blob: 36516eb80f6cebd7357d0009676d20964d4edd4e [file] [log] [blame]
/*
* Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/sort.h>
#include <linux/oom.h>
#include <linux/sched.h>
#include <linux/rcupdate.h>
#include <linux/notifier.h>
#include <linux/vmpressure.h>
#define CREATE_TRACE_POINTS
#include <trace/events/process_reclaim.h>
#define MAX_SWAP_TASKS SWAP_CLUSTER_MAX
static void swap_fn(struct work_struct *work);
DECLARE_WORK(swap_work, swap_fn);
/* User knob to enable/disable process reclaim feature */
static int enable_process_reclaim;
module_param_named(enable_process_reclaim, enable_process_reclaim, int, 0644);
/* The max number of pages tried to be reclaimed in a single run */
int per_swap_size = SWAP_CLUSTER_MAX * 32;
module_param_named(per_swap_size, per_swap_size, int, 0644);
int reclaim_avg_efficiency;
module_param_named(reclaim_avg_efficiency, reclaim_avg_efficiency, int, 0444);
/* The vmpressure region where process reclaim operates */
static unsigned long pressure_min = 50;
static unsigned long pressure_max = 90;
module_param_named(pressure_min, pressure_min, ulong, 0644);
module_param_named(pressure_max, pressure_max, ulong, 0644);
static short min_score_adj = 360;
module_param_named(min_score_adj, min_score_adj, short, 0644);
/*
* Scheduling process reclaim workqueue unecessarily
* when the reclaim efficiency is low does not make
* sense. We try to detect a drop in efficiency and
* disable reclaim for a time period. This period and the
* period for which we monitor a drop in efficiency is
* defined by swap_eff_win. swap_opt_eff is the optimal
* efficincy used as theshold for this.
*/
static int swap_eff_win = 2;
module_param_named(swap_eff_win, swap_eff_win, int, 0644);
static int swap_opt_eff = 50;
module_param_named(swap_opt_eff, swap_opt_eff, int, 0644);
static atomic_t skip_reclaim = ATOMIC_INIT(0);
/* Not atomic since only a single instance of swap_fn run at a time */
static int monitor_eff;
struct selected_task {
struct task_struct *p;
int tasksize;
short oom_score_adj;
};
int selected_cmp(const void *a, const void *b)
{
const struct selected_task *x = a;
const struct selected_task *y = b;
int ret;
ret = x->tasksize < y->tasksize ? -1 : 1;
return ret;
}
static int test_task_flag(struct task_struct *p, int flag)
{
struct task_struct *t = p;
rcu_read_lock();
for_each_thread(p, t) {
task_lock(t);
if (test_tsk_thread_flag(t, flag)) {
task_unlock(t);
rcu_read_unlock();
return 1;
}
task_unlock(t);
}
rcu_read_unlock();
return 0;
}
static void swap_fn(struct work_struct *work)
{
struct task_struct *tsk;
struct reclaim_param rp;
/* Pick the best MAX_SWAP_TASKS tasks in terms of anon size */
struct selected_task selected[MAX_SWAP_TASKS] = {{0, 0, 0},};
int si = 0;
int i;
int tasksize;
int total_sz = 0;
int total_scan = 0;
int total_reclaimed = 0;
int nr_to_reclaim;
int efficiency;
rcu_read_lock();
for_each_process(tsk) {
struct task_struct *p;
short oom_score_adj;
if (tsk->flags & PF_KTHREAD)
continue;
if (test_task_flag(tsk, TIF_MEMDIE))
continue;
p = find_lock_task_mm(tsk);
if (!p)
continue;
oom_score_adj = p->signal->oom_score_adj;
if (oom_score_adj < min_score_adj) {
task_unlock(p);
continue;
}
tasksize = get_mm_counter(p->mm, MM_ANONPAGES);
task_unlock(p);
if (tasksize <= 0)
continue;
if (si == MAX_SWAP_TASKS) {
sort(&selected[0], MAX_SWAP_TASKS,
sizeof(struct selected_task),
&selected_cmp, NULL);
if (tasksize < selected[0].tasksize)
continue;
selected[0].p = p;
selected[0].oom_score_adj = oom_score_adj;
selected[0].tasksize = tasksize;
} else {
selected[si].p = p;
selected[si].oom_score_adj = oom_score_adj;
selected[si].tasksize = tasksize;
si++;
}
}
for (i = 0; i < si; i++)
total_sz += selected[i].tasksize;
/* Skip reclaim if total size is too less */
if (total_sz < SWAP_CLUSTER_MAX) {
rcu_read_unlock();
return;
}
for (i = 0; i < si; i++)
get_task_struct(selected[i].p);
rcu_read_unlock();
while (si--) {
nr_to_reclaim =
(selected[si].tasksize * per_swap_size) / total_sz;
/* scan atleast a page */
if (!nr_to_reclaim)
nr_to_reclaim = 1;
rp = reclaim_task_anon(selected[si].p, nr_to_reclaim);
trace_process_reclaim(selected[si].tasksize,
selected[si].oom_score_adj, rp.nr_scanned,
rp.nr_reclaimed, per_swap_size, total_sz,
nr_to_reclaim);
total_scan += rp.nr_scanned;
total_reclaimed += rp.nr_reclaimed;
put_task_struct(selected[si].p);
}
if (total_scan) {
efficiency = (total_reclaimed * 100) / total_scan;
if (efficiency < swap_opt_eff) {
if (++monitor_eff == swap_eff_win) {
atomic_set(&skip_reclaim, swap_eff_win);
monitor_eff = 0;
}
} else {
monitor_eff = 0;
}
reclaim_avg_efficiency =
(efficiency + reclaim_avg_efficiency) / 2;
trace_process_reclaim_eff(efficiency, reclaim_avg_efficiency);
}
}
static int vmpressure_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
unsigned long pressure = action;
if (!enable_process_reclaim)
return 0;
if (!current_is_kswapd())
return 0;
if (atomic_dec_if_positive(&skip_reclaim) >= 0)
return 0;
if ((pressure >= pressure_min) && (pressure < pressure_max))
if (!work_pending(&swap_work))
queue_work(system_unbound_wq, &swap_work);
return 0;
}
static struct notifier_block vmpr_nb = {
.notifier_call = vmpressure_notifier,
};
static int __init process_reclaim_init(void)
{
vmpressure_notifier_register(&vmpr_nb);
return 0;
}
static void __exit process_reclaim_exit(void)
{
vmpressure_notifier_unregister(&vmpr_nb);
}
module_init(process_reclaim_init);
module_exit(process_reclaim_exit);