| /* |
| * Interface for controlling IO bandwidth on a request queue |
| * |
| * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/blkdev.h> |
| #include <linux/bio.h> |
| #include <linux/blktrace_api.h> |
| #include "blk-cgroup.h" |
| |
| /* Max dispatch from a group in 1 round */ |
| static int throtl_grp_quantum = 8; |
| |
| /* Total max dispatch from all groups in one round */ |
| static int throtl_quantum = 32; |
| |
| /* Throttling is performed over 100ms slice and after that slice is renewed */ |
| static unsigned long throtl_slice = HZ/10; /* 100 ms */ |
| |
| /* A workqueue to queue throttle related work */ |
| static struct workqueue_struct *kthrotld_workqueue; |
| static void throtl_schedule_delayed_work(struct throtl_data *td, |
| unsigned long delay); |
| |
| struct throtl_rb_root { |
| struct rb_root rb; |
| struct rb_node *left; |
| unsigned int count; |
| unsigned long min_disptime; |
| }; |
| |
| #define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \ |
| .count = 0, .min_disptime = 0} |
| |
| #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) |
| |
| struct throtl_grp { |
| /* List of throtl groups on the request queue*/ |
| struct hlist_node tg_node; |
| |
| /* active throtl group service_tree member */ |
| struct rb_node rb_node; |
| |
| /* |
| * Dispatch time in jiffies. This is the estimated time when group |
| * will unthrottle and is ready to dispatch more bio. It is used as |
| * key to sort active groups in service tree. |
| */ |
| unsigned long disptime; |
| |
| struct blkio_group blkg; |
| atomic_t ref; |
| unsigned int flags; |
| |
| /* Two lists for READ and WRITE */ |
| struct bio_list bio_lists[2]; |
| |
| /* Number of queued bios on READ and WRITE lists */ |
| unsigned int nr_queued[2]; |
| |
| /* bytes per second rate limits */ |
| uint64_t bps[2]; |
| |
| /* IOPS limits */ |
| unsigned int iops[2]; |
| |
| /* Number of bytes disptached in current slice */ |
| uint64_t bytes_disp[2]; |
| /* Number of bio's dispatched in current slice */ |
| unsigned int io_disp[2]; |
| |
| /* When did we start a new slice */ |
| unsigned long slice_start[2]; |
| unsigned long slice_end[2]; |
| |
| /* Some throttle limits got updated for the group */ |
| int limits_changed; |
| |
| struct rcu_head rcu_head; |
| }; |
| |
| struct throtl_data |
| { |
| /* List of throtl groups */ |
| struct hlist_head tg_list; |
| |
| /* service tree for active throtl groups */ |
| struct throtl_rb_root tg_service_tree; |
| |
| struct throtl_grp *root_tg; |
| struct request_queue *queue; |
| |
| /* Total Number of queued bios on READ and WRITE lists */ |
| unsigned int nr_queued[2]; |
| |
| /* |
| * number of total undestroyed groups |
| */ |
| unsigned int nr_undestroyed_grps; |
| |
| /* Work for dispatching throttled bios */ |
| struct delayed_work throtl_work; |
| |
| int limits_changed; |
| }; |
| |
| enum tg_state_flags { |
| THROTL_TG_FLAG_on_rr = 0, /* on round-robin busy list */ |
| }; |
| |
| #define THROTL_TG_FNS(name) \ |
| static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \ |
| { \ |
| (tg)->flags |= (1 << THROTL_TG_FLAG_##name); \ |
| } \ |
| static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \ |
| { \ |
| (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \ |
| } \ |
| static inline int throtl_tg_##name(const struct throtl_grp *tg) \ |
| { \ |
| return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \ |
| } |
| |
| THROTL_TG_FNS(on_rr); |
| |
| #define throtl_log_tg(td, tg, fmt, args...) \ |
| blk_add_trace_msg((td)->queue, "throtl %s " fmt, \ |
| blkg_path(&(tg)->blkg), ##args); \ |
| |
| #define throtl_log(td, fmt, args...) \ |
| blk_add_trace_msg((td)->queue, "throtl " fmt, ##args) |
| |
| static inline struct throtl_grp *tg_of_blkg(struct blkio_group *blkg) |
| { |
| if (blkg) |
| return container_of(blkg, struct throtl_grp, blkg); |
| |
| return NULL; |
| } |
| |
| static inline unsigned int total_nr_queued(struct throtl_data *td) |
| { |
| return td->nr_queued[0] + td->nr_queued[1]; |
| } |
| |
| static inline struct throtl_grp *throtl_ref_get_tg(struct throtl_grp *tg) |
| { |
| atomic_inc(&tg->ref); |
| return tg; |
| } |
| |
| static void throtl_free_tg(struct rcu_head *head) |
| { |
| struct throtl_grp *tg; |
| |
| tg = container_of(head, struct throtl_grp, rcu_head); |
| free_percpu(tg->blkg.stats_cpu); |
| kfree(tg); |
| } |
| |
| static void throtl_put_tg(struct throtl_grp *tg) |
| { |
| BUG_ON(atomic_read(&tg->ref) <= 0); |
| if (!atomic_dec_and_test(&tg->ref)) |
| return; |
| |
| /* |
| * A group is freed in rcu manner. But having an rcu lock does not |
| * mean that one can access all the fields of blkg and assume these |
| * are valid. For example, don't try to follow throtl_data and |
| * request queue links. |
| * |
| * Having a reference to blkg under an rcu allows acess to only |
| * values local to groups like group stats and group rate limits |
| */ |
| call_rcu(&tg->rcu_head, throtl_free_tg); |
| } |
| |
| static void throtl_init_group(struct throtl_grp *tg) |
| { |
| INIT_HLIST_NODE(&tg->tg_node); |
| RB_CLEAR_NODE(&tg->rb_node); |
| bio_list_init(&tg->bio_lists[0]); |
| bio_list_init(&tg->bio_lists[1]); |
| tg->limits_changed = false; |
| |
| /* Practically unlimited BW */ |
| tg->bps[0] = tg->bps[1] = -1; |
| tg->iops[0] = tg->iops[1] = -1; |
| |
| /* |
| * Take the initial reference that will be released on destroy |
| * This can be thought of a joint reference by cgroup and |
| * request queue which will be dropped by either request queue |
| * exit or cgroup deletion path depending on who is exiting first. |
| */ |
| atomic_set(&tg->ref, 1); |
| } |
| |
| /* Should be called with rcu read lock held (needed for blkcg) */ |
| static void |
| throtl_add_group_to_td_list(struct throtl_data *td, struct throtl_grp *tg) |
| { |
| hlist_add_head(&tg->tg_node, &td->tg_list); |
| td->nr_undestroyed_grps++; |
| } |
| |
| static void |
| __throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg) |
| { |
| struct backing_dev_info *bdi = &td->queue->backing_dev_info; |
| unsigned int major, minor; |
| |
| if (!tg || tg->blkg.dev) |
| return; |
| |
| /* |
| * Fill in device details for a group which might not have been |
| * filled at group creation time as queue was being instantiated |
| * and driver had not attached a device yet |
| */ |
| if (bdi->dev && dev_name(bdi->dev)) { |
| sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor); |
| tg->blkg.dev = MKDEV(major, minor); |
| } |
| } |
| |
| /* |
| * Should be called with without queue lock held. Here queue lock will be |
| * taken rarely. It will be taken only once during life time of a group |
| * if need be |
| */ |
| static void |
| throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg) |
| { |
| if (!tg || tg->blkg.dev) |
| return; |
| |
| spin_lock_irq(td->queue->queue_lock); |
| __throtl_tg_fill_dev_details(td, tg); |
| spin_unlock_irq(td->queue->queue_lock); |
| } |
| |
| static void throtl_init_add_tg_lists(struct throtl_data *td, |
| struct throtl_grp *tg, struct blkio_cgroup *blkcg) |
| { |
| __throtl_tg_fill_dev_details(td, tg); |
| |
| /* Add group onto cgroup list */ |
| blkiocg_add_blkio_group(blkcg, &tg->blkg, (void *)td, |
| tg->blkg.dev, BLKIO_POLICY_THROTL); |
| |
| tg->bps[READ] = blkcg_get_read_bps(blkcg, tg->blkg.dev); |
| tg->bps[WRITE] = blkcg_get_write_bps(blkcg, tg->blkg.dev); |
| tg->iops[READ] = blkcg_get_read_iops(blkcg, tg->blkg.dev); |
| tg->iops[WRITE] = blkcg_get_write_iops(blkcg, tg->blkg.dev); |
| |
| throtl_add_group_to_td_list(td, tg); |
| } |
| |
| /* Should be called without queue lock and outside of rcu period */ |
| static struct throtl_grp *throtl_alloc_tg(struct throtl_data *td) |
| { |
| struct throtl_grp *tg = NULL; |
| int ret; |
| |
| tg = kzalloc_node(sizeof(*tg), GFP_ATOMIC, td->queue->node); |
| if (!tg) |
| return NULL; |
| |
| ret = blkio_alloc_blkg_stats(&tg->blkg); |
| |
| if (ret) { |
| kfree(tg); |
| return NULL; |
| } |
| |
| throtl_init_group(tg); |
| return tg; |
| } |
| |
| static struct |
| throtl_grp *throtl_find_tg(struct throtl_data *td, struct blkio_cgroup *blkcg) |
| { |
| struct throtl_grp *tg = NULL; |
| void *key = td; |
| |
| /* |
| * This is the common case when there are no blkio cgroups. |
| * Avoid lookup in this case |
| */ |
| if (blkcg == &blkio_root_cgroup) |
| tg = td->root_tg; |
| else |
| tg = tg_of_blkg(blkiocg_lookup_group(blkcg, key)); |
| |
| __throtl_tg_fill_dev_details(td, tg); |
| return tg; |
| } |
| |
| /* |
| * This function returns with queue lock unlocked in case of error, like |
| * request queue is no more |
| */ |
| static struct throtl_grp * throtl_get_tg(struct throtl_data *td) |
| { |
| struct throtl_grp *tg = NULL, *__tg = NULL; |
| struct blkio_cgroup *blkcg; |
| struct request_queue *q = td->queue; |
| |
| rcu_read_lock(); |
| blkcg = task_blkio_cgroup(current); |
| tg = throtl_find_tg(td, blkcg); |
| if (tg) { |
| rcu_read_unlock(); |
| return tg; |
| } |
| |
| /* |
| * Need to allocate a group. Allocation of group also needs allocation |
| * of per cpu stats which in-turn takes a mutex() and can block. Hence |
| * we need to drop rcu lock and queue_lock before we call alloc |
| * |
| * Take the request queue reference to make sure queue does not |
| * go away once we return from allocation. |
| */ |
| blk_get_queue(q); |
| rcu_read_unlock(); |
| spin_unlock_irq(q->queue_lock); |
| |
| tg = throtl_alloc_tg(td); |
| /* |
| * We might have slept in group allocation. Make sure queue is not |
| * dead |
| */ |
| if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { |
| blk_put_queue(q); |
| if (tg) |
| kfree(tg); |
| |
| return ERR_PTR(-ENODEV); |
| } |
| blk_put_queue(q); |
| |
| /* Group allocated and queue is still alive. take the lock */ |
| spin_lock_irq(q->queue_lock); |
| |
| /* |
| * Initialize the new group. After sleeping, read the blkcg again. |
| */ |
| rcu_read_lock(); |
| blkcg = task_blkio_cgroup(current); |
| |
| /* |
| * If some other thread already allocated the group while we were |
| * not holding queue lock, free up the group |
| */ |
| __tg = throtl_find_tg(td, blkcg); |
| |
| if (__tg) { |
| kfree(tg); |
| rcu_read_unlock(); |
| return __tg; |
| } |
| |
| /* Group allocation failed. Account the IO to root group */ |
| if (!tg) { |
| tg = td->root_tg; |
| return tg; |
| } |
| |
| throtl_init_add_tg_lists(td, tg, blkcg); |
| rcu_read_unlock(); |
| return tg; |
| } |
| |
| static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root) |
| { |
| /* Service tree is empty */ |
| if (!root->count) |
| return NULL; |
| |
| if (!root->left) |
| root->left = rb_first(&root->rb); |
| |
| if (root->left) |
| return rb_entry_tg(root->left); |
| |
| return NULL; |
| } |
| |
| static void rb_erase_init(struct rb_node *n, struct rb_root *root) |
| { |
| rb_erase(n, root); |
| RB_CLEAR_NODE(n); |
| } |
| |
| static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root) |
| { |
| if (root->left == n) |
| root->left = NULL; |
| rb_erase_init(n, &root->rb); |
| --root->count; |
| } |
| |
| static void update_min_dispatch_time(struct throtl_rb_root *st) |
| { |
| struct throtl_grp *tg; |
| |
| tg = throtl_rb_first(st); |
| if (!tg) |
| return; |
| |
| st->min_disptime = tg->disptime; |
| } |
| |
| static void |
| tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg) |
| { |
| struct rb_node **node = &st->rb.rb_node; |
| struct rb_node *parent = NULL; |
| struct throtl_grp *__tg; |
| unsigned long key = tg->disptime; |
| int left = 1; |
| |
| while (*node != NULL) { |
| parent = *node; |
| __tg = rb_entry_tg(parent); |
| |
| if (time_before(key, __tg->disptime)) |
| node = &parent->rb_left; |
| else { |
| node = &parent->rb_right; |
| left = 0; |
| } |
| } |
| |
| if (left) |
| st->left = &tg->rb_node; |
| |
| rb_link_node(&tg->rb_node, parent, node); |
| rb_insert_color(&tg->rb_node, &st->rb); |
| } |
| |
| static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg) |
| { |
| struct throtl_rb_root *st = &td->tg_service_tree; |
| |
| tg_service_tree_add(st, tg); |
| throtl_mark_tg_on_rr(tg); |
| st->count++; |
| } |
| |
| static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg) |
| { |
| if (!throtl_tg_on_rr(tg)) |
| __throtl_enqueue_tg(td, tg); |
| } |
| |
| static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg) |
| { |
| throtl_rb_erase(&tg->rb_node, &td->tg_service_tree); |
| throtl_clear_tg_on_rr(tg); |
| } |
| |
| static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg) |
| { |
| if (throtl_tg_on_rr(tg)) |
| __throtl_dequeue_tg(td, tg); |
| } |
| |
| static void throtl_schedule_next_dispatch(struct throtl_data *td) |
| { |
| struct throtl_rb_root *st = &td->tg_service_tree; |
| |
| /* |
| * If there are more bios pending, schedule more work. |
| */ |
| if (!total_nr_queued(td)) |
| return; |
| |
| BUG_ON(!st->count); |
| |
| update_min_dispatch_time(st); |
| |
| if (time_before_eq(st->min_disptime, jiffies)) |
| throtl_schedule_delayed_work(td, 0); |
| else |
| throtl_schedule_delayed_work(td, (st->min_disptime - jiffies)); |
| } |
| |
| static inline void |
| throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw) |
| { |
| tg->bytes_disp[rw] = 0; |
| tg->io_disp[rw] = 0; |
| tg->slice_start[rw] = jiffies; |
| tg->slice_end[rw] = jiffies + throtl_slice; |
| throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu", |
| rw == READ ? 'R' : 'W', tg->slice_start[rw], |
| tg->slice_end[rw], jiffies); |
| } |
| |
| static inline void throtl_set_slice_end(struct throtl_data *td, |
| struct throtl_grp *tg, bool rw, unsigned long jiffy_end) |
| { |
| tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); |
| } |
| |
| static inline void throtl_extend_slice(struct throtl_data *td, |
| struct throtl_grp *tg, bool rw, unsigned long jiffy_end) |
| { |
| tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); |
| throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu", |
| rw == READ ? 'R' : 'W', tg->slice_start[rw], |
| tg->slice_end[rw], jiffies); |
| } |
| |
| /* Determine if previously allocated or extended slice is complete or not */ |
| static bool |
| throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw) |
| { |
| if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Trim the used slices and adjust slice start accordingly */ |
| static inline void |
| throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw) |
| { |
| unsigned long nr_slices, time_elapsed, io_trim; |
| u64 bytes_trim, tmp; |
| |
| BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); |
| |
| /* |
| * If bps are unlimited (-1), then time slice don't get |
| * renewed. Don't try to trim the slice if slice is used. A new |
| * slice will start when appropriate. |
| */ |
| if (throtl_slice_used(td, tg, rw)) |
| return; |
| |
| /* |
| * A bio has been dispatched. Also adjust slice_end. It might happen |
| * that initially cgroup limit was very low resulting in high |
| * slice_end, but later limit was bumped up and bio was dispached |
| * sooner, then we need to reduce slice_end. A high bogus slice_end |
| * is bad because it does not allow new slice to start. |
| */ |
| |
| throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice); |
| |
| time_elapsed = jiffies - tg->slice_start[rw]; |
| |
| nr_slices = time_elapsed / throtl_slice; |
| |
| if (!nr_slices) |
| return; |
| tmp = tg->bps[rw] * throtl_slice * nr_slices; |
| do_div(tmp, HZ); |
| bytes_trim = tmp; |
| |
| io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ; |
| |
| if (!bytes_trim && !io_trim) |
| return; |
| |
| if (tg->bytes_disp[rw] >= bytes_trim) |
| tg->bytes_disp[rw] -= bytes_trim; |
| else |
| tg->bytes_disp[rw] = 0; |
| |
| if (tg->io_disp[rw] >= io_trim) |
| tg->io_disp[rw] -= io_trim; |
| else |
| tg->io_disp[rw] = 0; |
| |
| tg->slice_start[rw] += nr_slices * throtl_slice; |
| |
| throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu" |
| " start=%lu end=%lu jiffies=%lu", |
| rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, |
| tg->slice_start[rw], tg->slice_end[rw], jiffies); |
| } |
| |
| static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg, |
| struct bio *bio, unsigned long *wait) |
| { |
| bool rw = bio_data_dir(bio); |
| unsigned int io_allowed; |
| unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; |
| u64 tmp; |
| |
| jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; |
| |
| /* Slice has just started. Consider one slice interval */ |
| if (!jiffy_elapsed) |
| jiffy_elapsed_rnd = throtl_slice; |
| |
| jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); |
| |
| /* |
| * jiffy_elapsed_rnd should not be a big value as minimum iops can be |
| * 1 then at max jiffy elapsed should be equivalent of 1 second as we |
| * will allow dispatch after 1 second and after that slice should |
| * have been trimmed. |
| */ |
| |
| tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd; |
| do_div(tmp, HZ); |
| |
| if (tmp > UINT_MAX) |
| io_allowed = UINT_MAX; |
| else |
| io_allowed = tmp; |
| |
| if (tg->io_disp[rw] + 1 <= io_allowed) { |
| if (wait) |
| *wait = 0; |
| return 1; |
| } |
| |
| /* Calc approx time to dispatch */ |
| jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1; |
| |
| if (jiffy_wait > jiffy_elapsed) |
| jiffy_wait = jiffy_wait - jiffy_elapsed; |
| else |
| jiffy_wait = 1; |
| |
| if (wait) |
| *wait = jiffy_wait; |
| return 0; |
| } |
| |
| static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg, |
| struct bio *bio, unsigned long *wait) |
| { |
| bool rw = bio_data_dir(bio); |
| u64 bytes_allowed, extra_bytes, tmp; |
| unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; |
| |
| jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; |
| |
| /* Slice has just started. Consider one slice interval */ |
| if (!jiffy_elapsed) |
| jiffy_elapsed_rnd = throtl_slice; |
| |
| jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); |
| |
| tmp = tg->bps[rw] * jiffy_elapsed_rnd; |
| do_div(tmp, HZ); |
| bytes_allowed = tmp; |
| |
| if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) { |
| if (wait) |
| *wait = 0; |
| return 1; |
| } |
| |
| /* Calc approx time to dispatch */ |
| extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed; |
| jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]); |
| |
| if (!jiffy_wait) |
| jiffy_wait = 1; |
| |
| /* |
| * This wait time is without taking into consideration the rounding |
| * up we did. Add that time also. |
| */ |
| jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); |
| if (wait) |
| *wait = jiffy_wait; |
| return 0; |
| } |
| |
| static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) { |
| if (tg->bps[rw] == -1 && tg->iops[rw] == -1) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * Returns whether one can dispatch a bio or not. Also returns approx number |
| * of jiffies to wait before this bio is with-in IO rate and can be dispatched |
| */ |
| static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg, |
| struct bio *bio, unsigned long *wait) |
| { |
| bool rw = bio_data_dir(bio); |
| unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; |
| |
| /* |
| * Currently whole state machine of group depends on first bio |
| * queued in the group bio list. So one should not be calling |
| * this function with a different bio if there are other bios |
| * queued. |
| */ |
| BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw])); |
| |
| /* If tg->bps = -1, then BW is unlimited */ |
| if (tg->bps[rw] == -1 && tg->iops[rw] == -1) { |
| if (wait) |
| *wait = 0; |
| return 1; |
| } |
| |
| /* |
| * If previous slice expired, start a new one otherwise renew/extend |
| * existing slice to make sure it is at least throtl_slice interval |
| * long since now. |
| */ |
| if (throtl_slice_used(td, tg, rw)) |
| throtl_start_new_slice(td, tg, rw); |
| else { |
| if (time_before(tg->slice_end[rw], jiffies + throtl_slice)) |
| throtl_extend_slice(td, tg, rw, jiffies + throtl_slice); |
| } |
| |
| if (tg_with_in_bps_limit(td, tg, bio, &bps_wait) |
| && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) { |
| if (wait) |
| *wait = 0; |
| return 1; |
| } |
| |
| max_wait = max(bps_wait, iops_wait); |
| |
| if (wait) |
| *wait = max_wait; |
| |
| if (time_before(tg->slice_end[rw], jiffies + max_wait)) |
| throtl_extend_slice(td, tg, rw, jiffies + max_wait); |
| |
| return 0; |
| } |
| |
| static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) |
| { |
| bool rw = bio_data_dir(bio); |
| bool sync = rw_is_sync(bio->bi_rw); |
| |
| /* Charge the bio to the group */ |
| tg->bytes_disp[rw] += bio->bi_size; |
| tg->io_disp[rw]++; |
| |
| blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, rw, sync); |
| } |
| |
| static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg, |
| struct bio *bio) |
| { |
| bool rw = bio_data_dir(bio); |
| |
| bio_list_add(&tg->bio_lists[rw], bio); |
| /* Take a bio reference on tg */ |
| throtl_ref_get_tg(tg); |
| tg->nr_queued[rw]++; |
| td->nr_queued[rw]++; |
| throtl_enqueue_tg(td, tg); |
| } |
| |
| static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg) |
| { |
| unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; |
| struct bio *bio; |
| |
| if ((bio = bio_list_peek(&tg->bio_lists[READ]))) |
| tg_may_dispatch(td, tg, bio, &read_wait); |
| |
| if ((bio = bio_list_peek(&tg->bio_lists[WRITE]))) |
| tg_may_dispatch(td, tg, bio, &write_wait); |
| |
| min_wait = min(read_wait, write_wait); |
| disptime = jiffies + min_wait; |
| |
| /* Update dispatch time */ |
| throtl_dequeue_tg(td, tg); |
| tg->disptime = disptime; |
| throtl_enqueue_tg(td, tg); |
| } |
| |
| static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg, |
| bool rw, struct bio_list *bl) |
| { |
| struct bio *bio; |
| |
| bio = bio_list_pop(&tg->bio_lists[rw]); |
| tg->nr_queued[rw]--; |
| /* Drop bio reference on tg */ |
| throtl_put_tg(tg); |
| |
| BUG_ON(td->nr_queued[rw] <= 0); |
| td->nr_queued[rw]--; |
| |
| throtl_charge_bio(tg, bio); |
| bio_list_add(bl, bio); |
| bio->bi_rw |= REQ_THROTTLED; |
| |
| throtl_trim_slice(td, tg, rw); |
| } |
| |
| static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg, |
| struct bio_list *bl) |
| { |
| unsigned int nr_reads = 0, nr_writes = 0; |
| unsigned int max_nr_reads = throtl_grp_quantum*3/4; |
| unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; |
| struct bio *bio; |
| |
| /* Try to dispatch 75% READS and 25% WRITES */ |
| |
| while ((bio = bio_list_peek(&tg->bio_lists[READ])) |
| && tg_may_dispatch(td, tg, bio, NULL)) { |
| |
| tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl); |
| nr_reads++; |
| |
| if (nr_reads >= max_nr_reads) |
| break; |
| } |
| |
| while ((bio = bio_list_peek(&tg->bio_lists[WRITE])) |
| && tg_may_dispatch(td, tg, bio, NULL)) { |
| |
| tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl); |
| nr_writes++; |
| |
| if (nr_writes >= max_nr_writes) |
| break; |
| } |
| |
| return nr_reads + nr_writes; |
| } |
| |
| static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl) |
| { |
| unsigned int nr_disp = 0; |
| struct throtl_grp *tg; |
| struct throtl_rb_root *st = &td->tg_service_tree; |
| |
| while (1) { |
| tg = throtl_rb_first(st); |
| |
| if (!tg) |
| break; |
| |
| if (time_before(jiffies, tg->disptime)) |
| break; |
| |
| throtl_dequeue_tg(td, tg); |
| |
| nr_disp += throtl_dispatch_tg(td, tg, bl); |
| |
| if (tg->nr_queued[0] || tg->nr_queued[1]) { |
| tg_update_disptime(td, tg); |
| throtl_enqueue_tg(td, tg); |
| } |
| |
| if (nr_disp >= throtl_quantum) |
| break; |
| } |
| |
| return nr_disp; |
| } |
| |
| static void throtl_process_limit_change(struct throtl_data *td) |
| { |
| struct throtl_grp *tg; |
| struct hlist_node *pos, *n; |
| |
| if (!td->limits_changed) |
| return; |
| |
| xchg(&td->limits_changed, false); |
| |
| throtl_log(td, "limits changed"); |
| |
| hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) { |
| if (!tg->limits_changed) |
| continue; |
| |
| if (!xchg(&tg->limits_changed, false)) |
| continue; |
| |
| throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu" |
| " riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE], |
| tg->iops[READ], tg->iops[WRITE]); |
| |
| /* |
| * Restart the slices for both READ and WRITES. It |
| * might happen that a group's limit are dropped |
| * suddenly and we don't want to account recently |
| * dispatched IO with new low rate |
| */ |
| throtl_start_new_slice(td, tg, 0); |
| throtl_start_new_slice(td, tg, 1); |
| |
| if (throtl_tg_on_rr(tg)) |
| tg_update_disptime(td, tg); |
| } |
| } |
| |
| /* Dispatch throttled bios. Should be called without queue lock held. */ |
| static int throtl_dispatch(struct request_queue *q) |
| { |
| struct throtl_data *td = q->td; |
| unsigned int nr_disp = 0; |
| struct bio_list bio_list_on_stack; |
| struct bio *bio; |
| struct blk_plug plug; |
| |
| spin_lock_irq(q->queue_lock); |
| |
| throtl_process_limit_change(td); |
| |
| if (!total_nr_queued(td)) |
| goto out; |
| |
| bio_list_init(&bio_list_on_stack); |
| |
| throtl_log(td, "dispatch nr_queued=%u read=%u write=%u", |
| total_nr_queued(td), td->nr_queued[READ], |
| td->nr_queued[WRITE]); |
| |
| nr_disp = throtl_select_dispatch(td, &bio_list_on_stack); |
| |
| if (nr_disp) |
| throtl_log(td, "bios disp=%u", nr_disp); |
| |
| throtl_schedule_next_dispatch(td); |
| out: |
| spin_unlock_irq(q->queue_lock); |
| |
| /* |
| * If we dispatched some requests, unplug the queue to make sure |
| * immediate dispatch |
| */ |
| if (nr_disp) { |
| blk_start_plug(&plug); |
| while((bio = bio_list_pop(&bio_list_on_stack))) |
| generic_make_request(bio); |
| blk_finish_plug(&plug); |
| } |
| return nr_disp; |
| } |
| |
| void blk_throtl_work(struct work_struct *work) |
| { |
| struct throtl_data *td = container_of(work, struct throtl_data, |
| throtl_work.work); |
| struct request_queue *q = td->queue; |
| |
| throtl_dispatch(q); |
| } |
| |
| /* Call with queue lock held */ |
| static void |
| throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay) |
| { |
| |
| struct delayed_work *dwork = &td->throtl_work; |
| |
| /* schedule work if limits changed even if no bio is queued */ |
| if (total_nr_queued(td) || td->limits_changed) { |
| /* |
| * We might have a work scheduled to be executed in future. |
| * Cancel that and schedule a new one. |
| */ |
| __cancel_delayed_work(dwork); |
| queue_delayed_work(kthrotld_workqueue, dwork, delay); |
| throtl_log(td, "schedule work. delay=%lu jiffies=%lu", |
| delay, jiffies); |
| } |
| } |
| |
| static void |
| throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg) |
| { |
| /* Something wrong if we are trying to remove same group twice */ |
| BUG_ON(hlist_unhashed(&tg->tg_node)); |
| |
| hlist_del_init(&tg->tg_node); |
| |
| /* |
| * Put the reference taken at the time of creation so that when all |
| * queues are gone, group can be destroyed. |
| */ |
| throtl_put_tg(tg); |
| td->nr_undestroyed_grps--; |
| } |
| |
| static void throtl_release_tgs(struct throtl_data *td) |
| { |
| struct hlist_node *pos, *n; |
| struct throtl_grp *tg; |
| |
| hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) { |
| /* |
| * If cgroup removal path got to blk_group first and removed |
| * it from cgroup list, then it will take care of destroying |
| * cfqg also. |
| */ |
| if (!blkiocg_del_blkio_group(&tg->blkg)) |
| throtl_destroy_tg(td, tg); |
| } |
| } |
| |
| static void throtl_td_free(struct throtl_data *td) |
| { |
| kfree(td); |
| } |
| |
| /* |
| * Blk cgroup controller notification saying that blkio_group object is being |
| * delinked as associated cgroup object is going away. That also means that |
| * no new IO will come in this group. So get rid of this group as soon as |
| * any pending IO in the group is finished. |
| * |
| * This function is called under rcu_read_lock(). key is the rcu protected |
| * pointer. That means "key" is a valid throtl_data pointer as long as we are |
| * rcu read lock. |
| * |
| * "key" was fetched from blkio_group under blkio_cgroup->lock. That means |
| * it should not be NULL as even if queue was going away, cgroup deltion |
| * path got to it first. |
| */ |
| void throtl_unlink_blkio_group(void *key, struct blkio_group *blkg) |
| { |
| unsigned long flags; |
| struct throtl_data *td = key; |
| |
| spin_lock_irqsave(td->queue->queue_lock, flags); |
| throtl_destroy_tg(td, tg_of_blkg(blkg)); |
| spin_unlock_irqrestore(td->queue->queue_lock, flags); |
| } |
| |
| static void throtl_update_blkio_group_common(struct throtl_data *td, |
| struct throtl_grp *tg) |
| { |
| xchg(&tg->limits_changed, true); |
| xchg(&td->limits_changed, true); |
| /* Schedule a work now to process the limit change */ |
| throtl_schedule_delayed_work(td, 0); |
| } |
| |
| /* |
| * For all update functions, key should be a valid pointer because these |
| * update functions are called under blkcg_lock, that means, blkg is |
| * valid and in turn key is valid. queue exit path can not race because |
| * of blkcg_lock |
| * |
| * Can not take queue lock in update functions as queue lock under blkcg_lock |
| * is not allowed. Under other paths we take blkcg_lock under queue_lock. |
| */ |
| static void throtl_update_blkio_group_read_bps(void *key, |
| struct blkio_group *blkg, u64 read_bps) |
| { |
| struct throtl_data *td = key; |
| struct throtl_grp *tg = tg_of_blkg(blkg); |
| |
| tg->bps[READ] = read_bps; |
| throtl_update_blkio_group_common(td, tg); |
| } |
| |
| static void throtl_update_blkio_group_write_bps(void *key, |
| struct blkio_group *blkg, u64 write_bps) |
| { |
| struct throtl_data *td = key; |
| struct throtl_grp *tg = tg_of_blkg(blkg); |
| |
| tg->bps[WRITE] = write_bps; |
| throtl_update_blkio_group_common(td, tg); |
| } |
| |
| static void throtl_update_blkio_group_read_iops(void *key, |
| struct blkio_group *blkg, unsigned int read_iops) |
| { |
| struct throtl_data *td = key; |
| struct throtl_grp *tg = tg_of_blkg(blkg); |
| |
| tg->iops[READ] = read_iops; |
| throtl_update_blkio_group_common(td, tg); |
| } |
| |
| static void throtl_update_blkio_group_write_iops(void *key, |
| struct blkio_group *blkg, unsigned int write_iops) |
| { |
| struct throtl_data *td = key; |
| struct throtl_grp *tg = tg_of_blkg(blkg); |
| |
| tg->iops[WRITE] = write_iops; |
| throtl_update_blkio_group_common(td, tg); |
| } |
| |
| static void throtl_shutdown_wq(struct request_queue *q) |
| { |
| struct throtl_data *td = q->td; |
| |
| cancel_delayed_work_sync(&td->throtl_work); |
| } |
| |
| static struct blkio_policy_type blkio_policy_throtl = { |
| .ops = { |
| .blkio_unlink_group_fn = throtl_unlink_blkio_group, |
| .blkio_update_group_read_bps_fn = |
| throtl_update_blkio_group_read_bps, |
| .blkio_update_group_write_bps_fn = |
| throtl_update_blkio_group_write_bps, |
| .blkio_update_group_read_iops_fn = |
| throtl_update_blkio_group_read_iops, |
| .blkio_update_group_write_iops_fn = |
| throtl_update_blkio_group_write_iops, |
| }, |
| .plid = BLKIO_POLICY_THROTL, |
| }; |
| |
| int blk_throtl_bio(struct request_queue *q, struct bio **biop) |
| { |
| struct throtl_data *td = q->td; |
| struct throtl_grp *tg; |
| struct bio *bio = *biop; |
| bool rw = bio_data_dir(bio), update_disptime = true; |
| struct blkio_cgroup *blkcg; |
| |
| if (bio->bi_rw & REQ_THROTTLED) { |
| bio->bi_rw &= ~REQ_THROTTLED; |
| return 0; |
| } |
| |
| /* |
| * A throtl_grp pointer retrieved under rcu can be used to access |
| * basic fields like stats and io rates. If a group has no rules, |
| * just update the dispatch stats in lockless manner and return. |
| */ |
| |
| rcu_read_lock(); |
| blkcg = task_blkio_cgroup(current); |
| tg = throtl_find_tg(td, blkcg); |
| if (tg) { |
| throtl_tg_fill_dev_details(td, tg); |
| |
| if (tg_no_rule_group(tg, rw)) { |
| blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, |
| rw, rw_is_sync(bio->bi_rw)); |
| rcu_read_unlock(); |
| return 0; |
| } |
| } |
| rcu_read_unlock(); |
| |
| /* |
| * Either group has not been allocated yet or it is not an unlimited |
| * IO group |
| */ |
| |
| spin_lock_irq(q->queue_lock); |
| tg = throtl_get_tg(td); |
| |
| if (IS_ERR(tg)) { |
| if (PTR_ERR(tg) == -ENODEV) { |
| /* |
| * Queue is gone. No queue lock held here. |
| */ |
| return -ENODEV; |
| } |
| } |
| |
| if (tg->nr_queued[rw]) { |
| /* |
| * There is already another bio queued in same dir. No |
| * need to update dispatch time. |
| */ |
| update_disptime = false; |
| goto queue_bio; |
| |
| } |
| |
| /* Bio is with-in rate limit of group */ |
| if (tg_may_dispatch(td, tg, bio, NULL)) { |
| throtl_charge_bio(tg, bio); |
| |
| /* |
| * We need to trim slice even when bios are not being queued |
| * otherwise it might happen that a bio is not queued for |
| * a long time and slice keeps on extending and trim is not |
| * called for a long time. Now if limits are reduced suddenly |
| * we take into account all the IO dispatched so far at new |
| * low rate and * newly queued IO gets a really long dispatch |
| * time. |
| * |
| * So keep on trimming slice even if bio is not queued. |
| */ |
| throtl_trim_slice(td, tg, rw); |
| goto out; |
| } |
| |
| queue_bio: |
| throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu" |
| " iodisp=%u iops=%u queued=%d/%d", |
| rw == READ ? 'R' : 'W', |
| tg->bytes_disp[rw], bio->bi_size, tg->bps[rw], |
| tg->io_disp[rw], tg->iops[rw], |
| tg->nr_queued[READ], tg->nr_queued[WRITE]); |
| |
| throtl_add_bio_tg(q->td, tg, bio); |
| *biop = NULL; |
| |
| if (update_disptime) { |
| tg_update_disptime(td, tg); |
| throtl_schedule_next_dispatch(td); |
| } |
| |
| out: |
| spin_unlock_irq(q->queue_lock); |
| return 0; |
| } |
| |
| int blk_throtl_init(struct request_queue *q) |
| { |
| struct throtl_data *td; |
| struct throtl_grp *tg; |
| |
| td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); |
| if (!td) |
| return -ENOMEM; |
| |
| INIT_HLIST_HEAD(&td->tg_list); |
| td->tg_service_tree = THROTL_RB_ROOT; |
| td->limits_changed = false; |
| INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work); |
| |
| /* alloc and Init root group. */ |
| td->queue = q; |
| tg = throtl_alloc_tg(td); |
| |
| if (!tg) { |
| kfree(td); |
| return -ENOMEM; |
| } |
| |
| td->root_tg = tg; |
| |
| rcu_read_lock(); |
| throtl_init_add_tg_lists(td, tg, &blkio_root_cgroup); |
| rcu_read_unlock(); |
| |
| /* Attach throtl data to request queue */ |
| q->td = td; |
| return 0; |
| } |
| |
| void blk_throtl_exit(struct request_queue *q) |
| { |
| struct throtl_data *td = q->td; |
| bool wait = false; |
| |
| BUG_ON(!td); |
| |
| throtl_shutdown_wq(q); |
| |
| spin_lock_irq(q->queue_lock); |
| throtl_release_tgs(td); |
| |
| /* If there are other groups */ |
| if (td->nr_undestroyed_grps > 0) |
| wait = true; |
| |
| spin_unlock_irq(q->queue_lock); |
| |
| /* |
| * Wait for tg->blkg->key accessors to exit their grace periods. |
| * Do this wait only if there are other undestroyed groups out |
| * there (other than root group). This can happen if cgroup deletion |
| * path claimed the responsibility of cleaning up a group before |
| * queue cleanup code get to the group. |
| * |
| * Do not call synchronize_rcu() unconditionally as there are drivers |
| * which create/delete request queue hundreds of times during scan/boot |
| * and synchronize_rcu() can take significant time and slow down boot. |
| */ |
| if (wait) |
| synchronize_rcu(); |
| |
| /* |
| * Just being safe to make sure after previous flush if some body did |
| * update limits through cgroup and another work got queued, cancel |
| * it. |
| */ |
| throtl_shutdown_wq(q); |
| throtl_td_free(td); |
| } |
| |
| static int __init throtl_init(void) |
| { |
| kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); |
| if (!kthrotld_workqueue) |
| panic("Failed to create kthrotld\n"); |
| |
| blkio_policy_register(&blkio_policy_throtl); |
| return 0; |
| } |
| |
| module_init(throtl_init); |