blob: 5895a4d658a1c8b837974362d1dacb54706e773d [file] [log] [blame]
/*
* Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
#include <drm/drm_crtc.h>
#include <linux/debugfs.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/dma-buf.h>
#include <linux/memblock.h>
#include <linux/bootmem.h>
#include "msm_drv.h"
#include "msm_mmu.h"
#include "msm_gem.h"
#include "dsi_display.h"
#include "dsi_drm.h"
#include "sde_wb.h"
#include "dp_display.h"
#include "dp_drm.h"
#include "sde_kms.h"
#include "sde_core_irq.h"
#include "sde_formats.h"
#include "sde_hw_vbif.h"
#include "sde_vbif.h"
#include "sde_encoder.h"
#include "sde_plane.h"
#include "sde_crtc.h"
#include "sde_reg_dma.h"
#define CREATE_TRACE_POINTS
#include "sde_trace.h"
static const char * const iommu_ports[] = {
"mdp_0",
};
/**
* Controls size of event log buffer. Specified as a power of 2.
*/
#define SDE_EVTLOG_SIZE 1024
/*
* To enable overall DRM driver logging
* # echo 0x2 > /sys/module/drm/parameters/debug
*
* To enable DRM driver h/w logging
* # echo <mask> > /sys/kernel/debug/dri/0/debug/hw_log_mask
*
* See sde_hw_mdss.h for h/w logging mask definitions (search for SDE_DBG_MASK_)
*/
#define SDE_DEBUGFS_DIR "msm_sde"
#define SDE_DEBUGFS_HWMASKNAME "hw_log_mask"
/**
* sdecustom - enable certain driver customizations for sde clients
* Enabling this modifies the standard DRM behavior slightly and assumes
* that the clients have specific knowledge about the modifications that
* are involved, so don't enable this unless you know what you're doing.
*
* Parts of the driver that are affected by this setting may be located by
* searching for invocations of the 'sde_is_custom_client()' function.
*
* This is disabled by default.
*/
static bool sdecustom = true;
module_param(sdecustom, bool, 0400);
MODULE_PARM_DESC(sdecustom, "Enable customizations for sde clients");
static int sde_kms_hw_init(struct msm_kms *kms);
static int _sde_kms_mmu_destroy(struct sde_kms *sde_kms);
static int _sde_kms_mmu_init(struct sde_kms *sde_kms);
static int _sde_kms_register_events(struct msm_kms *kms,
struct drm_mode_object *obj, u32 event, bool en);
bool sde_is_custom_client(void)
{
return sdecustom;
}
#ifdef CONFIG_DEBUG_FS
static int _sde_danger_signal_status(struct seq_file *s,
bool danger_status)
{
struct sde_kms *kms = (struct sde_kms *)s->private;
struct msm_drm_private *priv;
struct sde_danger_safe_status status;
int i;
int rc;
if (!kms || !kms->dev || !kms->dev->dev_private || !kms->hw_mdp) {
SDE_ERROR("invalid arg(s)\n");
return 0;
}
priv = kms->dev->dev_private;
memset(&status, 0, sizeof(struct sde_danger_safe_status));
rc = sde_power_resource_enable(&priv->phandle, kms->core_client, true);
if (rc) {
SDE_ERROR("failed to enable power resource %d\n", rc);
SDE_EVT32(rc, SDE_EVTLOG_ERROR);
return rc;
}
if (danger_status) {
seq_puts(s, "\nDanger signal status:\n");
if (kms->hw_mdp->ops.get_danger_status)
kms->hw_mdp->ops.get_danger_status(kms->hw_mdp,
&status);
} else {
seq_puts(s, "\nSafe signal status:\n");
if (kms->hw_mdp->ops.get_danger_status)
kms->hw_mdp->ops.get_danger_status(kms->hw_mdp,
&status);
}
sde_power_resource_enable(&priv->phandle, kms->core_client, false);
seq_printf(s, "MDP : 0x%x\n", status.mdp);
for (i = SSPP_VIG0; i < SSPP_MAX; i++)
seq_printf(s, "SSPP%d : 0x%x \t", i - SSPP_VIG0,
status.sspp[i]);
seq_puts(s, "\n");
for (i = WB_0; i < WB_MAX; i++)
seq_printf(s, "WB%d : 0x%x \t", i - WB_0,
status.wb[i]);
seq_puts(s, "\n");
return 0;
}
#define DEFINE_SDE_DEBUGFS_SEQ_FOPS(__prefix) \
static int __prefix ## _open(struct inode *inode, struct file *file) \
{ \
return single_open(file, __prefix ## _show, inode->i_private); \
} \
static const struct file_operations __prefix ## _fops = { \
.owner = THIS_MODULE, \
.open = __prefix ## _open, \
.release = single_release, \
.read = seq_read, \
.llseek = seq_lseek, \
}
static int sde_debugfs_danger_stats_show(struct seq_file *s, void *v)
{
return _sde_danger_signal_status(s, true);
}
DEFINE_SDE_DEBUGFS_SEQ_FOPS(sde_debugfs_danger_stats);
static int sde_debugfs_safe_stats_show(struct seq_file *s, void *v)
{
return _sde_danger_signal_status(s, false);
}
DEFINE_SDE_DEBUGFS_SEQ_FOPS(sde_debugfs_safe_stats);
static void sde_debugfs_danger_destroy(struct sde_kms *sde_kms)
{
debugfs_remove_recursive(sde_kms->debugfs_danger);
sde_kms->debugfs_danger = NULL;
}
static int sde_debugfs_danger_init(struct sde_kms *sde_kms,
struct dentry *parent)
{
sde_kms->debugfs_danger = debugfs_create_dir("danger",
parent);
if (!sde_kms->debugfs_danger) {
SDE_ERROR("failed to create danger debugfs\n");
return -EINVAL;
}
debugfs_create_file("danger_status", 0600, sde_kms->debugfs_danger,
sde_kms, &sde_debugfs_danger_stats_fops);
debugfs_create_file("safe_status", 0600, sde_kms->debugfs_danger,
sde_kms, &sde_debugfs_safe_stats_fops);
return 0;
}
static int _sde_debugfs_show_regset32(struct seq_file *s, void *data)
{
struct sde_debugfs_regset32 *regset;
struct sde_kms *sde_kms;
struct drm_device *dev;
struct msm_drm_private *priv;
void __iomem *base;
uint32_t i, addr;
if (!s || !s->private)
return 0;
regset = s->private;
sde_kms = regset->sde_kms;
if (!sde_kms || !sde_kms->mmio)
return 0;
dev = sde_kms->dev;
if (!dev)
return 0;
priv = dev->dev_private;
if (!priv)
return 0;
base = sde_kms->mmio + regset->offset;
/* insert padding spaces, if needed */
if (regset->offset & 0xF) {
seq_printf(s, "[%x]", regset->offset & ~0xF);
for (i = 0; i < (regset->offset & 0xF); i += 4)
seq_puts(s, " ");
}
if (sde_power_resource_enable(&priv->phandle,
sde_kms->core_client, true)) {
seq_puts(s, "failed to enable sde clocks\n");
return 0;
}
/* main register output */
for (i = 0; i < regset->blk_len; i += 4) {
addr = regset->offset + i;
if ((addr & 0xF) == 0x0)
seq_printf(s, i ? "\n[%x]" : "[%x]", addr);
seq_printf(s, " %08x", readl_relaxed(base + i));
}
seq_puts(s, "\n");
sde_power_resource_enable(&priv->phandle, sde_kms->core_client, false);
return 0;
}
static int sde_debugfs_open_regset32(struct inode *inode,
struct file *file)
{
return single_open(file, _sde_debugfs_show_regset32, inode->i_private);
}
static const struct file_operations sde_fops_regset32 = {
.open = sde_debugfs_open_regset32,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
void sde_debugfs_setup_regset32(struct sde_debugfs_regset32 *regset,
uint32_t offset, uint32_t length, struct sde_kms *sde_kms)
{
if (regset) {
regset->offset = offset;
regset->blk_len = length;
regset->sde_kms = sde_kms;
}
}
void *sde_debugfs_create_regset32(const char *name, umode_t mode,
void *parent, struct sde_debugfs_regset32 *regset)
{
if (!name || !regset || !regset->sde_kms || !regset->blk_len)
return NULL;
/* make sure offset is a multiple of 4 */
regset->offset = round_down(regset->offset, 4);
return debugfs_create_file(name, mode, parent,
regset, &sde_fops_regset32);
}
void *sde_debugfs_get_root(struct sde_kms *sde_kms)
{
struct msm_drm_private *priv;
if (!sde_kms || !sde_kms->dev || !sde_kms->dev->dev_private)
return NULL;
priv = sde_kms->dev->dev_private;
return priv->debug_root;
}
static int _sde_debugfs_init(struct sde_kms *sde_kms)
{
void *p;
int rc;
void *debugfs_root;
p = sde_hw_util_get_log_mask_ptr();
if (!sde_kms || !p)
return -EINVAL;
debugfs_root = sde_debugfs_get_root(sde_kms);
if (!debugfs_root)
return -EINVAL;
/* allow debugfs_root to be NULL */
debugfs_create_x32(SDE_DEBUGFS_HWMASKNAME, 0600, debugfs_root, p);
(void) sde_debugfs_danger_init(sde_kms, debugfs_root);
(void) sde_debugfs_vbif_init(sde_kms, debugfs_root);
(void) sde_debugfs_core_irq_init(sde_kms, debugfs_root);
rc = sde_core_perf_debugfs_init(&sde_kms->perf, debugfs_root);
if (rc) {
SDE_ERROR("failed to init perf %d\n", rc);
return rc;
}
return 0;
}
static void _sde_debugfs_destroy(struct sde_kms *sde_kms)
{
/* don't need to NULL check debugfs_root */
if (sde_kms) {
sde_debugfs_vbif_destroy(sde_kms);
sde_debugfs_danger_destroy(sde_kms);
sde_debugfs_core_irq_destroy(sde_kms);
}
}
#else
static int _sde_debugfs_init(struct sde_kms *sde_kms)
{
return 0;
}
static void _sde_debugfs_destroy(struct sde_kms *sde_kms)
{
}
#endif
static int sde_kms_enable_vblank(struct msm_kms *kms, struct drm_crtc *crtc)
{
return sde_crtc_vblank(crtc, true);
}
static void sde_kms_disable_vblank(struct msm_kms *kms, struct drm_crtc *crtc)
{
sde_crtc_vblank(crtc, false);
}
static void sde_kms_wait_for_frame_transfer_complete(struct msm_kms *kms,
struct drm_crtc *crtc)
{
struct drm_encoder *encoder;
struct drm_device *dev;
int ret;
if (!kms || !crtc || !crtc->state || !crtc->dev) {
SDE_ERROR("invalid params\n");
return;
}
if (!crtc->state->enable) {
SDE_DEBUG("[crtc:%d] not enable\n", crtc->base.id);
return;
}
if (!crtc->state->active) {
SDE_DEBUG("[crtc:%d] not active\n", crtc->base.id);
return;
}
dev = crtc->dev;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->crtc != crtc)
continue;
/*
* Video Mode - Wait for VSYNC
* Cmd Mode - Wait for PP_DONE. Will be no-op if transfer is
* complete
*/
SDE_EVT32_VERBOSE(DRMID(crtc));
ret = sde_encoder_wait_for_event(encoder, MSM_ENC_TX_COMPLETE);
if (ret && ret != -EWOULDBLOCK) {
SDE_ERROR(
"[crtc: %d][enc: %d] wait for commit done returned %d\n",
crtc->base.id, encoder->base.id, ret);
break;
}
}
}
static int sde_kms_prepare_secure_transition(struct msm_kms *kms,
struct drm_atomic_state *state)
{
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state;
struct drm_plane *plane;
struct drm_plane_state *plane_state;
struct sde_kms *sde_kms = to_sde_kms(kms);
struct drm_device *dev = sde_kms->dev;
int i, ops = 0, ret = 0;
bool old_valid_fb = false;
for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
if (!crtc->state || !crtc->state->active)
continue;
/*
* It is safe to assume only one active crtc,
* and compatible translation modes on the
* planes staged on this crtc.
* otherwise validation would have failed.
* For this CRTC,
*/
/*
* 1. Check if old state on the CRTC has planes
* staged with valid fbs
*/
for_each_plane_in_state(state, plane, plane_state, i) {
if (!plane_state->crtc)
continue;
if (plane_state->fb) {
old_valid_fb = true;
break;
}
}
/*
* 2.Get the operations needed to be performed before
* secure transition can be initiated.
*/
ops = sde_crtc_get_secure_transition_ops(crtc,
old_crtc_state, old_valid_fb);
if (ops < 0) {
SDE_ERROR("invalid secure operations %x\n", ops);
return ops;
}
if (!ops)
goto no_ops;
SDE_DEBUG("%d:secure operations(%x) started on state:%pK\n",
crtc->base.id, ops, crtc->state);
SDE_EVT32(DRMID(crtc), ops, crtc->state, old_valid_fb);
/* 3. Perform operations needed for secure transition */
if (ops & SDE_KMS_OPS_WAIT_FOR_TX_DONE) {
SDE_DEBUG("wait_for_transfer_done\n");
sde_kms_wait_for_frame_transfer_complete(kms, crtc);
}
if (ops & SDE_KMS_OPS_CLEANUP_PLANE_FB) {
SDE_DEBUG("cleanup planes\n");
drm_atomic_helper_cleanup_planes(dev, state);
}
if (ops & SDE_KMS_OPS_CRTC_SECURE_STATE_CHANGE) {
SDE_DEBUG("secure ctrl\n");
sde_crtc_secure_ctrl(crtc, false);
}
if (ops & SDE_KMS_OPS_PREPARE_PLANE_FB) {
SDE_DEBUG("prepare planes %d",
crtc->state->plane_mask);
drm_atomic_crtc_for_each_plane(plane,
crtc) {
const struct drm_plane_helper_funcs *funcs;
plane_state = plane->state;
funcs = plane->helper_private;
SDE_DEBUG("psde:%d FB[%u]\n",
plane->base.id,
plane->fb->base.id);
if (!funcs)
continue;
if (funcs->prepare_fb(plane, plane_state)) {
ret = funcs->prepare_fb(plane,
plane_state);
if (ret)
return ret;
}
}
}
SDE_EVT32(DRMID(crtc), SDE_EVTLOG_FUNC_EXIT);
SDE_DEBUG("secure operations completed\n");
}
no_ops:
return 0;
}
static int _sde_kms_release_splash_buffer(unsigned int mem_addr,
unsigned int size)
{
unsigned long pfn_start, pfn_end, pfn_idx;
int ret = 0;
if (!mem_addr || !size)
SDE_ERROR("invalid params\n");
pfn_start = mem_addr >> PAGE_SHIFT;
pfn_end = (mem_addr + size) >> PAGE_SHIFT;
ret = memblock_free(mem_addr, size);
if (ret) {
SDE_ERROR("continuous splash memory free failed:%d\n", ret);
return ret;
}
for (pfn_idx = pfn_start; pfn_idx < pfn_end; pfn_idx++)
free_reserved_page(pfn_to_page(pfn_idx));
return ret;
}
static int _sde_kms_splash_smmu_map(struct drm_device *dev, struct msm_mmu *mmu,
struct sde_splash_data *data)
{
int ret = 0;
if (!mmu || !data)
return -EINVAL;
ret = mmu->funcs->one_to_one_map(mmu, data->splash_base,
data->splash_base, data->splash_size,
IOMMU_READ | IOMMU_NOEXEC);
if (ret)
SDE_ERROR("Splash smmu map failed: %d\n", ret);
return ret;
}
static int _sde_kms_splash_smmu_unmap(struct sde_kms *sde_kms)
{
struct sde_splash_data *data;
struct msm_mmu *mmu;
int rc = 0;
if (!sde_kms)
return -EINVAL;
data = &sde_kms->splash_data;
if (!data) {
SDE_ERROR("Invalid splash data\n");
return -EINVAL;
}
if (!sde_kms->aspace[0]) {
SDE_ERROR("aspace not found for sde kms node\n");
return -EINVAL;
}
mmu = sde_kms->aspace[0]->mmu;
if (!mmu) {
SDE_ERROR("mmu not found for aspace\n");
return -EINVAL;
}
if (mmu->funcs && mmu->funcs->one_to_one_unmap)
mmu->funcs->one_to_one_unmap(mmu, data->splash_base,
data->splash_size);
return rc;
}
static void sde_kms_prepare_commit(struct msm_kms *kms,
struct drm_atomic_state *state)
{
struct sde_kms *sde_kms;
struct msm_drm_private *priv;
struct drm_device *dev;
struct drm_encoder *encoder;
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
int i, rc = 0;
if (!kms)
return;
sde_kms = to_sde_kms(kms);
dev = sde_kms->dev;
if (!dev || !dev->dev_private)
return;
priv = dev->dev_private;
rc = sde_power_resource_enable(&priv->phandle, sde_kms->core_client,
true);
if (rc) {
SDE_ERROR("failed to enable power resource %d\n", rc);
SDE_EVT32(rc, SDE_EVTLOG_ERROR);
return;
}
for_each_crtc_in_state(state, crtc, crtc_state, i) {
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
head) {
if (encoder->crtc != crtc)
continue;
sde_encoder_prepare_commit(encoder);
}
}
if (sde_kms->splash_data.smmu_handoff_pending)
sde_kms->splash_data.smmu_handoff_pending = false;
/*
* NOTE: for secure use cases we want to apply the new HW
* configuration only after completing preparation for secure
* transitions prepare below if any transtions is required.
*/
sde_kms_prepare_secure_transition(kms, state);
}
static void sde_kms_commit(struct msm_kms *kms,
struct drm_atomic_state *old_state)
{
struct sde_kms *sde_kms;
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state;
int i;
if (!kms || !old_state)
return;
sde_kms = to_sde_kms(kms);
if (!sde_kms_power_resource_is_enabled(sde_kms->dev)) {
SDE_ERROR("power resource is not enabled\n");
return;
}
for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
if (crtc->state->active) {
SDE_EVT32(DRMID(crtc));
sde_crtc_commit_kickoff(crtc, old_crtc_state);
}
}
}
static void sde_kms_complete_commit(struct msm_kms *kms,
struct drm_atomic_state *old_state)
{
struct sde_kms *sde_kms;
struct msm_drm_private *priv;
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state;
struct drm_connector *connector;
struct drm_connector_state *old_conn_state;
int i, rc = 0;
if (!kms || !old_state)
return;
sde_kms = to_sde_kms(kms);
if (!sde_kms->dev || !sde_kms->dev->dev_private)
return;
priv = sde_kms->dev->dev_private;
if (!sde_kms_power_resource_is_enabled(sde_kms->dev)) {
SDE_ERROR("power resource is not enabled\n");
return;
}
for_each_crtc_in_state(old_state, crtc, old_crtc_state, i)
sde_crtc_complete_commit(crtc, old_crtc_state);
for_each_connector_in_state(old_state, connector, old_conn_state, i) {
struct sde_connector *c_conn;
c_conn = to_sde_connector(connector);
if (!c_conn->ops.post_kickoff)
continue;
rc = c_conn->ops.post_kickoff(connector);
if (rc) {
pr_err("Connector Post kickoff failed rc=%d\n",
rc);
}
}
sde_power_resource_enable(&priv->phandle, sde_kms->core_client, false);
SDE_EVT32_VERBOSE(SDE_EVTLOG_FUNC_EXIT);
if (sde_kms->splash_data.cont_splash_en) {
/* Releasing splash resources as we have first frame update */
rc = _sde_kms_splash_smmu_unmap(sde_kms);
SDE_DEBUG("Disabling cont_splash feature\n");
sde_kms->splash_data.cont_splash_en = false;
for (i = 0; i < SDE_POWER_HANDLE_DBUS_ID_MAX; i++)
sde_power_data_bus_set_quota(&priv->phandle,
sde_kms->core_client,
SDE_POWER_HANDLE_DATA_BUS_CLIENT_RT, i,
SDE_POWER_HANDLE_ENABLE_BUS_AB_QUOTA,
SDE_POWER_HANDLE_ENABLE_BUS_IB_QUOTA);
sde_power_resource_enable(&priv->phandle,
sde_kms->core_client, false);
SDE_DEBUG("removing Vote for MDP Resources\n");
}
/*
* Even for continuous splash disabled cases we have to release
* splash memory reservation back to system after first frame update.
*/
if (sde_kms->splash_data.splash_base) {
rc = _sde_kms_release_splash_buffer(
sde_kms->splash_data.splash_base,
sde_kms->splash_data.splash_size);
if (rc)
pr_err("Failed to release splash memory\n");
sde_kms->splash_data.splash_base = 0;
sde_kms->splash_data.splash_size = 0;
}
}
static void sde_kms_wait_for_commit_done(struct msm_kms *kms,
struct drm_crtc *crtc)
{
struct drm_encoder *encoder;
struct drm_device *dev;
int ret;
if (!kms || !crtc || !crtc->state) {
SDE_ERROR("invalid params\n");
return;
}
dev = crtc->dev;
if (!crtc->state->enable) {
SDE_DEBUG("[crtc:%d] not enable\n", crtc->base.id);
return;
}
if (!crtc->state->active) {
SDE_DEBUG("[crtc:%d] not active\n", crtc->base.id);
return;
}
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->crtc != crtc)
continue;
/*
* Wait for post-flush if necessary to delay before
* plane_cleanup. For example, wait for vsync in case of video
* mode panels. This may be a no-op for command mode panels.
*/
SDE_EVT32_VERBOSE(DRMID(crtc));
ret = sde_encoder_wait_for_event(encoder, MSM_ENC_COMMIT_DONE);
if (ret && ret != -EWOULDBLOCK) {
SDE_ERROR("wait for commit done returned %d\n", ret);
break;
}
}
}
static void sde_kms_prepare_fence(struct msm_kms *kms,
struct drm_atomic_state *old_state)
{
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state;
int i, rc;
if (!kms || !old_state || !old_state->dev || !old_state->acquire_ctx) {
SDE_ERROR("invalid argument(s)\n");
return;
}
retry:
/* attempt to acquire ww mutex for connection */
rc = drm_modeset_lock(&old_state->dev->mode_config.connection_mutex,
old_state->acquire_ctx);
if (rc == -EDEADLK) {
drm_modeset_backoff(old_state->acquire_ctx);
goto retry;
}
/* old_state actually contains updated crtc pointers */
for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
if (crtc->state->active)
sde_crtc_prepare_commit(crtc, old_crtc_state);
}
}
/**
* _sde_kms_get_displays - query for underlying display handles and cache them
* @sde_kms: Pointer to sde kms structure
* Returns: Zero on success
*/
static int _sde_kms_get_displays(struct sde_kms *sde_kms)
{
int rc = -ENOMEM;
if (!sde_kms) {
SDE_ERROR("invalid sde kms\n");
return -EINVAL;
}
/* dsi */
sde_kms->dsi_displays = NULL;
sde_kms->dsi_display_count = dsi_display_get_num_of_displays();
if (sde_kms->dsi_display_count) {
sde_kms->dsi_displays = kcalloc(sde_kms->dsi_display_count,
sizeof(void *),
GFP_KERNEL);
if (!sde_kms->dsi_displays) {
SDE_ERROR("failed to allocate dsi displays\n");
goto exit_deinit_dsi;
}
sde_kms->dsi_display_count =
dsi_display_get_active_displays(sde_kms->dsi_displays,
sde_kms->dsi_display_count);
}
/* wb */
sde_kms->wb_displays = NULL;
sde_kms->wb_display_count = sde_wb_get_num_of_displays();
if (sde_kms->wb_display_count) {
sde_kms->wb_displays = kcalloc(sde_kms->wb_display_count,
sizeof(void *),
GFP_KERNEL);
if (!sde_kms->wb_displays) {
SDE_ERROR("failed to allocate wb displays\n");
goto exit_deinit_wb;
}
sde_kms->wb_display_count =
wb_display_get_displays(sde_kms->wb_displays,
sde_kms->wb_display_count);
}
/* dp */
sde_kms->dp_displays = NULL;
sde_kms->dp_display_count = dp_display_get_num_of_displays();
if (sde_kms->dp_display_count) {
sde_kms->dp_displays = kcalloc(sde_kms->dp_display_count,
sizeof(void *), GFP_KERNEL);
if (!sde_kms->dp_displays) {
SDE_ERROR("failed to allocate dp displays\n");
goto exit_deinit_dp;
}
sde_kms->dp_display_count =
dp_display_get_displays(sde_kms->dp_displays,
sde_kms->dp_display_count);
}
return 0;
exit_deinit_dp:
kfree(sde_kms->dp_displays);
sde_kms->dp_display_count = 0;
sde_kms->dp_displays = NULL;
exit_deinit_wb:
kfree(sde_kms->wb_displays);
sde_kms->wb_display_count = 0;
sde_kms->wb_displays = NULL;
exit_deinit_dsi:
kfree(sde_kms->dsi_displays);
sde_kms->dsi_display_count = 0;
sde_kms->dsi_displays = NULL;
return rc;
}
/**
* _sde_kms_release_displays - release cache of underlying display handles
* @sde_kms: Pointer to sde kms structure
*/
static void _sde_kms_release_displays(struct sde_kms *sde_kms)
{
if (!sde_kms) {
SDE_ERROR("invalid sde kms\n");
return;
}
kfree(sde_kms->wb_displays);
sde_kms->wb_displays = NULL;
sde_kms->wb_display_count = 0;
kfree(sde_kms->dsi_displays);
sde_kms->dsi_displays = NULL;
sde_kms->dsi_display_count = 0;
}
/**
* _sde_kms_setup_displays - create encoders, bridges and connectors
* for underlying displays
* @dev: Pointer to drm device structure
* @priv: Pointer to private drm device data
* @sde_kms: Pointer to sde kms structure
* Returns: Zero on success
*/
static int _sde_kms_setup_displays(struct drm_device *dev,
struct msm_drm_private *priv,
struct sde_kms *sde_kms)
{
static const struct sde_connector_ops dsi_ops = {
.set_info_blob = dsi_conn_set_info_blob,
.detect = dsi_conn_detect,
.get_modes = dsi_connector_get_modes,
.put_modes = dsi_connector_put_modes,
.mode_valid = dsi_conn_mode_valid,
.get_info = dsi_display_get_info,
.set_backlight = dsi_display_set_backlight,
.soft_reset = dsi_display_soft_reset,
.pre_kickoff = dsi_conn_pre_kickoff,
.clk_ctrl = dsi_display_clk_ctrl,
.set_power = dsi_display_set_power,
.get_mode_info = dsi_conn_get_mode_info,
.get_dst_format = dsi_display_get_dst_format,
.post_kickoff = dsi_conn_post_kickoff,
.check_status = dsi_display_check_status,
.enable_event = dsi_conn_enable_event,
.cmd_transfer = dsi_display_cmd_transfer,
};
static const struct sde_connector_ops wb_ops = {
.post_init = sde_wb_connector_post_init,
.set_info_blob = sde_wb_connector_set_info_blob,
.detect = sde_wb_connector_detect,
.get_modes = sde_wb_connector_get_modes,
.set_property = sde_wb_connector_set_property,
.get_info = sde_wb_get_info,
.soft_reset = NULL,
.get_mode_info = sde_wb_get_mode_info,
.get_dst_format = NULL,
.check_status = NULL,
.cmd_transfer = NULL,
};
static const struct sde_connector_ops dp_ops = {
.post_init = dp_connector_post_init,
.detect = dp_connector_detect,
.get_modes = dp_connector_get_modes,
.mode_valid = dp_connector_mode_valid,
.get_info = dp_connector_get_info,
.get_mode_info = dp_connector_get_mode_info,
.post_open = dp_connector_post_open,
.check_status = NULL,
.config_hdr = dp_connector_config_hdr,
.cmd_transfer = NULL,
};
static const struct sde_connector_ops ext_bridge_ops = {
.set_info_blob = dsi_conn_set_info_blob,
.mode_valid = dsi_conn_mode_valid,
.get_info = dsi_display_ext_bridge_get_info,
.soft_reset = dsi_display_soft_reset,
.clk_ctrl = dsi_display_clk_ctrl,
.get_mode_info = dsi_conn_ext_bridge_get_mode_info,
.get_dst_format = dsi_display_get_dst_format,
.enable_event = dsi_conn_enable_event,
.cmd_transfer = NULL,
};
struct msm_display_info info;
struct drm_encoder *encoder;
void *display, *connector;
int i, max_encoders;
int rc = 0;
if (!dev || !priv || !sde_kms) {
SDE_ERROR("invalid argument(s)\n");
return -EINVAL;
}
max_encoders = sde_kms->dsi_display_count + sde_kms->wb_display_count +
sde_kms->dp_display_count;
if (max_encoders > ARRAY_SIZE(priv->encoders)) {
max_encoders = ARRAY_SIZE(priv->encoders);
SDE_ERROR("capping number of displays to %d", max_encoders);
}
/* dsi */
for (i = 0; i < sde_kms->dsi_display_count &&
priv->num_encoders < max_encoders; ++i) {
display = sde_kms->dsi_displays[i];
encoder = NULL;
if (!dsi_display_has_ext_bridge(display)) {
memset(&info, 0x0, sizeof(info));
rc = dsi_display_get_info(&info, display);
if (rc) {
SDE_ERROR("dsi get_info %d failed\n", i);
continue;
}
encoder = sde_encoder_init(dev, &info);
if (IS_ERR_OR_NULL(encoder)) {
SDE_ERROR("encoder init failed for dsi %d\n",
i);
continue;
}
rc = dsi_display_drm_bridge_init(display, encoder);
if (rc) {
SDE_ERROR("dsi bridge %d init failed, %d\n",
i, rc);
sde_encoder_destroy(encoder);
continue;
}
connector = sde_connector_init(dev,
encoder,
NULL,
display,
&dsi_ops,
DRM_CONNECTOR_POLL_HPD,
DRM_MODE_CONNECTOR_DSI);
if (connector) {
priv->encoders[priv->num_encoders++] = encoder;
} else {
SDE_ERROR("dsi %d connector init failed\n", i);
dsi_display_drm_bridge_deinit(display);
sde_encoder_destroy(encoder);
}
} else {
memset(&info, 0x0, sizeof(info));
rc = dsi_display_ext_bridge_get_info(&info, display);
if (rc) {
SDE_ERROR("ext get_info %d failed\n", i);
continue;
}
encoder = sde_encoder_init(dev, &info);
if (IS_ERR_OR_NULL(encoder)) {
SDE_ERROR("encoder init failed for ext %d\n",
i);
continue;
}
rc = dsi_display_drm_bridge_init(display, encoder);
if (rc) {
SDE_ERROR("dsi bridge %d init failed for ext\n",
i);
sde_encoder_destroy(encoder);
continue;
}
connector = sde_connector_init(dev,
encoder,
NULL,
display,
&ext_bridge_ops,
DRM_CONNECTOR_POLL_HPD,
DRM_MODE_CONNECTOR_DSI);
if (connector) {
priv->encoders[priv->num_encoders++] = encoder;
} else {
SDE_ERROR("connector init %d failed for ext\n",
i);
dsi_display_drm_bridge_deinit(display);
sde_encoder_destroy(encoder);
continue;
}
rc = dsi_display_drm_ext_bridge_init(display,
encoder, connector);
if (rc) {
struct drm_connector *conn = connector;
SDE_ERROR("ext bridge %d init failed, %d\n",
i, rc);
conn->funcs->destroy(connector);
dsi_display_drm_bridge_deinit(display);
sde_encoder_destroy(encoder);
continue;
}
}
}
/* wb */
for (i = 0; i < sde_kms->wb_display_count &&
priv->num_encoders < max_encoders; ++i) {
display = sde_kms->wb_displays[i];
encoder = NULL;
memset(&info, 0x0, sizeof(info));
rc = sde_wb_get_info(&info, display);
if (rc) {
SDE_ERROR("wb get_info %d failed\n", i);
continue;
}
encoder = sde_encoder_init(dev, &info);
if (IS_ERR_OR_NULL(encoder)) {
SDE_ERROR("encoder init failed for wb %d\n", i);
continue;
}
rc = sde_wb_drm_init(display, encoder);
if (rc) {
SDE_ERROR("wb bridge %d init failed, %d\n", i, rc);
sde_encoder_destroy(encoder);
continue;
}
connector = sde_connector_init(dev,
encoder,
0,
display,
&wb_ops,
DRM_CONNECTOR_POLL_HPD,
DRM_MODE_CONNECTOR_VIRTUAL);
if (connector) {
priv->encoders[priv->num_encoders++] = encoder;
} else {
SDE_ERROR("wb %d connector init failed\n", i);
sde_wb_drm_deinit(display);
sde_encoder_destroy(encoder);
}
}
/* dp */
for (i = 0; i < sde_kms->dp_display_count &&
priv->num_encoders < max_encoders; ++i) {
display = sde_kms->dp_displays[i];
encoder = NULL;
memset(&info, 0x0, sizeof(info));
rc = dp_connector_get_info(&info, display);
if (rc) {
SDE_ERROR("dp get_info %d failed\n", i);
continue;
}
encoder = sde_encoder_init(dev, &info);
if (IS_ERR_OR_NULL(encoder)) {
SDE_ERROR("dp encoder init failed %d\n", i);
continue;
}
rc = dp_drm_bridge_init(display, encoder);
if (rc) {
SDE_ERROR("dp bridge %d init failed, %d\n", i, rc);
sde_encoder_destroy(encoder);
continue;
}
connector = sde_connector_init(dev,
encoder,
NULL,
display,
&dp_ops,
DRM_CONNECTOR_POLL_HPD,
DRM_MODE_CONNECTOR_DisplayPort);
if (connector) {
priv->encoders[priv->num_encoders++] = encoder;
} else {
SDE_ERROR("dp %d connector init failed\n", i);
dp_drm_bridge_deinit(display);
sde_encoder_destroy(encoder);
}
}
return 0;
}
static void _sde_kms_drm_obj_destroy(struct sde_kms *sde_kms)
{
struct msm_drm_private *priv;
int i;
if (!sde_kms) {
SDE_ERROR("invalid sde_kms\n");
return;
} else if (!sde_kms->dev) {
SDE_ERROR("invalid dev\n");
return;
} else if (!sde_kms->dev->dev_private) {
SDE_ERROR("invalid dev_private\n");
return;
}
priv = sde_kms->dev->dev_private;
for (i = 0; i < priv->num_crtcs; i++)
priv->crtcs[i]->funcs->destroy(priv->crtcs[i]);
priv->num_crtcs = 0;
for (i = 0; i < priv->num_planes; i++)
priv->planes[i]->funcs->destroy(priv->planes[i]);
priv->num_planes = 0;
for (i = 0; i < priv->num_connectors; i++)
priv->connectors[i]->funcs->destroy(priv->connectors[i]);
priv->num_connectors = 0;
for (i = 0; i < priv->num_encoders; i++)
priv->encoders[i]->funcs->destroy(priv->encoders[i]);
priv->num_encoders = 0;
_sde_kms_release_displays(sde_kms);
}
static int _sde_kms_drm_obj_init(struct sde_kms *sde_kms)
{
struct drm_device *dev;
struct drm_plane *primary_planes[MAX_PLANES], *plane;
struct drm_crtc *crtc;
struct msm_drm_private *priv;
struct sde_mdss_cfg *catalog;
int primary_planes_idx = 0, i, ret;
int max_crtc_count;
u32 sspp_id[MAX_PLANES];
u32 master_plane_id[MAX_PLANES];
u32 num_virt_planes = 0;
if (!sde_kms || !sde_kms->dev || !sde_kms->dev->dev) {
SDE_ERROR("invalid sde_kms\n");
return -EINVAL;
}
dev = sde_kms->dev;
priv = dev->dev_private;
catalog = sde_kms->catalog;
ret = sde_core_irq_domain_add(sde_kms);
if (ret)
goto fail_irq;
/*
* Query for underlying display drivers, and create connectors,
* bridges and encoders for them.
*/
if (!_sde_kms_get_displays(sde_kms))
(void)_sde_kms_setup_displays(dev, priv, sde_kms);
max_crtc_count = min(catalog->mixer_count, priv->num_encoders);
/* Create the planes */
for (i = 0; i < catalog->sspp_count; i++) {
bool primary = true;
if (catalog->sspp[i].features & BIT(SDE_SSPP_CURSOR)
|| primary_planes_idx >= max_crtc_count)
primary = false;
plane = sde_plane_init(dev, catalog->sspp[i].id, primary,
(1UL << max_crtc_count) - 1, 0);
if (IS_ERR(plane)) {
SDE_ERROR("sde_plane_init failed\n");
ret = PTR_ERR(plane);
goto fail;
}
priv->planes[priv->num_planes++] = plane;
if (primary)
primary_planes[primary_planes_idx++] = plane;
if (sde_hw_sspp_multirect_enabled(&catalog->sspp[i]) &&
sde_is_custom_client()) {
int priority =
catalog->sspp[i].sblk->smart_dma_priority;
sspp_id[priority - 1] = catalog->sspp[i].id;
master_plane_id[priority - 1] = plane->base.id;
num_virt_planes++;
}
}
/* Initialize smart DMA virtual planes */
for (i = 0; i < num_virt_planes; i++) {
plane = sde_plane_init(dev, sspp_id[i], false,
(1UL << max_crtc_count) - 1, master_plane_id[i]);
if (IS_ERR(plane)) {
SDE_ERROR("sde_plane for virtual SSPP init failed\n");
ret = PTR_ERR(plane);
goto fail;
}
priv->planes[priv->num_planes++] = plane;
}
max_crtc_count = min(max_crtc_count, primary_planes_idx);
/* Create one CRTC per encoder */
for (i = 0; i < max_crtc_count; i++) {
crtc = sde_crtc_init(dev, primary_planes[i]);
if (IS_ERR(crtc)) {
ret = PTR_ERR(crtc);
goto fail;
}
priv->crtcs[priv->num_crtcs++] = crtc;
}
if (sde_is_custom_client()) {
/* All CRTCs are compatible with all planes */
for (i = 0; i < priv->num_planes; i++)
priv->planes[i]->possible_crtcs =
(1 << priv->num_crtcs) - 1;
}
/* All CRTCs are compatible with all encoders */
for (i = 0; i < priv->num_encoders; i++)
priv->encoders[i]->possible_crtcs = (1 << priv->num_crtcs) - 1;
return 0;
fail:
_sde_kms_drm_obj_destroy(sde_kms);
fail_irq:
sde_core_irq_domain_fini(sde_kms);
return ret;
}
/**
* sde_kms_timeline_status - provides current timeline status
* This API should be called without mode config lock.
* @dev: Pointer to drm device
*/
void sde_kms_timeline_status(struct drm_device *dev)
{
struct drm_crtc *crtc;
struct drm_connector *conn;
if (!dev) {
SDE_ERROR("invalid drm device node\n");
return;
}
drm_for_each_crtc(crtc, dev)
sde_crtc_timeline_status(crtc);
mutex_lock(&dev->mode_config.mutex);
drm_for_each_connector(conn, dev)
sde_conn_timeline_status(conn);
mutex_unlock(&dev->mode_config.mutex);
}
/**
* struct sde_kms_fbo_fb - framebuffer creation list
* @list: list of framebuffer attached to framebuffer object
* @fb: Pointer to framebuffer attached to framebuffer object
*/
struct sde_kms_fbo_fb {
struct list_head list;
struct drm_framebuffer *fb;
};
struct drm_framebuffer *sde_kms_fbo_create_fb(struct drm_device *dev,
struct sde_kms_fbo *fbo)
{
struct drm_framebuffer *fb = NULL;
struct sde_kms_fbo_fb *fbo_fb;
struct drm_mode_fb_cmd2 mode_cmd = {0};
u32 base_offset = 0;
int i, ret;
if (!dev) {
SDE_ERROR("invalid drm device node\n");
return NULL;
}
fbo_fb = kzalloc(sizeof(struct sde_kms_fbo_fb), GFP_KERNEL);
if (!fbo_fb)
return NULL;
mode_cmd.pixel_format = fbo->pixel_format;
mode_cmd.width = fbo->width;
mode_cmd.height = fbo->height;
mode_cmd.flags = fbo->flags;
for (i = 0; i < fbo->nplane; i++) {
mode_cmd.offsets[i] = base_offset;
mode_cmd.pitches[i] = fbo->layout.plane_pitch[i];
mode_cmd.modifier[i] = fbo->modifier[i];
base_offset += fbo->layout.plane_size[i];
SDE_DEBUG("offset[%d]:%x\n", i, mode_cmd.offsets[i]);
}
fb = msm_framebuffer_init(dev, &mode_cmd, fbo->bo);
if (IS_ERR(fb)) {
ret = PTR_ERR(fb);
fb = NULL;
SDE_ERROR("failed to allocate fb %d\n", ret);
goto fail;
}
/* need to take one reference for gem object */
for (i = 0; i < fbo->nplane; i++)
drm_gem_object_reference(fbo->bo[i]);
SDE_DEBUG("register private fb:%d\n", fb->base.id);
INIT_LIST_HEAD(&fbo_fb->list);
fbo_fb->fb = fb;
drm_framebuffer_reference(fbo_fb->fb);
list_add_tail(&fbo_fb->list, &fbo->fb_list);
return fb;
fail:
kfree(fbo_fb);
return NULL;
}
static void sde_kms_fbo_destroy(struct sde_kms_fbo *fbo)
{
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
struct drm_device *dev;
struct sde_kms_fbo_fb *curr, *next;
int i;
if (!fbo) {
SDE_ERROR("invalid drm device node\n");
return;
}
dev = fbo->dev;
if (!dev || !dev->dev_private) {
SDE_ERROR("invalid drm device node\n");
return;
}
priv = dev->dev_private;
if (!priv->kms) {
SDE_ERROR("invalid kms handle\n");
return;
}
sde_kms = to_sde_kms(priv->kms);
SDE_DEBUG("%dx%d@%c%c%c%c/%llx/%x\n", fbo->width, fbo->height,
fbo->pixel_format >> 0, fbo->pixel_format >> 8,
fbo->pixel_format >> 16, fbo->pixel_format >> 24,
fbo->modifier[0], fbo->flags);
list_for_each_entry_safe(curr, next, &fbo->fb_list, list) {
SDE_DEBUG("unregister private fb:%d\n", curr->fb->base.id);
drm_framebuffer_unregister_private(curr->fb);
drm_framebuffer_unreference(curr->fb);
list_del(&curr->list);
kfree(curr);
}
for (i = 0; i < fbo->layout.num_planes; i++) {
if (fbo->bo[i]) {
mutex_lock(&dev->struct_mutex);
drm_gem_object_unreference(fbo->bo[i]);
mutex_unlock(&dev->struct_mutex);
fbo->bo[i] = NULL;
}
}
if (fbo->dma_buf) {
dma_buf_put(fbo->dma_buf);
fbo->dma_buf = NULL;
}
if (sde_kms->iclient && fbo->ihandle) {
ion_free(sde_kms->iclient, fbo->ihandle);
fbo->ihandle = NULL;
}
}
static void sde_kms_set_gem_flags(struct msm_gem_object *msm_obj,
uint32_t flags)
{
if (msm_obj)
msm_obj->flags |= flags;
}
struct sde_kms_fbo *sde_kms_fbo_alloc(struct drm_device *dev, u32 width,
u32 height, u32 pixel_format, u64 modifier[4], u32 flags)
{
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
struct sde_kms_fbo *fbo;
int i, ret;
if (!dev || !dev->dev_private) {
SDE_ERROR("invalid drm device node\n");
return NULL;
}
priv = dev->dev_private;
if (!priv->kms) {
SDE_ERROR("invalid kms handle\n");
return NULL;
}
sde_kms = to_sde_kms(priv->kms);
SDE_DEBUG("%dx%d@%c%c%c%c/%llx/%x\n", width, height,
pixel_format >> 0, pixel_format >> 8,
pixel_format >> 16, pixel_format >> 24,
modifier[0], flags);
fbo = kzalloc(sizeof(struct sde_kms_fbo), GFP_KERNEL);
if (!fbo)
return NULL;
atomic_set(&fbo->refcount, 0);
INIT_LIST_HEAD(&fbo->fb_list);
fbo->dev = dev;
fbo->width = width;
fbo->height = height;
fbo->pixel_format = pixel_format;
fbo->flags = flags;
for (i = 0; i < ARRAY_SIZE(fbo->modifier); i++)
fbo->modifier[i] = modifier[i];
fbo->nplane = drm_format_num_planes(fbo->pixel_format);
fbo->fmt = sde_get_sde_format_ext(fbo->pixel_format, fbo->modifier,
fbo->nplane);
if (!fbo->fmt) {
ret = -EINVAL;
SDE_ERROR("failed to find pixel format\n");
goto done;
}
ret = sde_format_get_plane_sizes(fbo->fmt, fbo->width, fbo->height,
&fbo->layout, fbo->layout.plane_pitch);
if (ret) {
SDE_ERROR("failed to get plane sizes\n");
goto done;
}
/* allocate backing buffer object */
if (sde_kms->iclient) {
u32 heap_id = fbo->flags & DRM_MODE_FB_SECURE ?
ION_HEAP(ION_SECURE_HEAP_ID) :
ION_HEAP(ION_SYSTEM_HEAP_ID);
u32 iflags = fbo->flags & DRM_MODE_FB_SECURE ?
(ION_FLAG_SECURE | ION_FLAG_CP_PIXEL) : 0;
fbo->ihandle = ion_alloc(sde_kms->iclient,
fbo->layout.total_size, SZ_4K, heap_id, iflags);
if (IS_ERR_OR_NULL(fbo->ihandle)) {
SDE_ERROR("failed to alloc ion memory\n");
ret = PTR_ERR(fbo->ihandle);
fbo->ihandle = NULL;
goto done;
}
fbo->dma_buf = ion_share_dma_buf(sde_kms->iclient,
fbo->ihandle);
if (IS_ERR(fbo->dma_buf)) {
SDE_ERROR("failed to share ion memory\n");
ret = -ENOMEM;
fbo->dma_buf = NULL;
goto done;
}
fbo->bo[0] = dev->driver->gem_prime_import(dev,
fbo->dma_buf);
if (IS_ERR(fbo->bo[0])) {
SDE_ERROR("failed to import ion memory\n");
ret = PTR_ERR(fbo->bo[0]);
fbo->bo[0] = NULL;
goto done;
}
/* insert extra bo flags */
sde_kms_set_gem_flags(to_msm_bo(fbo->bo[0]), MSM_BO_KEEPATTRS);
} else {
mutex_lock(&dev->struct_mutex);
fbo->bo[0] = msm_gem_new(dev, fbo->layout.total_size,
MSM_BO_SCANOUT | MSM_BO_WC | MSM_BO_KEEPATTRS);
if (IS_ERR(fbo->bo[0])) {
mutex_unlock(&dev->struct_mutex);
SDE_ERROR("failed to new gem buffer\n");
ret = PTR_ERR(fbo->bo[0]);
fbo->bo[0] = NULL;
goto done;
}
mutex_unlock(&dev->struct_mutex);
}
mutex_lock(&dev->struct_mutex);
for (i = 1; i < fbo->layout.num_planes; i++) {
fbo->bo[i] = fbo->bo[0];
drm_gem_object_reference(fbo->bo[i]);
}
mutex_unlock(&dev->struct_mutex);
done:
if (ret) {
sde_kms_fbo_destroy(fbo);
kfree(fbo);
fbo = NULL;
} else {
sde_kms_fbo_reference(fbo);
}
return fbo;
}
int sde_kms_fbo_reference(struct sde_kms_fbo *fbo)
{
if (!fbo) {
SDE_ERROR("invalid parameters\n");
return -EINVAL;
}
SDE_DEBUG("%pS refcount:%d\n", __builtin_return_address(0),
atomic_read(&fbo->refcount));
atomic_inc(&fbo->refcount);
return 0;
}
void sde_kms_fbo_unreference(struct sde_kms_fbo *fbo)
{
if (!fbo) {
SDE_ERROR("invalid parameters\n");
return;
}
SDE_DEBUG("%pS refcount:%d\n", __builtin_return_address(0),
atomic_read(&fbo->refcount));
if (!atomic_read(&fbo->refcount)) {
SDE_ERROR("invalid refcount\n");
return;
} else if (atomic_dec_return(&fbo->refcount) == 0) {
sde_kms_fbo_destroy(fbo);
}
}
static int sde_kms_postinit(struct msm_kms *kms)
{
struct sde_kms *sde_kms = to_sde_kms(kms);
struct drm_device *dev;
struct drm_crtc *crtc;
int rc;
if (!sde_kms || !sde_kms->dev || !sde_kms->dev->dev) {
SDE_ERROR("invalid sde_kms\n");
return -EINVAL;
}
dev = sde_kms->dev;
rc = _sde_debugfs_init(sde_kms);
if (rc)
SDE_ERROR("sde_debugfs init failed: %d\n", rc);
drm_for_each_crtc(crtc, dev)
sde_crtc_post_init(dev, crtc);
return rc;
}
static long sde_kms_round_pixclk(struct msm_kms *kms, unsigned long rate,
struct drm_encoder *encoder)
{
return rate;
}
static void _sde_kms_hw_destroy(struct sde_kms *sde_kms,
struct platform_device *pdev)
{
struct drm_device *dev;
struct msm_drm_private *priv;
int i;
if (!sde_kms || !pdev)
return;
dev = sde_kms->dev;
if (!dev)
return;
priv = dev->dev_private;
if (!priv)
return;
if (sde_kms->genpd_init) {
sde_kms->genpd_init = false;
pm_genpd_remove(&sde_kms->genpd);
of_genpd_del_provider(pdev->dev.of_node);
}
if (sde_kms->hw_intr)
sde_hw_intr_destroy(sde_kms->hw_intr);
sde_kms->hw_intr = NULL;
if (sde_kms->power_event)
sde_power_handle_unregister_event(
&priv->phandle, sde_kms->power_event);
_sde_kms_release_displays(sde_kms);
(void)_sde_kms_release_splash_buffer(
sde_kms->splash_data.splash_base,
sde_kms->splash_data.splash_size);
/* safe to call these more than once during shutdown */
_sde_debugfs_destroy(sde_kms);
_sde_kms_mmu_destroy(sde_kms);
if (sde_kms->iclient) {
ion_client_destroy(sde_kms->iclient);
sde_kms->iclient = NULL;
}
if (sde_kms->catalog) {
for (i = 0; i < sde_kms->catalog->vbif_count; i++) {
u32 vbif_idx = sde_kms->catalog->vbif[i].id;
if ((vbif_idx < VBIF_MAX) && sde_kms->hw_vbif[vbif_idx])
sde_hw_vbif_destroy(sde_kms->hw_vbif[vbif_idx]);
}
}
if (sde_kms->rm_init)
sde_rm_destroy(&sde_kms->rm);
sde_kms->rm_init = false;
if (sde_kms->catalog)
sde_hw_catalog_deinit(sde_kms->catalog);
sde_kms->catalog = NULL;
if (sde_kms->core_client)
sde_power_client_destroy(&priv->phandle, sde_kms->core_client);
sde_kms->core_client = NULL;
if (sde_kms->vbif[VBIF_NRT])
msm_iounmap(pdev, sde_kms->vbif[VBIF_NRT]);
sde_kms->vbif[VBIF_NRT] = NULL;
if (sde_kms->vbif[VBIF_RT])
msm_iounmap(pdev, sde_kms->vbif[VBIF_RT]);
sde_kms->vbif[VBIF_RT] = NULL;
if (sde_kms->mmio)
msm_iounmap(pdev, sde_kms->mmio);
sde_kms->mmio = NULL;
sde_reg_dma_deinit();
}
int sde_kms_mmu_detach(struct sde_kms *sde_kms, bool secure_only)
{
int i;
if (!sde_kms)
return -EINVAL;
for (i = 0; i < MSM_SMMU_DOMAIN_MAX; i++) {
struct msm_mmu *mmu;
struct msm_gem_address_space *aspace = sde_kms->aspace[i];
if (!aspace)
continue;
mmu = sde_kms->aspace[i]->mmu;
if (secure_only &&
!aspace->mmu->funcs->is_domain_secure(mmu))
continue;
/* cleanup aspace before detaching */
msm_gem_aspace_domain_attach_detach_update(aspace, true);
SDE_DEBUG("Detaching domain:%d\n", i);
aspace->mmu->funcs->detach(mmu, (const char **)iommu_ports,
ARRAY_SIZE(iommu_ports));
aspace->domain_attached = false;
}
return 0;
}
int sde_kms_mmu_attach(struct sde_kms *sde_kms, bool secure_only)
{
int i;
if (!sde_kms)
return -EINVAL;
for (i = 0; i < MSM_SMMU_DOMAIN_MAX; i++) {
struct msm_mmu *mmu;
struct msm_gem_address_space *aspace = sde_kms->aspace[i];
if (!aspace)
continue;
mmu = sde_kms->aspace[i]->mmu;
if (secure_only &&
!aspace->mmu->funcs->is_domain_secure(mmu))
continue;
SDE_DEBUG("Attaching domain:%d\n", i);
aspace->mmu->funcs->attach(mmu, (const char **)iommu_ports,
ARRAY_SIZE(iommu_ports));
msm_gem_aspace_domain_attach_detach_update(aspace, false);
aspace->domain_attached = true;
}
return 0;
}
static void sde_kms_destroy(struct msm_kms *kms)
{
struct sde_kms *sde_kms;
struct drm_device *dev;
if (!kms) {
SDE_ERROR("invalid kms\n");
return;
}
sde_kms = to_sde_kms(kms);
dev = sde_kms->dev;
if (!dev) {
SDE_ERROR("invalid device\n");
return;
}
_sde_kms_hw_destroy(sde_kms, dev->platformdev);
kfree(sde_kms);
}
static void _sde_kms_plane_force_remove(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *plane_state;
int ret = 0;
if (!plane->crtc)
return;
plane_state = drm_atomic_get_plane_state(state, plane);
if (IS_ERR(plane_state)) {
ret = PTR_ERR(plane_state);
SDE_ERROR("error %d getting plane %d state\n",
ret, plane->base.id);
return;
}
plane->old_fb = plane->fb;
SDE_DEBUG("disabling plane %d\n", plane->base.id);
ret = __drm_atomic_helper_disable_plane(plane, plane_state);
if (ret != 0)
SDE_ERROR("error %d disabling plane %d\n", ret,
plane->base.id);
}
static int _sde_kms_remove_fbs(struct sde_kms *sde_kms, struct drm_file *file,
struct drm_atomic_state *state)
{
struct drm_device *dev = sde_kms->dev;
struct drm_framebuffer *fb, *tfb;
struct list_head fbs;
struct drm_plane *plane;
int ret = 0;
u32 plane_mask = 0;
INIT_LIST_HEAD(&fbs);
list_for_each_entry_safe(fb, tfb, &file->fbs, filp_head) {
if (drm_framebuffer_read_refcount(fb) > 1) {
list_move_tail(&fb->filp_head, &fbs);
drm_for_each_plane(plane, dev) {
if (plane->fb == fb) {
plane_mask |=
1 << drm_plane_index(plane);
_sde_kms_plane_force_remove(
plane, state);
}
}
} else {
list_del_init(&fb->filp_head);
drm_framebuffer_unreference(fb);
}
}
if (list_empty(&fbs)) {
SDE_DEBUG("skip commit as no fb(s)\n");
drm_atomic_state_free(state);
return 0;
}
SDE_DEBUG("committing after removing all the pipes\n");
ret = drm_atomic_commit(state);
if (ret) {
/*
* move the fbs back to original list, so it would be
* handled during drm_release
*/
list_for_each_entry_safe(fb, tfb, &fbs, filp_head)
list_move_tail(&fb->filp_head, &file->fbs);
SDE_ERROR("atomic commit failed in preclose, ret:%d\n", ret);
goto end;
}
while (!list_empty(&fbs)) {
fb = list_first_entry(&fbs, typeof(*fb), filp_head);
list_del_init(&fb->filp_head);
drm_framebuffer_unreference(fb);
}
end:
drm_atomic_clean_old_fb(dev, plane_mask, ret);
return ret;
}
static void sde_kms_preclose(struct msm_kms *kms, struct drm_file *file)
{
struct sde_kms *sde_kms = to_sde_kms(kms);
struct drm_device *dev = sde_kms->dev;
struct msm_drm_private *priv = dev->dev_private;
unsigned int i;
struct drm_atomic_state *state = NULL;
int ret = 0;
for (i = 0; i < priv->num_crtcs; i++)
sde_crtc_cancel_pending_flip(priv->crtcs[i], file);
drm_modeset_lock_all(dev);
state = drm_atomic_state_alloc(dev);
if (!state) {
ret = -ENOMEM;
goto end;
}
state->acquire_ctx = dev->mode_config.acquire_ctx;
for (i = 0; i < TEARDOWN_DEADLOCK_RETRY_MAX; i++) {
ret = _sde_kms_remove_fbs(sde_kms, file, state);
if (ret != -EDEADLK)
break;
drm_atomic_state_clear(state);
drm_atomic_legacy_backoff(state);
}
end:
if ((ret != 0) && state)
drm_atomic_state_free(state);
SDE_DEBUG("sde preclose done, ret:%d\n", ret);
drm_modeset_unlock_all(dev);
}
static int _sde_kms_helper_reset_custom_properties(struct sde_kms *sde_kms,
struct drm_atomic_state *state)
{
struct drm_device *dev = sde_kms->dev;
struct drm_plane *plane;
struct drm_plane_state *plane_state;
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
struct drm_connector *conn;
struct drm_connector_state *conn_state;
int ret = 0;
drm_for_each_plane(plane, dev) {
plane_state = drm_atomic_get_plane_state(state, plane);
if (IS_ERR(plane_state)) {
ret = PTR_ERR(plane_state);
SDE_ERROR("error %d getting plane %d state\n",
ret, DRMID(plane));
return ret;
}
ret = sde_plane_helper_reset_custom_properties(plane,
plane_state);
if (ret) {
SDE_ERROR("error %d resetting plane props %d\n",
ret, DRMID(plane));
return ret;
}
}
drm_for_each_crtc(crtc, dev) {
crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state)) {
ret = PTR_ERR(crtc_state);
SDE_ERROR("error %d getting crtc %d state\n",
ret, DRMID(crtc));
return ret;
}
ret = sde_crtc_helper_reset_custom_properties(crtc, crtc_state);
if (ret) {
SDE_ERROR("error %d resetting crtc props %d\n",
ret, DRMID(crtc));
return ret;
}
}
drm_for_each_connector(conn, dev) {
conn_state = drm_atomic_get_connector_state(state, conn);
if (IS_ERR(conn_state)) {
ret = PTR_ERR(conn_state);
SDE_ERROR("error %d getting connector %d state\n",
ret, DRMID(conn));
return ret;
}
ret = sde_connector_helper_reset_custom_properties(conn,
conn_state);
if (ret) {
SDE_ERROR("error %d resetting connector props %d\n",
ret, DRMID(conn));
return ret;
}
}
return ret;
}
static void sde_kms_lastclose(struct msm_kms *kms)
{
struct sde_kms *sde_kms;
struct drm_device *dev;
struct drm_atomic_state *state;
int ret, i;
if (!kms) {
SDE_ERROR("invalid argument\n");
return;
}
sde_kms = to_sde_kms(kms);
dev = sde_kms->dev;
state = drm_atomic_state_alloc(dev);
if (!state)
return;
state->acquire_ctx = dev->mode_config.acquire_ctx;
for (i = 0; i < TEARDOWN_DEADLOCK_RETRY_MAX; i++) {
/* add reset of custom properties to the state */
ret = _sde_kms_helper_reset_custom_properties(sde_kms, state);
if (ret)
break;
ret = drm_atomic_commit(state);
if (ret != -EDEADLK)
break;
drm_atomic_state_clear(state);
drm_atomic_legacy_backoff(state);
SDE_DEBUG("deadlock backoff on attempt %d\n", i);
}
if (ret) {
/**
* on success, atomic state object ownership transfers to
* framework, otherwise, free it here
*/
drm_atomic_state_free(state);
SDE_ERROR("failed to run last close: %d\n", ret);
}
}
static int sde_kms_check_secure_transition(struct msm_kms *kms,
struct drm_atomic_state *state)
{
struct sde_kms *sde_kms;
struct drm_device *dev;
struct drm_crtc *crtc;
struct drm_crtc *cur_crtc = NULL, *global_crtc = NULL;
struct drm_crtc_state *crtc_state;
int active_crtc_cnt = 0, global_active_crtc_cnt = 0;
bool sec_session = false, global_sec_session = false;
int i;
if (!kms || !state) {
return -EINVAL;
SDE_ERROR("invalid arguments\n");
}
sde_kms = to_sde_kms(kms);
dev = sde_kms->dev;
/* iterate state object for active secure/non-secure crtc */
for_each_crtc_in_state(state, crtc, crtc_state, i) {
if (!crtc_state->active)
continue;
active_crtc_cnt++;
if (sde_crtc_get_secure_level(crtc, crtc_state) ==
SDE_DRM_SEC_ONLY)
sec_session = true;
cur_crtc = crtc;
}
/* iterate global list for active and secure crtc */
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (!crtc->state->active)
continue;
global_active_crtc_cnt++;
if (sde_crtc_get_secure_level(crtc, crtc->state) ==
SDE_DRM_SEC_ONLY)
global_sec_session = true;
global_crtc = crtc;
}
/*
* - fail secure crtc commit, if any other crtc session is already
* in progress
* - fail non-secure crtc commit, if any secure crtc session is already
* in progress
*/
if (global_sec_session || sec_session) {
if ((global_active_crtc_cnt >
MAX_ALLOWED_CRTC_CNT_DURING_SECURE) ||
(active_crtc_cnt > MAX_ALLOWED_CRTC_CNT_DURING_SECURE)) {
SDE_ERROR(
"Secure check failed global_active:%d active:%d\n",
global_active_crtc_cnt, active_crtc_cnt);
return -EPERM;
/*
* As only one crtc is allowed during secure session, the crtc
* in this commit should match with the global crtc, if it
* exists
*/
} else if (global_crtc && (global_crtc != cur_crtc)) {
SDE_ERROR(
"crtc%d-sec%d not allowed during crtc%d-sec%d\n",
cur_crtc ? cur_crtc->base.id : -1, sec_session,
global_crtc->base.id, global_sec_session);
return -EPERM;
}
}
return 0;
}
static int sde_kms_atomic_check(struct msm_kms *kms,
struct drm_atomic_state *state)
{
struct sde_kms *sde_kms;
struct drm_device *dev;
int ret;
if (!kms || !state)
return -EINVAL;
sde_kms = to_sde_kms(kms);
dev = sde_kms->dev;
if (sde_kms_is_suspend_blocked(dev)) {
SDE_DEBUG("suspended, skip atomic_check\n");
return -EBUSY;
}
ret = drm_atomic_helper_check(dev, state);
if (ret)
return ret;
/*
* Check if any secure transition(moving CRTC between secure and
* non-secure state and vice-versa) is allowed or not. when moving
* to secure state, planes with fb_mode set to dir_translated only can
* be staged on the CRTC, and only one CRTC can be active during
* Secure state
*/
return sde_kms_check_secure_transition(kms, state);
}
static struct msm_gem_address_space*
_sde_kms_get_address_space(struct msm_kms *kms,
unsigned int domain)
{
struct sde_kms *sde_kms;
if (!kms) {
SDE_ERROR("invalid kms\n");
return NULL;
}
sde_kms = to_sde_kms(kms);
if (!sde_kms) {
SDE_ERROR("invalid sde_kms\n");
return NULL;
}
if (domain >= MSM_SMMU_DOMAIN_MAX)
return NULL;
return (sde_kms->aspace[domain] &&
sde_kms->aspace[domain]->domain_attached) ?
sde_kms->aspace[domain] : NULL;
}
static void _sde_kms_post_open(struct msm_kms *kms, struct drm_file *file)
{
struct drm_device *dev = NULL;
struct sde_kms *sde_kms = NULL;
struct drm_connector *connector = NULL;
struct sde_connector *sde_conn = NULL;
if (!kms) {
SDE_ERROR("invalid kms\n");
return;
}
sde_kms = to_sde_kms(kms);
dev = sde_kms->dev;
if (!dev) {
SDE_ERROR("invalid device\n");
return;
}
if (!dev->mode_config.poll_enabled)
return;
mutex_lock(&dev->mode_config.mutex);
drm_for_each_connector(connector, dev) {
/* Only handle HPD capable connectors. */
if (!(connector->polled & DRM_CONNECTOR_POLL_HPD))
continue;
sde_conn = to_sde_connector(connector);
if (sde_conn->ops.post_open)
sde_conn->ops.post_open(sde_conn->display);
}
mutex_unlock(&dev->mode_config.mutex);
}
static int sde_kms_cont_splash_config(struct msm_kms *kms)
{
void *display;
struct dsi_display *dsi_display;
struct msm_display_info info;
struct drm_encoder *encoder = NULL;
struct drm_crtc *crtc = NULL;
int i, rc = 0;
struct drm_display_mode *drm_mode = NULL;
struct drm_device *dev;
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
struct list_head *connector_list = NULL;
struct drm_connector *conn_iter = NULL;
struct drm_connector *connector = NULL;
if (!kms) {
SDE_ERROR("invalid kms\n");
return -EINVAL;
}
sde_kms = to_sde_kms(kms);
dev = sde_kms->dev;
if (!dev || !dev->platformdev) {
SDE_ERROR("invalid device\n");
return -EINVAL;
}
if (!sde_kms->splash_data.cont_splash_en) {
DRM_INFO("cont_splash feature not enabled\n");
return rc;
}
/* Currently, we only support one dsi display configuration */
/* dsi */
for (i = 0; i < sde_kms->dsi_display_count; ++i) {
display = sde_kms->dsi_displays[i];
dsi_display = (struct dsi_display *)display;
SDE_DEBUG("display->name = %s\n", dsi_display->name);
if (dsi_display->bridge->base.encoder) {
encoder = dsi_display->bridge->base.encoder;
SDE_DEBUG("encoder name = %s\n", encoder->name);
}
memset(&info, 0x0, sizeof(info));
rc = dsi_display_get_info(&info, display);
if (rc) {
SDE_ERROR("dsi get_info %d failed\n", i);
encoder = NULL;
continue;
}
SDE_DEBUG("info.is_connected = %s, info.is_primary = %s\n",
((info.is_connected) ? "true" : "false"),
((info.is_primary) ? "true" : "false"));
break;
}
if (!encoder) {
SDE_ERROR("encoder not initialized\n");
return -EINVAL;
}
priv = sde_kms->dev->dev_private;
encoder->crtc = priv->crtcs[0];
crtc = encoder->crtc;
SDE_DEBUG("crtc id = %d\n", crtc->base.id);
mutex_lock(&dev->mode_config.mutex);
connector_list = &dev->mode_config.connector_list;
list_for_each_entry(conn_iter, connector_list, head) {
/**
* SDE_KMS doesn't attach more than one encoder to
* a DSI connector. So it is safe to check only with the
* first encoder entry. Revisit this logic if we ever have
* to support continuous splash for external displays in MST
* configuration.
*/
if (conn_iter &&
conn_iter->encoder_ids[0] == encoder->base.id) {
connector = conn_iter;
break;
}
}
if (!connector) {
SDE_ERROR("connector not initialized\n");
mutex_unlock(&dev->mode_config.mutex);
return -EINVAL;
}
if (connector->funcs->fill_modes) {
connector->funcs->fill_modes(connector,
dev->mode_config.max_width,
dev->mode_config.max_height);
} else {
SDE_ERROR("fill_modes api not defined\n");
mutex_unlock(&dev->mode_config.mutex);
return -EINVAL;
}
mutex_unlock(&dev->mode_config.mutex);
crtc->state->encoder_mask = (1 << drm_encoder_index(encoder));
/* currently consider modes[0] as the preferred mode */
drm_mode = list_first_entry(&connector->modes,
struct drm_display_mode, head);
SDE_DEBUG("drm_mode->name = %s, id=%d, type=0x%x, flags=0x%x\n",
drm_mode->name, drm_mode->base.id,
drm_mode->type, drm_mode->flags);
/* Update CRTC drm structure */
crtc->state->active = true;
rc = drm_atomic_set_mode_for_crtc(crtc->state, drm_mode);
if (rc) {
SDE_ERROR("Failed: set mode for crtc. rc = %d\n", rc);
return rc;
}
drm_mode_copy(&crtc->state->adjusted_mode, drm_mode);
drm_mode_copy(&crtc->mode, drm_mode);
/* Update encoder structure */
sde_encoder_update_caps_for_cont_splash(encoder);
sde_crtc_update_cont_splash_mixer_settings(crtc);
return rc;
}
static int sde_kms_pm_suspend(struct device *dev)
{
struct drm_device *ddev;
struct drm_modeset_acquire_ctx ctx;
struct drm_connector *conn;
struct drm_atomic_state *state;
struct sde_kms *sde_kms;
int ret = 0, num_crtcs = 0;
if (!dev)
return -EINVAL;
ddev = dev_get_drvdata(dev);
if (!ddev || !ddev_to_msm_kms(ddev))
return -EINVAL;
sde_kms = to_sde_kms(ddev_to_msm_kms(ddev));
SDE_EVT32(0);
/* disable hot-plug polling */
drm_kms_helper_poll_disable(ddev);
/* acquire modeset lock(s) */
drm_modeset_acquire_init(&ctx, 0);
retry:
ret = drm_modeset_lock_all_ctx(ddev, &ctx);
if (ret)
goto unlock;
/* save current state for resume */
if (sde_kms->suspend_state)
drm_atomic_state_free(sde_kms->suspend_state);
sde_kms->suspend_state = drm_atomic_helper_duplicate_state(ddev, &ctx);
if (IS_ERR_OR_NULL(sde_kms->suspend_state)) {
DRM_ERROR("failed to back up suspend state\n");
sde_kms->suspend_state = NULL;
goto unlock;
}
/* create atomic state to disable all CRTCs */
state = drm_atomic_state_alloc(ddev);
if (IS_ERR_OR_NULL(state)) {
DRM_ERROR("failed to allocate crtc disable state\n");
goto unlock;
}
state->acquire_ctx = &ctx;
drm_for_each_connector(conn, ddev) {
struct drm_crtc_state *crtc_state;
uint64_t lp;
if (!conn->state || !conn->state->crtc ||
conn->dpms != DRM_MODE_DPMS_ON)
continue;
lp = sde_connector_get_lp(conn);
if (lp == SDE_MODE_DPMS_LP1) {
/* transition LP1->LP2 on pm suspend */
ret = sde_connector_set_property_for_commit(conn, state,
CONNECTOR_PROP_LP, SDE_MODE_DPMS_LP2);
if (ret) {
DRM_ERROR("failed to set lp2 for conn %d\n",
conn->base.id);
drm_atomic_state_free(state);
goto unlock;
}
}
if (lp != SDE_MODE_DPMS_LP2) {
/* force CRTC to be inactive */
crtc_state = drm_atomic_get_crtc_state(state,
conn->state->crtc);
if (IS_ERR_OR_NULL(crtc_state)) {
DRM_ERROR("failed to get crtc %d state\n",
conn->state->crtc->base.id);
drm_atomic_state_free(state);
goto unlock;
}
if (lp != SDE_MODE_DPMS_LP1)
crtc_state->active = false;
++num_crtcs;
}
}
/* check for nothing to do */
if (num_crtcs == 0) {
DRM_DEBUG("all crtcs are already in the off state\n");
drm_atomic_state_free(state);
sde_kms->suspend_block = true;
goto unlock;
}
/* commit the "disable all" state */
ret = drm_atomic_commit(state);
if (ret < 0) {
DRM_ERROR("failed to disable crtcs, %d\n", ret);
drm_atomic_state_free(state);
goto unlock;
}
sde_kms->suspend_block = true;
drm_for_each_connector(conn, ddev) {
uint64_t lp;
lp = sde_connector_get_lp(conn);
if (lp != SDE_MODE_DPMS_LP2)
continue;
ret = sde_encoder_wait_for_event(conn->encoder,
MSM_ENC_TX_COMPLETE);
if (ret && ret != -EWOULDBLOCK)
SDE_ERROR(
"[enc: %d] wait for commit done returned %d\n",
conn->encoder->base.id, ret);
else if (!ret)
sde_encoder_idle_request(conn->encoder);
}
unlock:
if (ret == -EDEADLK) {
drm_modeset_backoff(&ctx);
goto retry;
}
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
return 0;
}
static int sde_kms_pm_resume(struct device *dev)
{
struct drm_device *ddev;
struct sde_kms *sde_kms;
int ret;
if (!dev)
return -EINVAL;
ddev = dev_get_drvdata(dev);
if (!ddev || !ddev_to_msm_kms(ddev))
return -EINVAL;
sde_kms = to_sde_kms(ddev_to_msm_kms(ddev));
SDE_EVT32(sde_kms->suspend_state != NULL);
drm_mode_config_reset(ddev);
drm_modeset_lock_all(ddev);
sde_kms->suspend_block = false;
if (sde_kms->suspend_state) {
sde_kms->suspend_state->acquire_ctx =
ddev->mode_config.acquire_ctx;
ret = drm_atomic_commit(sde_kms->suspend_state);
if (ret < 0) {
DRM_ERROR("failed to restore state, %d\n", ret);
drm_atomic_state_free(sde_kms->suspend_state);
}
sde_kms->suspend_state = NULL;
}
drm_modeset_unlock_all(ddev);
/* enable hot-plug polling */
drm_kms_helper_poll_enable(ddev);
return 0;
}
static const struct msm_kms_funcs kms_funcs = {
.hw_init = sde_kms_hw_init,
.postinit = sde_kms_postinit,
.irq_preinstall = sde_irq_preinstall,
.irq_postinstall = sde_irq_postinstall,
.irq_uninstall = sde_irq_uninstall,
.irq = sde_irq,
.preclose = sde_kms_preclose,
.lastclose = sde_kms_lastclose,
.prepare_fence = sde_kms_prepare_fence,
.prepare_commit = sde_kms_prepare_commit,
.commit = sde_kms_commit,
.complete_commit = sde_kms_complete_commit,
.wait_for_crtc_commit_done = sde_kms_wait_for_commit_done,
.wait_for_tx_complete = sde_kms_wait_for_frame_transfer_complete,
.enable_vblank = sde_kms_enable_vblank,
.disable_vblank = sde_kms_disable_vblank,
.check_modified_format = sde_format_check_modified_format,
.atomic_check = sde_kms_atomic_check,
.get_format = sde_get_msm_format,
.round_pixclk = sde_kms_round_pixclk,
.pm_suspend = sde_kms_pm_suspend,
.pm_resume = sde_kms_pm_resume,
.destroy = sde_kms_destroy,
.cont_splash_config = sde_kms_cont_splash_config,
.register_events = _sde_kms_register_events,
.get_address_space = _sde_kms_get_address_space,
.postopen = _sde_kms_post_open,
};
/* the caller api needs to turn on clock before calling it */
static inline void _sde_kms_core_hw_rev_init(struct sde_kms *sde_kms)
{
sde_kms->core_rev = readl_relaxed(sde_kms->mmio + 0x0);
}
static int _sde_kms_mmu_destroy(struct sde_kms *sde_kms)
{
struct msm_mmu *mmu;
int i;
for (i = ARRAY_SIZE(sde_kms->aspace) - 1; i >= 0; i--) {
if (!sde_kms->aspace[i])
continue;
mmu = sde_kms->aspace[i]->mmu;
mmu->funcs->detach(mmu, (const char **)iommu_ports,
ARRAY_SIZE(iommu_ports));
msm_gem_address_space_destroy(sde_kms->aspace[i]);
sde_kms->aspace[i] = NULL;
}
return 0;
}
static int _sde_kms_mmu_init(struct sde_kms *sde_kms)
{
struct msm_mmu *mmu;
int i, ret;
int early_map = 1;
for (i = 0; i < MSM_SMMU_DOMAIN_MAX; i++) {
struct msm_gem_address_space *aspace;
mmu = msm_smmu_new(sde_kms->dev->dev, i);
if (IS_ERR(mmu)) {
ret = PTR_ERR(mmu);
SDE_DEBUG("failed to init iommu id %d: rc:%d\n",
i, ret);
continue;
}
/*
* Before attaching SMMU, we need to honor continuous splash
* use case where hardware tries to fetch buffer from physical
* address. To facilitate this requirement we need to have a
* one to one mapping on SMMU until we have our first frame.
*/
if ((i == MSM_SMMU_DOMAIN_UNSECURE) &&
sde_kms->splash_data.smmu_handoff_pending) {
ret = mmu->funcs->set_attribute(mmu,
DOMAIN_ATTR_EARLY_MAP,
&early_map);
if (ret) {
SDE_ERROR("failed to set map att: %d\n", ret);
goto fail;
}
}
aspace = msm_gem_smmu_address_space_create(sde_kms->dev,
mmu, "sde");
if (IS_ERR(aspace)) {
ret = PTR_ERR(aspace);
mmu->funcs->destroy(mmu);
goto fail;
}
sde_kms->aspace[i] = aspace;
ret = mmu->funcs->attach(mmu, (const char **)iommu_ports,
ARRAY_SIZE(iommu_ports));
if (ret) {
SDE_ERROR("failed to attach iommu %d: %d\n", i, ret);
msm_gem_address_space_destroy(aspace);
goto fail;
}
aspace->domain_attached = true;
early_map = 0;
/* Mapping splash memory block */
if ((i == MSM_SMMU_DOMAIN_UNSECURE) &&
sde_kms->splash_data.smmu_handoff_pending) {
ret = _sde_kms_splash_smmu_map(sde_kms->dev, mmu,
&sde_kms->splash_data);
if (ret) {
SDE_ERROR("failed to map ret:%d\n", ret);
goto fail;
}
/*
* Turning off early map after generating one to one
* mapping for splash address space.
*/
ret = mmu->funcs->set_attribute(mmu,
DOMAIN_ATTR_EARLY_MAP,
&early_map);
if (ret) {
SDE_ERROR("failed to set map att ret:%d\n",
ret);
goto early_map_fail;
}
}
}
return 0;
early_map_fail:
mmu->funcs->one_to_one_unmap(mmu, sde_kms->splash_data.splash_base,
sde_kms->splash_data.splash_size);
fail:
mmu->funcs->destroy(mmu);
_sde_kms_mmu_destroy(sde_kms);
return ret;
}
static void sde_kms_handle_power_event(u32 event_type, void *usr)
{
struct sde_kms *sde_kms = usr;
struct msm_kms *msm_kms;
msm_kms = &sde_kms->base;
if (!sde_kms)
return;
SDE_DEBUG("event_type:%d\n", event_type);
SDE_EVT32_VERBOSE(event_type);
if (event_type == SDE_POWER_EVENT_POST_ENABLE) {
sde_irq_update(msm_kms, true);
sde_vbif_init_memtypes(sde_kms);
} else if (event_type == SDE_POWER_EVENT_PRE_DISABLE) {
sde_irq_update(msm_kms, false);
}
}
#define genpd_to_sde_kms(domain) container_of(domain, struct sde_kms, genpd)
static int sde_kms_pd_enable(struct generic_pm_domain *genpd)
{
struct sde_kms *sde_kms = genpd_to_sde_kms(genpd);
struct drm_device *dev;
struct msm_drm_private *priv;
int rc;
SDE_DEBUG("\n");
dev = sde_kms->dev;
if (!dev)
return -EINVAL;
priv = dev->dev_private;
if (!priv)
return -EINVAL;
SDE_EVT32(genpd->device_count);
rc = sde_power_resource_enable(&priv->phandle, priv->pclient, true);
return rc;
}
static int sde_kms_pd_disable(struct generic_pm_domain *genpd)
{
struct sde_kms *sde_kms = genpd_to_sde_kms(genpd);
struct drm_device *dev;
struct msm_drm_private *priv;
int rc;
SDE_DEBUG("\n");
dev = sde_kms->dev;
if (!dev)
return -EINVAL;
priv = dev->dev_private;
if (!priv)
return -EINVAL;
SDE_EVT32(genpd->device_count);
rc = sde_power_resource_enable(&priv->phandle, priv->pclient, false);
return rc;
}
static int _sde_kms_get_splash_data(struct sde_splash_data *data)
{
int ret = 0;
struct device_node *parent, *node;
struct resource r;
if (!data)
return -EINVAL;
parent = of_find_node_by_path("/reserved-memory");
if (!parent) {
SDE_ERROR("failed to find reserved-memory node\n");
return -EINVAL;
}
node = of_find_node_by_name(parent, "cont_splash_region");
if (!node) {
SDE_ERROR("failed to find splash memory reservation\n");
return -EINVAL;
}
if (of_address_to_resource(node, 0, &r)) {
SDE_ERROR("failed to find data for splash memory\n");
return -EINVAL;
}
data->splash_base = (unsigned long)r.start;
data->splash_size = (r.end - r.start) + 1;
pr_info("found continuous splash base address:%lx size:%x\n",
data->splash_base,
data->splash_size);
return ret;
}
static int sde_kms_hw_init(struct msm_kms *kms)
{
struct sde_kms *sde_kms;
struct drm_device *dev;
struct msm_drm_private *priv;
struct sde_rm *rm = NULL;
int i, rc = -EINVAL;
if (!kms) {
SDE_ERROR("invalid kms\n");
goto end;
}
sde_kms = to_sde_kms(kms);
dev = sde_kms->dev;
if (!dev || !dev->platformdev) {
SDE_ERROR("invalid device\n");
goto end;
}
priv = dev->dev_private;
if (!priv) {
SDE_ERROR("invalid private data\n");
goto end;
}
sde_kms->mmio = msm_ioremap(dev->platformdev, "mdp_phys", "mdp_phys");
if (IS_ERR(sde_kms->mmio)) {
rc = PTR_ERR(sde_kms->mmio);
SDE_ERROR("mdp register memory map failed: %d\n", rc);
sde_kms->mmio = NULL;
goto error;
}
DRM_INFO("mapped mdp address space @%p\n", sde_kms->mmio);
sde_kms->mmio_len = msm_iomap_size(dev->platformdev, "mdp_phys");
rc = sde_dbg_reg_register_base(SDE_DBG_NAME, sde_kms->mmio,
sde_kms->mmio_len);
if (rc)
SDE_ERROR("dbg base register kms failed: %d\n", rc);
sde_kms->vbif[VBIF_RT] = msm_ioremap(dev->platformdev, "vbif_phys",
"vbif_phys");
if (IS_ERR(sde_kms->vbif[VBIF_RT])) {
rc = PTR_ERR(sde_kms->vbif[VBIF_RT]);
SDE_ERROR("vbif register memory map failed: %d\n", rc);
sde_kms->vbif[VBIF_RT] = NULL;
goto error;
}
sde_kms->vbif_len[VBIF_RT] = msm_iomap_size(dev->platformdev,
"vbif_phys");
rc = sde_dbg_reg_register_base("vbif_rt", sde_kms->vbif[VBIF_RT],
sde_kms->vbif_len[VBIF_RT]);
if (rc)
SDE_ERROR("dbg base register vbif_rt failed: %d\n", rc);
sde_kms->vbif[VBIF_NRT] = msm_ioremap(dev->platformdev, "vbif_nrt_phys",
"vbif_nrt_phys");
if (IS_ERR(sde_kms->vbif[VBIF_NRT])) {
sde_kms->vbif[VBIF_NRT] = NULL;
SDE_DEBUG("VBIF NRT is not defined");
} else {
sde_kms->vbif_len[VBIF_NRT] = msm_iomap_size(dev->platformdev,
"vbif_nrt_phys");
rc = sde_dbg_reg_register_base("vbif_nrt",
sde_kms->vbif[VBIF_NRT],
sde_kms->vbif_len[VBIF_NRT]);
if (rc)
SDE_ERROR("dbg base register vbif_nrt failed: %d\n",
rc);
}
sde_kms->reg_dma = msm_ioremap(dev->platformdev, "regdma_phys",
"regdma_phys");
if (IS_ERR(sde_kms->reg_dma)) {
sde_kms->reg_dma = NULL;
SDE_DEBUG("REG_DMA is not defined");
} else {
sde_kms->reg_dma_len = msm_iomap_size(dev->platformdev,
"regdma_phys");
rc = sde_dbg_reg_register_base("reg_dma",
sde_kms->reg_dma,
sde_kms->reg_dma_len);
if (rc)
SDE_ERROR("dbg base register reg_dma failed: %d\n",
rc);
}
sde_kms->core_client = sde_power_client_create(&priv->phandle, "core");
if (IS_ERR_OR_NULL(sde_kms->core_client)) {
rc = PTR_ERR(sde_kms->core_client);
if (!sde_kms->core_client)
rc = -EINVAL;
SDE_ERROR("sde power client create failed: %d\n", rc);
sde_kms->core_client = NULL;
goto error;
}
rc = _sde_kms_get_splash_data(&sde_kms->splash_data);
if (rc)
SDE_DEBUG("sde splash data fetch failed: %d\n", rc);
rc = sde_power_resource_enable(&priv->phandle, sde_kms->core_client,
true);
if (rc) {
SDE_ERROR("resource enable failed: %d\n", rc);
goto error;
}
for (i = 0; i < SDE_POWER_HANDLE_DBUS_ID_MAX; i++)
sde_power_data_bus_set_quota(&priv->phandle,
sde_kms->core_client,
SDE_POWER_HANDLE_DATA_BUS_CLIENT_RT, i,
SDE_POWER_HANDLE_CONT_SPLASH_BUS_AB_QUOTA,
SDE_POWER_HANDLE_CONT_SPLASH_BUS_IB_QUOTA);
_sde_kms_core_hw_rev_init(sde_kms);
pr_info("sde hardware revision:0x%x\n", sde_kms->core_rev);
sde_kms->catalog = sde_hw_catalog_init(dev, sde_kms->core_rev);
if (IS_ERR_OR_NULL(sde_kms->catalog)) {
rc = PTR_ERR(sde_kms->catalog);
if (!sde_kms->catalog)
rc = -EINVAL;
SDE_ERROR("catalog init failed: %d\n", rc);
sde_kms->catalog = NULL;
goto power_error;
}
sde_dbg_init_dbg_buses(sde_kms->core_rev);
rm = &sde_kms->rm;
rc = sde_rm_init(rm, sde_kms->catalog, sde_kms->mmio,
sde_kms->dev);
if (rc) {
SDE_ERROR("rm init failed: %d\n", rc);
goto power_error;
}
sde_kms->rm_init = true;
sde_kms->hw_intr = sde_hw_intr_init(sde_kms->mmio, sde_kms->catalog);
if (IS_ERR_OR_NULL(sde_kms->hw_intr)) {
rc = PTR_ERR(sde_kms->hw_intr);
SDE_ERROR("hw_intr init failed: %d\n", rc);
sde_kms->hw_intr = NULL;
goto hw_intr_init_err;
}
/*
* Attempt continuous splash handoff only if reserved
* splash memory is found.
*/
if (sde_kms->splash_data.splash_base)
sde_rm_cont_splash_res_init(priv, &sde_kms->rm,
&sde_kms->splash_data,
sde_kms->catalog);
/*
* SMMU handoff is necessary for continuous splash enabled
* scenario.
*/
if (sde_kms->splash_data.cont_splash_en)
sde_kms->splash_data.smmu_handoff_pending = true;
/* Initialize reg dma block which is a singleton */
rc = sde_reg_dma_init(sde_kms->reg_dma, sde_kms->catalog,
sde_kms->dev);
if (rc) {
SDE_ERROR("failed: reg dma init failed\n");
goto power_error;
}
rc = _sde_kms_mmu_init(sde_kms);
if (rc) {
SDE_ERROR("sde_kms_mmu_init failed: %d\n", rc);
goto power_error;
}
sde_kms->hw_mdp = sde_rm_get_mdp(&sde_kms->rm);
if (IS_ERR_OR_NULL(sde_kms->hw_mdp)) {
rc = PTR_ERR(sde_kms->hw_mdp);
if (!sde_kms->hw_mdp)
rc = -EINVAL;
SDE_ERROR("failed to get hw_mdp: %d\n", rc);
sde_kms->hw_mdp = NULL;
goto power_error;
}
for (i = 0; i < sde_kms->catalog->vbif_count; i++) {
u32 vbif_idx = sde_kms->catalog->vbif[i].id;
sde_kms->hw_vbif[i] = sde_hw_vbif_init(vbif_idx,
sde_kms->vbif[vbif_idx], sde_kms->catalog);
if (IS_ERR_OR_NULL(sde_kms->hw_vbif[vbif_idx])) {
rc = PTR_ERR(sde_kms->hw_vbif[vbif_idx]);
if (!sde_kms->hw_vbif[vbif_idx])
rc = -EINVAL;
SDE_ERROR("failed to init vbif %d: %d\n", vbif_idx, rc);
sde_kms->hw_vbif[vbif_idx] = NULL;
goto power_error;
}
}
sde_kms->iclient = msm_ion_client_create(dev->unique);
if (IS_ERR(sde_kms->iclient)) {
rc = PTR_ERR(sde_kms->iclient);
SDE_DEBUG("msm_ion_client not available: %d\n", rc);
sde_kms->iclient = NULL;
}
rc = sde_core_perf_init(&sde_kms->perf, dev, sde_kms->catalog,
&priv->phandle, priv->pclient, "core_clk");
if (rc) {
SDE_ERROR("failed to init perf %d\n", rc);
goto perf_err;
}
/*
* _sde_kms_drm_obj_init should create the DRM related objects
* i.e. CRTCs, planes, encoders, connectors and so forth
*/
rc = _sde_kms_drm_obj_init(sde_kms);
if (rc) {
SDE_ERROR("modeset init failed: %d\n", rc);
goto drm_obj_init_err;
}
dev->mode_config.min_width = 0;
dev->mode_config.min_height = 0;
/*
* max crtc width is equal to the max mixer width * 2 and max height is
* is 4K
*/
dev->mode_config.max_width = sde_kms->catalog->max_mixer_width * 2;
dev->mode_config.max_height = 4096;
/*
* Support format modifiers for compression etc.
*/
dev->mode_config.allow_fb_modifiers = true;
/*
* Handle (re)initializations during power enable
*/
sde_kms_handle_power_event(SDE_POWER_EVENT_POST_ENABLE, sde_kms);
sde_kms->power_event = sde_power_handle_register_event(&priv->phandle,
SDE_POWER_EVENT_POST_ENABLE |
SDE_POWER_EVENT_PRE_DISABLE,
sde_kms_handle_power_event, sde_kms, "kms");
/* initialize power domain if defined */
if (of_find_property(dev->dev->of_node, "#power-domain-cells", NULL)) {
sde_kms->genpd.name = dev->unique;
sde_kms->genpd.power_off = sde_kms_pd_disable;
sde_kms->genpd.power_on = sde_kms_pd_enable;
rc = pm_genpd_init(&sde_kms->genpd, NULL, true);
if (rc < 0) {
SDE_ERROR("failed to init genpd provider %s: %d\n",
sde_kms->genpd.name, rc);
goto genpd_err;
}
rc = of_genpd_add_provider_simple(dev->dev->of_node,
&sde_kms->genpd);
if (rc < 0) {
SDE_ERROR("failed to add genpd provider %s: %d\n",
sde_kms->genpd.name, rc);
pm_genpd_remove(&sde_kms->genpd);
goto genpd_err;
}
sde_kms->genpd_init = true;
SDE_DEBUG("added genpd provider %s\n", sde_kms->genpd.name);
}
if (sde_kms->splash_data.cont_splash_en) {
SDE_DEBUG("Skipping MDP Resources disable\n");
} else {
for (i = 0; i < SDE_POWER_HANDLE_DBUS_ID_MAX; i++)
sde_power_data_bus_set_quota(&priv->phandle,
sde_kms->core_client,
SDE_POWER_HANDLE_DATA_BUS_CLIENT_RT, i,
SDE_POWER_HANDLE_ENABLE_BUS_AB_QUOTA,
SDE_POWER_HANDLE_ENABLE_BUS_IB_QUOTA);
sde_power_resource_enable(&priv->phandle,
sde_kms->core_client, false);
}
return 0;
genpd_err:
drm_obj_init_err:
sde_core_perf_destroy(&sde_kms->perf);
hw_intr_init_err:
perf_err:
power_error:
sde_power_resource_enable(&priv->phandle, sde_kms->core_client, false);
error:
_sde_kms_hw_destroy(sde_kms, dev->platformdev);
end:
return rc;
}
struct msm_kms *sde_kms_init(struct drm_device *dev)
{
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
if (!dev || !dev->dev_private) {
SDE_ERROR("drm device node invalid\n");
return ERR_PTR(-EINVAL);
}
priv = dev->dev_private;
sde_kms = kzalloc(sizeof(*sde_kms), GFP_KERNEL);
if (!sde_kms) {
SDE_ERROR("failed to allocate sde kms\n");
return ERR_PTR(-ENOMEM);
}
msm_kms_init(&sde_kms->base, &kms_funcs);
sde_kms->dev = dev;
return &sde_kms->base;
}
static int _sde_kms_register_events(struct msm_kms *kms,
struct drm_mode_object *obj, u32 event, bool en)
{
int ret = 0;
struct drm_crtc *crtc = NULL;
struct drm_connector *conn = NULL;
struct sde_kms *sde_kms = NULL;
if (!kms || !obj) {
SDE_ERROR("invalid argument kms %pK obj %pK\n", kms, obj);
return -EINVAL;
}
sde_kms = to_sde_kms(kms);
switch (obj->type) {
case DRM_MODE_OBJECT_CRTC:
crtc = obj_to_crtc(obj);
ret = sde_crtc_register_custom_event(sde_kms, crtc, event, en);
break;
case DRM_MODE_OBJECT_CONNECTOR:
conn = obj_to_connector(obj);
ret = sde_connector_register_custom_event(sde_kms, conn, event,
en);
break;
}
return ret;
}
int sde_kms_handle_recovery(struct drm_encoder *encoder)
{
SDE_EVT32(DRMID(encoder), MSM_ENC_ACTIVE_REGION);
return sde_encoder_wait_for_event(encoder, MSM_ENC_ACTIVE_REGION);
}