mapping = mapping; |
| return ret; |
| |
| ext_fail_set_attr: |
| qce_iommu_release_iomapping(pce_dev); |
| return ret; |
| } |
| |
| /* crypto engine open function. */ |
| void *qce_open(struct platform_device *pdev, int *rc) |
| { |
| struct qce_device *pce_dev; |
| int i; |
| static int pcedev_no = 1; |
| |
| pce_dev = kzalloc(sizeof(struct qce_device), GFP_KERNEL); |
| if (!pce_dev) { |
| *rc = -ENOMEM; |
| pr_err("Can not allocate memory: %d\n", *rc); |
| return NULL; |
| } |
| pce_dev->pdev = &pdev->dev; |
| |
| mutex_lock(&qce_iomap_mutex); |
| if (pdev->dev.of_node) { |
| *rc = __qce_get_device_tree_data(pdev, pce_dev); |
| if (*rc) |
| goto err_pce_dev; |
| } else { |
| *rc = -EINVAL; |
| pr_err("Device Node not found.\n"); |
| goto err_pce_dev; |
| } |
| |
| if (pce_dev->enable_s1_smmu) { |
| if (qce_smmu_init(pce_dev)) { |
| *rc = -EIO; |
| goto err_pce_dev; |
| } |
| } |
| |
| for (i = 0; i < MAX_QCE_ALLOC_BAM_REQ; i++) |
| atomic_set(&pce_dev->ce_request_info[i].in_use, false); |
| pce_dev->ce_request_index = 0; |
| |
| pce_dev->memsize = 10 * PAGE_SIZE * MAX_QCE_ALLOC_BAM_REQ; |
| pce_dev->coh_vmem = dma_alloc_coherent(pce_dev->pdev, |
| pce_dev->memsize, &pce_dev->coh_pmem, GFP_KERNEL); |
| |
| if (pce_dev->coh_vmem == NULL) { |
| *rc = -ENOMEM; |
| pr_err("Can not allocate coherent memory for sps data\n"); |
| goto err_iobase; |
| } |
| |
| pce_dev->iovec_memsize = TOTAL_IOVEC_SPACE_PER_PIPE * |
| MAX_QCE_ALLOC_BAM_REQ * 2; |
| pce_dev->iovec_vmem = kzalloc(pce_dev->iovec_memsize, GFP_KERNEL); |
| if (pce_dev->iovec_vmem == NULL) |
| goto err_mem; |
| |
| pce_dev->dummyreq_in_buf = kzalloc(DUMMY_REQ_DATA_LEN, GFP_KERNEL); |
| if (pce_dev->dummyreq_in_buf == NULL) |
| goto err_mem; |
| |
| *rc = __qce_init_clk(pce_dev); |
| if (*rc) |
| goto err_mem; |
| *rc = qce_enable_clk(pce_dev); |
| if (*rc) |
| goto err_enable_clk; |
| |
| if (_probe_ce_engine(pce_dev)) { |
| *rc = -ENXIO; |
| goto err; |
| } |
| *rc = 0; |
| |
| qce_init_ce_cfg_val(pce_dev); |
| *rc = qce_sps_init(pce_dev); |
| if (*rc) |
| goto err; |
| qce_setup_ce_sps_data(pce_dev); |
| qce_disable_clk(pce_dev); |
| setup_dummy_req(pce_dev); |
| atomic_set(&pce_dev->no_of_queued_req, 0); |
| pce_dev->mode = IN_INTERRUPT_MODE; |
| init_timer(&(pce_dev->timer)); |
| pce_dev->timer.function = qce_multireq_timeout; |
| pce_dev->timer.data = (unsigned long)pce_dev; |
| pce_dev->timer.expires = jiffies + DELAY_IN_JIFFIES; |
| pce_dev->intr_cadence = 0; |
| pce_dev->dev_no = pcedev_no; |
| pcedev_no++; |
| pce_dev->owner = QCE_OWNER_NONE; |
| mutex_unlock(&qce_iomap_mutex); |
| return pce_dev; |
| err: |
| qce_disable_clk(pce_dev); |
| |
| err_enable_clk: |
| __qce_deinit_clk(pce_dev); |
| |
| err_mem: |
| kfree(pce_dev->dummyreq_in_buf); |
| kfree(pce_dev->iovec_vmem); |
| if (pce_dev->coh_vmem) |
| dma_free_coherent(pce_dev->pdev, pce_dev->memsize, |
| pce_dev->coh_vmem, pce_dev->coh_pmem); |
| err_iobase: |
| if (pce_dev->enable_s1_smmu) |
| qce_iommu_release_iomapping(pce_dev); |
| |
| if (pce_dev->iobase) |
| iounmap(pce_dev->iobase); |
| err_pce_dev: |
| mutex_unlock(&qce_iomap_mutex); |
| kfree(pce_dev); |
| return NULL; |
| } |
| EXPORT_SYMBOL(qce_open); |
| |
| /* crypto engine close function. */ |
| int qce_close(void *handle) |
| { |
| struct qce_device *pce_dev = (struct qce_device *) handle; |
| |
| if (handle == NULL) |
| return -ENODEV; |
| |
| mutex_lock(&qce_iomap_mutex); |
| qce_enable_clk(pce_dev); |
| qce_sps_exit(pce_dev); |
| |
| if (pce_dev->iobase) |
| iounmap(pce_dev->iobase); |
| if (pce_dev->coh_vmem) |
| dma_free_coherent(pce_dev->pdev, pce_dev->memsize, |
| pce_dev->coh_vmem, pce_dev->coh_pmem); |
| kfree(pce_dev->dummyreq_in_buf); |
| kfree(pce_dev->iovec_vmem); |
| |
| if (pce_dev->enable_s1_smmu) |
| qce_iommu_release_iomapping(pce_dev); |
| |
| qce_disable_clk(pce_dev); |
| __qce_deinit_clk(pce_dev); |
| mutex_unlock(&qce_iomap_mutex); |
| kfree(handle); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(qce_close); |
| |
| #define OTA_SUPPORT_MASK (1 << CRYPTO_ENCR_SNOW3G_SEL |\ |
| 1 << CRYPTO_ENCR_KASUMI_SEL |\ |
| 1 << CRYPTO_AUTH_SNOW3G_SEL |\ |
| 1 << CRYPTO_AUTH_KASUMI_SEL) |
| |
| int qce_hw_support(void *handle, struct ce_hw_support *ce_support) |
| { |
| struct qce_device *pce_dev = (struct qce_device *)handle; |
| |
| if (ce_support == NULL) |
| return -EINVAL; |
| |
| ce_support->sha1_hmac_20 = false; |
| ce_support->sha1_hmac = false; |
| ce_support->sha256_hmac = false; |
| ce_support->sha_hmac = true; |
| ce_support->cmac = true; |
| ce_support->aes_key_192 = false; |
| ce_support->aes_xts = true; |
| if ((pce_dev->engines_avail & OTA_SUPPORT_MASK) == OTA_SUPPORT_MASK) |
| ce_support->ota = true; |
| else |
| ce_support->ota = false; |
| ce_support->bam = true; |
| ce_support->is_shared = (pce_dev->is_shared == 1) ? true : false; |
| ce_support->hw_key = pce_dev->support_hw_key; |
| ce_support->aes_ccm = true; |
| ce_support->clk_mgmt_sus_res = pce_dev->support_clk_mgmt_sus_res; |
| ce_support->req_bw_before_clk = pce_dev->request_bw_before_clk; |
| if (pce_dev->ce_bam_info.minor_version) |
| ce_support->aligned_only = false; |
| else |
| ce_support->aligned_only = true; |
| |
| ce_support->use_sw_aes_cbc_ecb_ctr_algo = |
| pce_dev->use_sw_aes_cbc_ecb_ctr_algo; |
| ce_support->use_sw_aead_algo = |
| pce_dev->use_sw_aead_algo; |
| ce_support->use_sw_aes_xts_algo = |
| pce_dev->use_sw_aes_xts_algo; |
| ce_support->use_sw_ahash_algo = |
| pce_dev->use_sw_ahash_algo; |
| ce_support->use_sw_hmac_algo = |
| pce_dev->use_sw_hmac_algo; |
| ce_support->use_sw_aes_ccm_algo = |
| pce_dev->use_sw_aes_ccm_algo; |
| ce_support->ce_device = pce_dev->ce_bam_info.ce_device; |
| ce_support->ce_hw_instance = pce_dev->ce_bam_info.ce_hw_instance; |
| if (pce_dev->no_get_around) |
| ce_support->max_request = MAX_QCE_BAM_REQ; |
| else |
| ce_support->max_request = 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(qce_hw_support); |
| |
| void qce_dump_req(void *handle) |
| { |
| int i; |
| bool req_in_use; |
| struct qce_device *pce_dev = (struct qce_device *)handle; |
| |
| for (i = 0; i < MAX_QCE_BAM_REQ; i++) { |
| req_in_use = atomic_read(&pce_dev->ce_request_info[i].in_use); |
| pr_info("qce_dump_req %d %d\n", i, req_in_use); |
| if (req_in_use == true) |
| _qce_dump_descr_fifos(pce_dev, i); |
| } |
| } |
| EXPORT_SYMBOL(qce_dump_req); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("Crypto Engine driver"); |