blob: d185dc0cd12b2f739535a6bc6fe77020b0764133 [file] [log] [blame]
/*
* Copyright (c) 2005-2011 Atheros Communications Inc.
* Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "hif.h"
#include "pci.h"
#include "ce.h"
#include "debug.h"
/*
* Support for Copy Engine hardware, which is mainly used for
* communication between Host and Target over a PCIe interconnect.
*/
/*
* A single CopyEngine (CE) comprises two "rings":
* a source ring
* a destination ring
*
* Each ring consists of a number of descriptors which specify
* an address, length, and meta-data.
*
* Typically, one side of the PCIe interconnect (Host or Target)
* controls one ring and the other side controls the other ring.
* The source side chooses when to initiate a transfer and it
* chooses what to send (buffer address, length). The destination
* side keeps a supply of "anonymous receive buffers" available and
* it handles incoming data as it arrives (when the destination
* recieves an interrupt).
*
* The sender may send a simple buffer (address/length) or it may
* send a small list of buffers. When a small list is sent, hardware
* "gathers" these and they end up in a single destination buffer
* with a single interrupt.
*
* There are several "contexts" managed by this layer -- more, it
* may seem -- than should be needed. These are provided mainly for
* maximum flexibility and especially to facilitate a simpler HIF
* implementation. There are per-CopyEngine recv, send, and watermark
* contexts. These are supplied by the caller when a recv, send,
* or watermark handler is established and they are echoed back to
* the caller when the respective callbacks are invoked. There is
* also a per-transfer context supplied by the caller when a buffer
* (or sendlist) is sent and when a buffer is enqueued for recv.
* These per-transfer contexts are echoed back to the caller when
* the buffer is sent/received.
*/
static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
}
static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
u32 ce_ctrl_addr)
{
return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
}
static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
}
static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
u32 ce_ctrl_addr)
{
return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
}
static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
u32 ce_ctrl_addr)
{
return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
}
static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int addr)
{
ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
}
static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
}
static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
u32 ctrl1_addr = ath10k_pci_read32((ar),
(ce_ctrl_addr) + CE_CTRL1_ADDRESS);
ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
(ctrl1_addr & ~CE_CTRL1_DMAX_LENGTH_MASK) |
CE_CTRL1_DMAX_LENGTH_SET(n));
}
static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
(ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
}
static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
(ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
}
static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
u32 ce_ctrl_addr)
{
return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
}
static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
u32 ce_ctrl_addr,
u32 addr)
{
ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
}
static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
}
static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
(addr & ~SRC_WATERMARK_HIGH_MASK) |
SRC_WATERMARK_HIGH_SET(n));
}
static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
(addr & ~SRC_WATERMARK_LOW_MASK) |
SRC_WATERMARK_LOW_SET(n));
}
static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
(addr & ~DST_WATERMARK_HIGH_MASK) |
DST_WATERMARK_HIGH_SET(n));
}
static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
(addr & ~DST_WATERMARK_LOW_MASK) |
DST_WATERMARK_LOW_SET(n));
}
static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
u32 ce_ctrl_addr)
{
u32 host_ie_addr = ath10k_pci_read32(ar,
ce_ctrl_addr + HOST_IE_ADDRESS);
ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
}
static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
u32 ce_ctrl_addr)
{
u32 host_ie_addr = ath10k_pci_read32(ar,
ce_ctrl_addr + HOST_IE_ADDRESS);
ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
}
static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
u32 ce_ctrl_addr)
{
u32 host_ie_addr = ath10k_pci_read32(ar,
ce_ctrl_addr + HOST_IE_ADDRESS);
ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
host_ie_addr & ~CE_WATERMARK_MASK);
}
static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
u32 ce_ctrl_addr)
{
u32 misc_ie_addr = ath10k_pci_read32(ar,
ce_ctrl_addr + MISC_IE_ADDRESS);
ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
misc_ie_addr | CE_ERROR_MASK);
}
static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
u32 ce_ctrl_addr)
{
u32 misc_ie_addr = ath10k_pci_read32(ar,
ce_ctrl_addr + MISC_IE_ADDRESS);
ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
misc_ie_addr & ~CE_ERROR_MASK);
}
static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int mask)
{
ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
}
/*
* Guts of ath10k_ce_send, used by both ath10k_ce_send and
* ath10k_ce_sendlist_send.
* The caller takes responsibility for any needed locking.
*/
int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
void *per_transfer_context,
u32 buffer,
unsigned int nbytes,
unsigned int transfer_id,
unsigned int flags)
{
struct ath10k *ar = ce_state->ar;
struct ath10k_ce_ring *src_ring = ce_state->src_ring;
struct ce_desc *desc, *sdesc;
unsigned int nentries_mask = src_ring->nentries_mask;
unsigned int sw_index = src_ring->sw_index;
unsigned int write_index = src_ring->write_index;
u32 ctrl_addr = ce_state->ctrl_addr;
u32 desc_flags = 0;
int ret = 0;
if (nbytes > ce_state->src_sz_max)
ath10k_warn("%s: send more we can (nbytes: %d, max: %d)\n",
__func__, nbytes, ce_state->src_sz_max);
ret = ath10k_pci_wake(ar);
if (ret)
return ret;
if (unlikely(CE_RING_DELTA(nentries_mask,
write_index, sw_index - 1) <= 0)) {
ret = -ENOSR;
goto exit;
}
desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
write_index);
sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
if (flags & CE_SEND_FLAG_GATHER)
desc_flags |= CE_DESC_FLAGS_GATHER;
if (flags & CE_SEND_FLAG_BYTE_SWAP)
desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
sdesc->addr = __cpu_to_le32(buffer);
sdesc->nbytes = __cpu_to_le16(nbytes);
sdesc->flags = __cpu_to_le16(desc_flags);
*desc = *sdesc;
src_ring->per_transfer_context[write_index] = per_transfer_context;
/* Update Source Ring Write Index */
write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
/* WORKAROUND */
if (!(flags & CE_SEND_FLAG_GATHER))
ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
src_ring->write_index = write_index;
exit:
ath10k_pci_sleep(ar);
return ret;
}
void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
{
struct ath10k *ar = pipe->ar;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_ce_ring *src_ring = pipe->src_ring;
u32 ctrl_addr = pipe->ctrl_addr;
lockdep_assert_held(&ar_pci->ce_lock);
/*
* This function must be called only if there is an incomplete
* scatter-gather transfer (before index register is updated)
* that needs to be cleaned up.
*/
if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
return;
if (WARN_ON_ONCE(src_ring->write_index ==
ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
return;
src_ring->write_index--;
src_ring->write_index &= src_ring->nentries_mask;
src_ring->per_transfer_context[src_ring->write_index] = NULL;
}
int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
void *per_transfer_context,
u32 buffer,
unsigned int nbytes,
unsigned int transfer_id,
unsigned int flags)
{
struct ath10k *ar = ce_state->ar;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret;
spin_lock_bh(&ar_pci->ce_lock);
ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
buffer, nbytes, transfer_id, flags);
spin_unlock_bh(&ar_pci->ce_lock);
return ret;
}
int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
{
struct ath10k *ar = pipe->ar;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int delta;
spin_lock_bh(&ar_pci->ce_lock);
delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
pipe->src_ring->write_index,
pipe->src_ring->sw_index - 1);
spin_unlock_bh(&ar_pci->ce_lock);
return delta;
}
int ath10k_ce_recv_buf_enqueue(struct ath10k_ce_pipe *ce_state,
void *per_recv_context,
u32 buffer)
{
struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
u32 ctrl_addr = ce_state->ctrl_addr;
struct ath10k *ar = ce_state->ar;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
unsigned int nentries_mask = dest_ring->nentries_mask;
unsigned int write_index;
unsigned int sw_index;
int ret;
spin_lock_bh(&ar_pci->ce_lock);
write_index = dest_ring->write_index;
sw_index = dest_ring->sw_index;
ret = ath10k_pci_wake(ar);
if (ret)
goto out;
if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) > 0) {
struct ce_desc *base = dest_ring->base_addr_owner_space;
struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
/* Update destination descriptor */
desc->addr = __cpu_to_le32(buffer);
desc->nbytes = 0;
dest_ring->per_transfer_context[write_index] =
per_recv_context;
/* Update Destination Ring Write Index */
write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
dest_ring->write_index = write_index;
ret = 0;
} else {
ret = -EIO;
}
ath10k_pci_sleep(ar);
out:
spin_unlock_bh(&ar_pci->ce_lock);
return ret;
}
/*
* Guts of ath10k_ce_completed_recv_next.
* The caller takes responsibility for any necessary locking.
*/
static int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
void **per_transfer_contextp,
u32 *bufferp,
unsigned int *nbytesp,
unsigned int *transfer_idp,
unsigned int *flagsp)
{
struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
unsigned int nentries_mask = dest_ring->nentries_mask;
unsigned int sw_index = dest_ring->sw_index;
struct ce_desc *base = dest_ring->base_addr_owner_space;
struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
struct ce_desc sdesc;
u16 nbytes;
/* Copy in one go for performance reasons */
sdesc = *desc;
nbytes = __le16_to_cpu(sdesc.nbytes);
if (nbytes == 0) {
/*
* This closes a relatively unusual race where the Host
* sees the updated DRRI before the update to the
* corresponding descriptor has completed. We treat this
* as a descriptor that is not yet done.
*/
return -EIO;
}
desc->nbytes = 0;
/* Return data from completed destination descriptor */
*bufferp = __le32_to_cpu(sdesc.addr);
*nbytesp = nbytes;
*transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
*flagsp = CE_RECV_FLAG_SWAPPED;
else
*flagsp = 0;
if (per_transfer_contextp)
*per_transfer_contextp =
dest_ring->per_transfer_context[sw_index];
/* sanity */
dest_ring->per_transfer_context[sw_index] = NULL;
/* Update sw_index */
sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
dest_ring->sw_index = sw_index;
return 0;
}
int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
void **per_transfer_contextp,
u32 *bufferp,
unsigned int *nbytesp,
unsigned int *transfer_idp,
unsigned int *flagsp)
{
struct ath10k *ar = ce_state->ar;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret;
spin_lock_bh(&ar_pci->ce_lock);
ret = ath10k_ce_completed_recv_next_nolock(ce_state,
per_transfer_contextp,
bufferp, nbytesp,
transfer_idp, flagsp);
spin_unlock_bh(&ar_pci->ce_lock);
return ret;
}
int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
void **per_transfer_contextp,
u32 *bufferp)
{
struct ath10k_ce_ring *dest_ring;
unsigned int nentries_mask;
unsigned int sw_index;
unsigned int write_index;
int ret;
struct ath10k *ar;
struct ath10k_pci *ar_pci;
dest_ring = ce_state->dest_ring;
if (!dest_ring)
return -EIO;
ar = ce_state->ar;
ar_pci = ath10k_pci_priv(ar);
spin_lock_bh(&ar_pci->ce_lock);
nentries_mask = dest_ring->nentries_mask;
sw_index = dest_ring->sw_index;
write_index = dest_ring->write_index;
if (write_index != sw_index) {
struct ce_desc *base = dest_ring->base_addr_owner_space;
struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
/* Return data from completed destination descriptor */
*bufferp = __le32_to_cpu(desc->addr);
if (per_transfer_contextp)
*per_transfer_contextp =
dest_ring->per_transfer_context[sw_index];
/* sanity */
dest_ring->per_transfer_context[sw_index] = NULL;
/* Update sw_index */
sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
dest_ring->sw_index = sw_index;
ret = 0;
} else {
ret = -EIO;
}
spin_unlock_bh(&ar_pci->ce_lock);
return ret;
}
/*
* Guts of ath10k_ce_completed_send_next.
* The caller takes responsibility for any necessary locking.
*/
static int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
void **per_transfer_contextp,
u32 *bufferp,
unsigned int *nbytesp,
unsigned int *transfer_idp)
{
struct ath10k_ce_ring *src_ring = ce_state->src_ring;
u32 ctrl_addr = ce_state->ctrl_addr;
struct ath10k *ar = ce_state->ar;
unsigned int nentries_mask = src_ring->nentries_mask;
unsigned int sw_index = src_ring->sw_index;
struct ce_desc *sdesc, *sbase;
unsigned int read_index;
int ret;
if (src_ring->hw_index == sw_index) {
/*
* The SW completion index has caught up with the cached
* version of the HW completion index.
* Update the cached HW completion index to see whether
* the SW has really caught up to the HW, or if the cached
* value of the HW index has become stale.
*/
ret = ath10k_pci_wake(ar);
if (ret)
return ret;
src_ring->hw_index =
ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
src_ring->hw_index &= nentries_mask;
ath10k_pci_sleep(ar);
}
read_index = src_ring->hw_index;
if ((read_index == sw_index) || (read_index == 0xffffffff))
return -EIO;
sbase = src_ring->shadow_base;
sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
/* Return data from completed source descriptor */
*bufferp = __le32_to_cpu(sdesc->addr);
*nbytesp = __le16_to_cpu(sdesc->nbytes);
*transfer_idp = MS(__le16_to_cpu(sdesc->flags),
CE_DESC_FLAGS_META_DATA);
if (per_transfer_contextp)
*per_transfer_contextp =
src_ring->per_transfer_context[sw_index];
/* sanity */
src_ring->per_transfer_context[sw_index] = NULL;
/* Update sw_index */
sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
src_ring->sw_index = sw_index;
return 0;
}
/* NB: Modeled after ath10k_ce_completed_send_next */
int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
void **per_transfer_contextp,
u32 *bufferp,
unsigned int *nbytesp,
unsigned int *transfer_idp)
{
struct ath10k_ce_ring *src_ring;
unsigned int nentries_mask;
unsigned int sw_index;
unsigned int write_index;
int ret;
struct ath10k *ar;
struct ath10k_pci *ar_pci;
src_ring = ce_state->src_ring;
if (!src_ring)
return -EIO;
ar = ce_state->ar;
ar_pci = ath10k_pci_priv(ar);
spin_lock_bh(&ar_pci->ce_lock);
nentries_mask = src_ring->nentries_mask;
sw_index = src_ring->sw_index;
write_index = src_ring->write_index;
if (write_index != sw_index) {
struct ce_desc *base = src_ring->base_addr_owner_space;
struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
/* Return data from completed source descriptor */
*bufferp = __le32_to_cpu(desc->addr);
*nbytesp = __le16_to_cpu(desc->nbytes);
*transfer_idp = MS(__le16_to_cpu(desc->flags),
CE_DESC_FLAGS_META_DATA);
if (per_transfer_contextp)
*per_transfer_contextp =
src_ring->per_transfer_context[sw_index];
/* sanity */
src_ring->per_transfer_context[sw_index] = NULL;
/* Update sw_index */
sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
src_ring->sw_index = sw_index;
ret = 0;
} else {
ret = -EIO;
}
spin_unlock_bh(&ar_pci->ce_lock);
return ret;
}
int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
void **per_transfer_contextp,
u32 *bufferp,
unsigned int *nbytesp,
unsigned int *transfer_idp)
{
struct ath10k *ar = ce_state->ar;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret;
spin_lock_bh(&ar_pci->ce_lock);
ret = ath10k_ce_completed_send_next_nolock(ce_state,
per_transfer_contextp,
bufferp, nbytesp,
transfer_idp);
spin_unlock_bh(&ar_pci->ce_lock);
return ret;
}
/*
* Guts of interrupt handler for per-engine interrupts on a particular CE.
*
* Invokes registered callbacks for recv_complete,
* send_complete, and watermarks.
*/
void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
u32 ctrl_addr = ce_state->ctrl_addr;
int ret;
ret = ath10k_pci_wake(ar);
if (ret)
return;
spin_lock_bh(&ar_pci->ce_lock);
/* Clear the copy-complete interrupts that will be handled here. */
ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
HOST_IS_COPY_COMPLETE_MASK);
spin_unlock_bh(&ar_pci->ce_lock);
if (ce_state->recv_cb)
ce_state->recv_cb(ce_state);
if (ce_state->send_cb)
ce_state->send_cb(ce_state);
spin_lock_bh(&ar_pci->ce_lock);
/*
* Misc CE interrupts are not being handled, but still need
* to be cleared.
*/
ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
spin_unlock_bh(&ar_pci->ce_lock);
ath10k_pci_sleep(ar);
}
/*
* Handler for per-engine interrupts on ALL active CEs.
* This is used in cases where the system is sharing a
* single interrput for all CEs
*/
void ath10k_ce_per_engine_service_any(struct ath10k *ar)
{
int ce_id, ret;
u32 intr_summary;
ret = ath10k_pci_wake(ar);
if (ret)
return;
intr_summary = CE_INTERRUPT_SUMMARY(ar);
for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
if (intr_summary & (1 << ce_id))
intr_summary &= ~(1 << ce_id);
else
/* no intr pending on this CE */
continue;
ath10k_ce_per_engine_service(ar, ce_id);
}
ath10k_pci_sleep(ar);
}
/*
* Adjust interrupts for the copy complete handler.
* If it's needed for either send or recv, then unmask
* this interrupt; otherwise, mask it.
*
* Called with ce_lock held.
*/
static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state,
int disable_copy_compl_intr)
{
u32 ctrl_addr = ce_state->ctrl_addr;
struct ath10k *ar = ce_state->ar;
int ret;
ret = ath10k_pci_wake(ar);
if (ret)
return;
if ((!disable_copy_compl_intr) &&
(ce_state->send_cb || ce_state->recv_cb))
ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
else
ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
ath10k_pci_sleep(ar);
}
int ath10k_ce_disable_interrupts(struct ath10k *ar)
{
int ce_id, ret;
ret = ath10k_pci_wake(ar);
if (ret)
return ret;
for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
u32 ctrl_addr = ath10k_ce_base_address(ce_id);
ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
ath10k_ce_error_intr_disable(ar, ctrl_addr);
ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
}
ath10k_pci_sleep(ar);
return 0;
}
void ath10k_ce_send_cb_register(struct ath10k_ce_pipe *ce_state,
void (*send_cb)(struct ath10k_ce_pipe *),
int disable_interrupts)
{
struct ath10k *ar = ce_state->ar;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
spin_lock_bh(&ar_pci->ce_lock);
ce_state->send_cb = send_cb;
ath10k_ce_per_engine_handler_adjust(ce_state, disable_interrupts);
spin_unlock_bh(&ar_pci->ce_lock);
}
void ath10k_ce_recv_cb_register(struct ath10k_ce_pipe *ce_state,
void (*recv_cb)(struct ath10k_ce_pipe *))
{
struct ath10k *ar = ce_state->ar;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
spin_lock_bh(&ar_pci->ce_lock);
ce_state->recv_cb = recv_cb;
ath10k_ce_per_engine_handler_adjust(ce_state, 0);
spin_unlock_bh(&ar_pci->ce_lock);
}
static int ath10k_ce_init_src_ring(struct ath10k *ar,
unsigned int ce_id,
const struct ce_attr *attr)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
struct ath10k_ce_ring *src_ring = ce_state->src_ring;
u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);
nentries = roundup_pow_of_two(attr->src_nentries);
memset(src_ring->per_transfer_context, 0,
nentries * sizeof(*src_ring->per_transfer_context));
src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
src_ring->sw_index &= src_ring->nentries_mask;
src_ring->hw_index = src_ring->sw_index;
src_ring->write_index =
ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
src_ring->write_index &= src_ring->nentries_mask;
ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
src_ring->base_addr_ce_space);
ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
ath10k_dbg(ATH10K_DBG_BOOT,
"boot init ce src ring id %d entries %d base_addr %p\n",
ce_id, nentries, src_ring->base_addr_owner_space);
return 0;
}
static int ath10k_ce_init_dest_ring(struct ath10k *ar,
unsigned int ce_id,
const struct ce_attr *attr)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);
nentries = roundup_pow_of_two(attr->dest_nentries);
memset(dest_ring->per_transfer_context, 0,
nentries * sizeof(*dest_ring->per_transfer_context));
dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
dest_ring->sw_index &= dest_ring->nentries_mask;
dest_ring->write_index =
ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
dest_ring->write_index &= dest_ring->nentries_mask;
ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
dest_ring->base_addr_ce_space);
ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
ath10k_dbg(ATH10K_DBG_BOOT,
"boot ce dest ring id %d entries %d base_addr %p\n",
ce_id, nentries, dest_ring->base_addr_owner_space);
return 0;
}
static struct ath10k_ce_ring *
ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
const struct ce_attr *attr)
{
struct ath10k_ce_ring *src_ring;
u32 nentries = attr->src_nentries;
dma_addr_t base_addr;
nentries = roundup_pow_of_two(nentries);
src_ring = kzalloc(sizeof(*src_ring) +
(nentries *
sizeof(*src_ring->per_transfer_context)),
GFP_KERNEL);
if (src_ring == NULL)
return ERR_PTR(-ENOMEM);
src_ring->nentries = nentries;
src_ring->nentries_mask = nentries - 1;
/*
* Legacy platforms that do not support cache
* coherent DMA are unsupported
*/
src_ring->base_addr_owner_space_unaligned =
dma_alloc_coherent(ar->dev,
(nentries * sizeof(struct ce_desc) +
CE_DESC_RING_ALIGN),
&base_addr, GFP_KERNEL);
if (!src_ring->base_addr_owner_space_unaligned) {
kfree(src_ring);
return ERR_PTR(-ENOMEM);
}
src_ring->base_addr_ce_space_unaligned = base_addr;
src_ring->base_addr_owner_space = PTR_ALIGN(
src_ring->base_addr_owner_space_unaligned,
CE_DESC_RING_ALIGN);
src_ring->base_addr_ce_space = ALIGN(
src_ring->base_addr_ce_space_unaligned,
CE_DESC_RING_ALIGN);
/*
* Also allocate a shadow src ring in regular
* mem to use for faster access.
*/
src_ring->shadow_base_unaligned =
kmalloc((nentries * sizeof(struct ce_desc) +
CE_DESC_RING_ALIGN), GFP_KERNEL);
if (!src_ring->shadow_base_unaligned) {
dma_free_coherent(ar->dev,
(nentries * sizeof(struct ce_desc) +
CE_DESC_RING_ALIGN),
src_ring->base_addr_owner_space,
src_ring->base_addr_ce_space);
kfree(src_ring);
return ERR_PTR(-ENOMEM);
}
src_ring->shadow_base = PTR_ALIGN(
src_ring->shadow_base_unaligned,
CE_DESC_RING_ALIGN);
return src_ring;
}
static struct ath10k_ce_ring *
ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
const struct ce_attr *attr)
{
struct ath10k_ce_ring *dest_ring;
u32 nentries;
dma_addr_t base_addr;
nentries = roundup_pow_of_two(attr->dest_nentries);
dest_ring = kzalloc(sizeof(*dest_ring) +
(nentries *
sizeof(*dest_ring->per_transfer_context)),
GFP_KERNEL);
if (dest_ring == NULL)
return ERR_PTR(-ENOMEM);
dest_ring->nentries = nentries;
dest_ring->nentries_mask = nentries - 1;
/*
* Legacy platforms that do not support cache
* coherent DMA are unsupported
*/
dest_ring->base_addr_owner_space_unaligned =
dma_alloc_coherent(ar->dev,
(nentries * sizeof(struct ce_desc) +
CE_DESC_RING_ALIGN),
&base_addr, GFP_KERNEL);
if (!dest_ring->base_addr_owner_space_unaligned) {
kfree(dest_ring);
return ERR_PTR(-ENOMEM);
}
dest_ring->base_addr_ce_space_unaligned = base_addr;
/*
* Correctly initialize memory to 0 to prevent garbage
* data crashing system when download firmware
*/
memset(dest_ring->base_addr_owner_space_unaligned, 0,
nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
dest_ring->base_addr_owner_space = PTR_ALIGN(
dest_ring->base_addr_owner_space_unaligned,
CE_DESC_RING_ALIGN);
dest_ring->base_addr_ce_space = ALIGN(
dest_ring->base_addr_ce_space_unaligned,
CE_DESC_RING_ALIGN);
return dest_ring;
}
/*
* Initialize a Copy Engine based on caller-supplied attributes.
* This may be called once to initialize both source and destination
* rings or it may be called twice for separate source and destination
* initialization. It may be that only one side or the other is
* initialized by software/firmware.
*/
int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
const struct ce_attr *attr)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
int ret;
/*
* Make sure there's enough CE ringbuffer entries for HTT TX to avoid
* additional TX locking checks.
*
* For the lack of a better place do the check here.
*/
BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
(CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
(CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
ret = ath10k_pci_wake(ar);
if (ret)
return ret;
spin_lock_bh(&ar_pci->ce_lock);
ce_state->ar = ar;
ce_state->id = ce_id;
ce_state->ctrl_addr = ath10k_ce_base_address(ce_id);
ce_state->attr_flags = attr->flags;
ce_state->src_sz_max = attr->src_sz_max;
spin_unlock_bh(&ar_pci->ce_lock);
if (attr->src_nentries) {
ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
if (ret) {
ath10k_err("Failed to initialize CE src ring for ID: %d (%d)\n",
ce_id, ret);
goto out;
}
}
if (attr->dest_nentries) {
ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
if (ret) {
ath10k_err("Failed to initialize CE dest ring for ID: %d (%d)\n",
ce_id, ret);
goto out;
}
}
out:
ath10k_pci_sleep(ar);
return ret;
}
static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
{
u32 ctrl_addr = ath10k_ce_base_address(ce_id);
ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
}
static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
{
u32 ctrl_addr = ath10k_ce_base_address(ce_id);
ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
}
void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
{
int ret;
ret = ath10k_pci_wake(ar);
if (ret)
return;
ath10k_ce_deinit_src_ring(ar, ce_id);
ath10k_ce_deinit_dest_ring(ar, ce_id);
ath10k_pci_sleep(ar);
}
int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
const struct ce_attr *attr)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
int ret;
if (attr->src_nentries) {
ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
if (IS_ERR(ce_state->src_ring)) {
ret = PTR_ERR(ce_state->src_ring);
ath10k_err("failed to allocate copy engine source ring %d: %d\n",
ce_id, ret);
ce_state->src_ring = NULL;
return ret;
}
}
if (attr->dest_nentries) {
ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
attr);
if (IS_ERR(ce_state->dest_ring)) {
ret = PTR_ERR(ce_state->dest_ring);
ath10k_err("failed to allocate copy engine destination ring %d: %d\n",
ce_id, ret);
ce_state->dest_ring = NULL;
return ret;
}
}
return 0;
}
void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
if (ce_state->src_ring) {
kfree(ce_state->src_ring->shadow_base_unaligned);
dma_free_coherent(ar->dev,
(ce_state->src_ring->nentries *
sizeof(struct ce_desc) +
CE_DESC_RING_ALIGN),
ce_state->src_ring->base_addr_owner_space,
ce_state->src_ring->base_addr_ce_space);
kfree(ce_state->src_ring);
}
if (ce_state->dest_ring) {
dma_free_coherent(ar->dev,
(ce_state->dest_ring->nentries *
sizeof(struct ce_desc) +
CE_DESC_RING_ALIGN),
ce_state->dest_ring->base_addr_owner_space,
ce_state->dest_ring->base_addr_ce_space);
kfree(ce_state->dest_ring);
}
ce_state->src_ring = NULL;
ce_state->dest_ring = NULL;
}