| /* |
| * Generic stack depot for storing stack traces. |
| * |
| * Some debugging tools need to save stack traces of certain events which can |
| * be later presented to the user. For example, KASAN needs to safe alloc and |
| * free stacks for each object, but storing two stack traces per object |
| * requires too much memory (e.g. SLUB_DEBUG needs 256 bytes per object for |
| * that). |
| * |
| * Instead, stack depot maintains a hashtable of unique stacktraces. Since alloc |
| * and free stacks repeat a lot, we save about 100x space. |
| * Stacks are never removed from depot, so we store them contiguously one after |
| * another in a contiguos memory allocation. |
| * |
| * Author: Alexander Potapenko <glider@google.com> |
| * Copyright (C) 2016 Google, Inc. |
| * |
| * Based on code by Dmitry Chernenkov. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| */ |
| |
| #include <linux/gfp.h> |
| #include <linux/jhash.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/percpu.h> |
| #include <linux/printk.h> |
| #include <linux/slab.h> |
| #include <linux/stacktrace.h> |
| #include <linux/stackdepot.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| |
| #define DEPOT_STACK_BITS (sizeof(depot_stack_handle_t) * 8) |
| |
| #define STACK_ALLOC_NULL_PROTECTION_BITS 1 |
| #define STACK_ALLOC_ORDER 2 /* 'Slab' size order for stack depot, 4 pages */ |
| #define STACK_ALLOC_SIZE (1LL << (PAGE_SHIFT + STACK_ALLOC_ORDER)) |
| #define STACK_ALLOC_ALIGN 4 |
| #define STACK_ALLOC_OFFSET_BITS (STACK_ALLOC_ORDER + PAGE_SHIFT - \ |
| STACK_ALLOC_ALIGN) |
| #define STACK_ALLOC_INDEX_BITS (DEPOT_STACK_BITS - \ |
| STACK_ALLOC_NULL_PROTECTION_BITS - STACK_ALLOC_OFFSET_BITS) |
| #define STACK_ALLOC_SLABS_CAP 8192 |
| #define STACK_ALLOC_MAX_SLABS \ |
| (((1LL << (STACK_ALLOC_INDEX_BITS)) < STACK_ALLOC_SLABS_CAP) ? \ |
| (1LL << (STACK_ALLOC_INDEX_BITS)) : STACK_ALLOC_SLABS_CAP) |
| |
| /* The compact structure to store the reference to stacks. */ |
| union handle_parts { |
| depot_stack_handle_t handle; |
| struct { |
| u32 slabindex : STACK_ALLOC_INDEX_BITS; |
| u32 offset : STACK_ALLOC_OFFSET_BITS; |
| u32 valid : STACK_ALLOC_NULL_PROTECTION_BITS; |
| }; |
| }; |
| |
| struct stack_record { |
| struct stack_record *next; /* Link in the hashtable */ |
| u32 hash; /* Hash in the hastable */ |
| u32 size; /* Number of frames in the stack */ |
| union handle_parts handle; |
| unsigned long entries[1]; /* Variable-sized array of entries. */ |
| }; |
| |
| static void *stack_slabs[STACK_ALLOC_MAX_SLABS]; |
| |
| static int depot_index; |
| static int next_slab_inited; |
| static size_t depot_offset; |
| static DEFINE_SPINLOCK(depot_lock); |
| |
| static bool init_stack_slab(void **prealloc) |
| { |
| if (!*prealloc) |
| return false; |
| /* |
| * This smp_load_acquire() pairs with smp_store_release() to |
| * |next_slab_inited| below and in depot_alloc_stack(). |
| */ |
| if (smp_load_acquire(&next_slab_inited)) |
| return true; |
| if (stack_slabs[depot_index] == NULL) { |
| stack_slabs[depot_index] = *prealloc; |
| *prealloc = NULL; |
| } else { |
| /* If this is the last depot slab, do not touch the next one. */ |
| if (depot_index + 1 < STACK_ALLOC_MAX_SLABS) { |
| stack_slabs[depot_index + 1] = *prealloc; |
| *prealloc = NULL; |
| } |
| /* |
| * This smp_store_release pairs with smp_load_acquire() from |
| * |next_slab_inited| above and in depot_save_stack(). |
| */ |
| smp_store_release(&next_slab_inited, 1); |
| } |
| return true; |
| } |
| |
| /* Allocation of a new stack in raw storage */ |
| static struct stack_record *depot_alloc_stack(unsigned long *entries, int size, |
| u32 hash, void **prealloc, gfp_t alloc_flags) |
| { |
| int required_size = offsetof(struct stack_record, entries) + |
| sizeof(unsigned long) * size; |
| struct stack_record *stack; |
| |
| required_size = ALIGN(required_size, 1 << STACK_ALLOC_ALIGN); |
| |
| if (unlikely(depot_offset + required_size > STACK_ALLOC_SIZE)) { |
| if (unlikely(depot_index + 1 >= STACK_ALLOC_MAX_SLABS)) { |
| WARN_ONCE(1, "Stack depot reached limit capacity"); |
| return NULL; |
| } |
| depot_index++; |
| depot_offset = 0; |
| /* |
| * smp_store_release() here pairs with smp_load_acquire() from |
| * |next_slab_inited| in depot_save_stack() and |
| * init_stack_slab(). |
| */ |
| if (depot_index + 1 < STACK_ALLOC_MAX_SLABS) |
| smp_store_release(&next_slab_inited, 0); |
| } |
| init_stack_slab(prealloc); |
| if (stack_slabs[depot_index] == NULL) |
| return NULL; |
| |
| stack = stack_slabs[depot_index] + depot_offset; |
| |
| stack->hash = hash; |
| stack->size = size; |
| stack->handle.slabindex = depot_index; |
| stack->handle.offset = depot_offset >> STACK_ALLOC_ALIGN; |
| stack->handle.valid = 1; |
| memcpy(stack->entries, entries, size * sizeof(unsigned long)); |
| depot_offset += required_size; |
| |
| return stack; |
| } |
| |
| #define STACK_HASH_ORDER 20 |
| #define STACK_HASH_SIZE (1L << STACK_HASH_ORDER) |
| #define STACK_HASH_MASK (STACK_HASH_SIZE - 1) |
| #define STACK_HASH_SEED 0x9747b28c |
| |
| static struct stack_record *stack_table[STACK_HASH_SIZE] = { |
| [0 ... STACK_HASH_SIZE - 1] = NULL |
| }; |
| |
| /* Calculate hash for a stack */ |
| static inline u32 hash_stack(unsigned long *entries, unsigned int size) |
| { |
| return jhash2((u32 *)entries, |
| size * sizeof(unsigned long) / sizeof(u32), |
| STACK_HASH_SEED); |
| } |
| |
| /* Find a stack that is equal to the one stored in entries in the hash */ |
| static inline struct stack_record *find_stack(struct stack_record *bucket, |
| unsigned long *entries, int size, |
| u32 hash) |
| { |
| struct stack_record *found; |
| |
| for (found = bucket; found; found = found->next) { |
| if (found->hash == hash && |
| found->size == size && |
| !memcmp(entries, found->entries, |
| size * sizeof(unsigned long))) { |
| return found; |
| } |
| } |
| return NULL; |
| } |
| |
| void depot_fetch_stack(depot_stack_handle_t handle, struct stack_trace *trace) |
| { |
| union handle_parts parts = { .handle = handle }; |
| void *slab = stack_slabs[parts.slabindex]; |
| size_t offset = parts.offset << STACK_ALLOC_ALIGN; |
| struct stack_record *stack = slab + offset; |
| |
| trace->nr_entries = trace->max_entries = stack->size; |
| trace->entries = stack->entries; |
| trace->skip = 0; |
| } |
| EXPORT_SYMBOL_GPL(depot_fetch_stack); |
| |
| /** |
| * depot_save_stack - save stack in a stack depot. |
| * @trace - the stacktrace to save. |
| * @alloc_flags - flags for allocating additional memory if required. |
| * |
| * Returns the handle of the stack struct stored in depot. |
| */ |
| depot_stack_handle_t depot_save_stack(struct stack_trace *trace, |
| gfp_t alloc_flags) |
| { |
| u32 hash; |
| depot_stack_handle_t retval = 0; |
| struct stack_record *found = NULL, **bucket; |
| unsigned long flags; |
| struct page *page = NULL; |
| void *prealloc = NULL; |
| |
| if (unlikely(trace->nr_entries == 0)) |
| goto fast_exit; |
| |
| hash = hash_stack(trace->entries, trace->nr_entries); |
| bucket = &stack_table[hash & STACK_HASH_MASK]; |
| |
| /* |
| * Fast path: look the stack trace up without locking. |
| * The smp_load_acquire() here pairs with smp_store_release() to |
| * |bucket| below. |
| */ |
| found = find_stack(smp_load_acquire(bucket), trace->entries, |
| trace->nr_entries, hash); |
| if (found) |
| goto exit; |
| |
| /* |
| * Check if the current or the next stack slab need to be initialized. |
| * If so, allocate the memory - we won't be able to do that under the |
| * lock. |
| * |
| * The smp_load_acquire() here pairs with smp_store_release() to |
| * |next_slab_inited| in depot_alloc_stack() and init_stack_slab(). |
| */ |
| if (unlikely(!smp_load_acquire(&next_slab_inited))) { |
| /* |
| * Zero out zone modifiers, as we don't have specific zone |
| * requirements. Keep the flags related to allocation in atomic |
| * contexts and I/O. |
| */ |
| alloc_flags &= ~GFP_ZONEMASK; |
| alloc_flags &= (GFP_ATOMIC | GFP_KERNEL); |
| alloc_flags |= __GFP_NOWARN; |
| page = alloc_pages(alloc_flags, STACK_ALLOC_ORDER); |
| if (page) |
| prealloc = page_address(page); |
| } |
| |
| spin_lock_irqsave(&depot_lock, flags); |
| |
| found = find_stack(*bucket, trace->entries, trace->nr_entries, hash); |
| if (!found) { |
| struct stack_record *new = |
| depot_alloc_stack(trace->entries, trace->nr_entries, |
| hash, &prealloc, alloc_flags); |
| if (new) { |
| new->next = *bucket; |
| /* |
| * This smp_store_release() pairs with |
| * smp_load_acquire() from |bucket| above. |
| */ |
| smp_store_release(bucket, new); |
| found = new; |
| } |
| } else if (prealloc) { |
| /* |
| * We didn't need to store this stack trace, but let's keep |
| * the preallocated memory for the future. |
| */ |
| WARN_ON(!init_stack_slab(&prealloc)); |
| } |
| |
| spin_unlock_irqrestore(&depot_lock, flags); |
| exit: |
| if (prealloc) { |
| /* Nobody used this memory, ok to free it. */ |
| free_pages((unsigned long)prealloc, STACK_ALLOC_ORDER); |
| } |
| if (found) |
| retval = found->handle.handle; |
| fast_exit: |
| return retval; |
| } |
| EXPORT_SYMBOL_GPL(depot_save_stack); |