| #ifndef _LINUX_MMZONE_H |
| #define _LINUX_MMZONE_H |
| |
| #ifndef __ASSEMBLY__ |
| #ifndef __GENERATING_BOUNDS_H |
| |
| #include <linux/spinlock.h> |
| #include <linux/list.h> |
| #include <linux/wait.h> |
| #include <linux/bitops.h> |
| #include <linux/cache.h> |
| #include <linux/threads.h> |
| #include <linux/numa.h> |
| #include <linux/init.h> |
| #include <linux/seqlock.h> |
| #include <linux/nodemask.h> |
| #include <linux/pageblock-flags.h> |
| #include <linux/bounds.h> |
| #include <asm/atomic.h> |
| #include <asm/page.h> |
| |
| /* Free memory management - zoned buddy allocator. */ |
| #ifndef CONFIG_FORCE_MAX_ZONEORDER |
| #define MAX_ORDER 11 |
| #else |
| #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER |
| #endif |
| #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) |
| |
| /* |
| * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed |
| * costly to service. That is between allocation orders which should |
| * coelesce naturally under reasonable reclaim pressure and those which |
| * will not. |
| */ |
| #define PAGE_ALLOC_COSTLY_ORDER 3 |
| |
| #define MIGRATE_UNMOVABLE 0 |
| #define MIGRATE_RECLAIMABLE 1 |
| #define MIGRATE_MOVABLE 2 |
| #define MIGRATE_RESERVE 3 |
| #define MIGRATE_ISOLATE 4 /* can't allocate from here */ |
| #define MIGRATE_TYPES 5 |
| |
| #define for_each_migratetype_order(order, type) \ |
| for (order = 0; order < MAX_ORDER; order++) \ |
| for (type = 0; type < MIGRATE_TYPES; type++) |
| |
| extern int page_group_by_mobility_disabled; |
| |
| static inline int get_pageblock_migratetype(struct page *page) |
| { |
| if (unlikely(page_group_by_mobility_disabled)) |
| return MIGRATE_UNMOVABLE; |
| |
| return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); |
| } |
| |
| struct free_area { |
| struct list_head free_list[MIGRATE_TYPES]; |
| unsigned long nr_free; |
| }; |
| |
| struct pglist_data; |
| |
| /* |
| * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. |
| * So add a wild amount of padding here to ensure that they fall into separate |
| * cachelines. There are very few zone structures in the machine, so space |
| * consumption is not a concern here. |
| */ |
| #if defined(CONFIG_SMP) |
| struct zone_padding { |
| char x[0]; |
| } ____cacheline_internodealigned_in_smp; |
| #define ZONE_PADDING(name) struct zone_padding name; |
| #else |
| #define ZONE_PADDING(name) |
| #endif |
| |
| enum zone_stat_item { |
| /* First 128 byte cacheline (assuming 64 bit words) */ |
| NR_FREE_PAGES, |
| NR_LRU_BASE, |
| NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ |
| NR_ACTIVE_ANON, /* " " " " " */ |
| NR_INACTIVE_FILE, /* " " " " " */ |
| NR_ACTIVE_FILE, /* " " " " " */ |
| #ifdef CONFIG_UNEVICTABLE_LRU |
| NR_UNEVICTABLE, /* " " " " " */ |
| NR_MLOCK, /* mlock()ed pages found and moved off LRU */ |
| #else |
| NR_UNEVICTABLE = NR_ACTIVE_FILE, /* avoid compiler errors in dead code */ |
| NR_MLOCK = NR_ACTIVE_FILE, |
| #endif |
| NR_ANON_PAGES, /* Mapped anonymous pages */ |
| NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. |
| only modified from process context */ |
| NR_FILE_PAGES, |
| NR_FILE_DIRTY, |
| NR_WRITEBACK, |
| NR_SLAB_RECLAIMABLE, |
| NR_SLAB_UNRECLAIMABLE, |
| NR_PAGETABLE, /* used for pagetables */ |
| NR_UNSTABLE_NFS, /* NFS unstable pages */ |
| NR_BOUNCE, |
| NR_VMSCAN_WRITE, |
| /* Second 128 byte cacheline */ |
| NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ |
| #ifdef CONFIG_NUMA |
| NUMA_HIT, /* allocated in intended node */ |
| NUMA_MISS, /* allocated in non intended node */ |
| NUMA_FOREIGN, /* was intended here, hit elsewhere */ |
| NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ |
| NUMA_LOCAL, /* allocation from local node */ |
| NUMA_OTHER, /* allocation from other node */ |
| #endif |
| NR_VM_ZONE_STAT_ITEMS }; |
| |
| /* |
| * We do arithmetic on the LRU lists in various places in the code, |
| * so it is important to keep the active lists LRU_ACTIVE higher in |
| * the array than the corresponding inactive lists, and to keep |
| * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. |
| * |
| * This has to be kept in sync with the statistics in zone_stat_item |
| * above and the descriptions in vmstat_text in mm/vmstat.c |
| */ |
| #define LRU_BASE 0 |
| #define LRU_ACTIVE 1 |
| #define LRU_FILE 2 |
| |
| enum lru_list { |
| LRU_INACTIVE_ANON = LRU_BASE, |
| LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, |
| LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, |
| LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, |
| #ifdef CONFIG_UNEVICTABLE_LRU |
| LRU_UNEVICTABLE, |
| #else |
| LRU_UNEVICTABLE = LRU_ACTIVE_FILE, /* avoid compiler errors in dead code */ |
| #endif |
| NR_LRU_LISTS |
| }; |
| |
| #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++) |
| |
| #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++) |
| |
| static inline int is_file_lru(enum lru_list l) |
| { |
| return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE); |
| } |
| |
| static inline int is_active_lru(enum lru_list l) |
| { |
| return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE); |
| } |
| |
| static inline int is_unevictable_lru(enum lru_list l) |
| { |
| #ifdef CONFIG_UNEVICTABLE_LRU |
| return (l == LRU_UNEVICTABLE); |
| #else |
| return 0; |
| #endif |
| } |
| |
| struct per_cpu_pages { |
| int count; /* number of pages in the list */ |
| int high; /* high watermark, emptying needed */ |
| int batch; /* chunk size for buddy add/remove */ |
| struct list_head list; /* the list of pages */ |
| }; |
| |
| struct per_cpu_pageset { |
| struct per_cpu_pages pcp; |
| #ifdef CONFIG_NUMA |
| s8 expire; |
| #endif |
| #ifdef CONFIG_SMP |
| s8 stat_threshold; |
| s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; |
| #endif |
| } ____cacheline_aligned_in_smp; |
| |
| #ifdef CONFIG_NUMA |
| #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) |
| #else |
| #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) |
| #endif |
| |
| #endif /* !__GENERATING_BOUNDS.H */ |
| |
| enum zone_type { |
| #ifdef CONFIG_ZONE_DMA |
| /* |
| * ZONE_DMA is used when there are devices that are not able |
| * to do DMA to all of addressable memory (ZONE_NORMAL). Then we |
| * carve out the portion of memory that is needed for these devices. |
| * The range is arch specific. |
| * |
| * Some examples |
| * |
| * Architecture Limit |
| * --------------------------- |
| * parisc, ia64, sparc <4G |
| * s390 <2G |
| * arm Various |
| * alpha Unlimited or 0-16MB. |
| * |
| * i386, x86_64 and multiple other arches |
| * <16M. |
| */ |
| ZONE_DMA, |
| #endif |
| #ifdef CONFIG_ZONE_DMA32 |
| /* |
| * x86_64 needs two ZONE_DMAs because it supports devices that are |
| * only able to do DMA to the lower 16M but also 32 bit devices that |
| * can only do DMA areas below 4G. |
| */ |
| ZONE_DMA32, |
| #endif |
| /* |
| * Normal addressable memory is in ZONE_NORMAL. DMA operations can be |
| * performed on pages in ZONE_NORMAL if the DMA devices support |
| * transfers to all addressable memory. |
| */ |
| ZONE_NORMAL, |
| #ifdef CONFIG_HIGHMEM |
| /* |
| * A memory area that is only addressable by the kernel through |
| * mapping portions into its own address space. This is for example |
| * used by i386 to allow the kernel to address the memory beyond |
| * 900MB. The kernel will set up special mappings (page |
| * table entries on i386) for each page that the kernel needs to |
| * access. |
| */ |
| ZONE_HIGHMEM, |
| #endif |
| ZONE_MOVABLE, |
| __MAX_NR_ZONES |
| }; |
| |
| #ifndef __GENERATING_BOUNDS_H |
| |
| /* |
| * When a memory allocation must conform to specific limitations (such |
| * as being suitable for DMA) the caller will pass in hints to the |
| * allocator in the gfp_mask, in the zone modifier bits. These bits |
| * are used to select a priority ordered list of memory zones which |
| * match the requested limits. See gfp_zone() in include/linux/gfp.h |
| */ |
| |
| #if MAX_NR_ZONES < 2 |
| #define ZONES_SHIFT 0 |
| #elif MAX_NR_ZONES <= 2 |
| #define ZONES_SHIFT 1 |
| #elif MAX_NR_ZONES <= 4 |
| #define ZONES_SHIFT 2 |
| #else |
| #error ZONES_SHIFT -- too many zones configured adjust calculation |
| #endif |
| |
| struct zone_reclaim_stat { |
| /* |
| * The pageout code in vmscan.c keeps track of how many of the |
| * mem/swap backed and file backed pages are refeferenced. |
| * The higher the rotated/scanned ratio, the more valuable |
| * that cache is. |
| * |
| * The anon LRU stats live in [0], file LRU stats in [1] |
| */ |
| unsigned long recent_rotated[2]; |
| unsigned long recent_scanned[2]; |
| }; |
| |
| struct zone { |
| /* Fields commonly accessed by the page allocator */ |
| unsigned long pages_min, pages_low, pages_high; |
| /* |
| * We don't know if the memory that we're going to allocate will be freeable |
| * or/and it will be released eventually, so to avoid totally wasting several |
| * GB of ram we must reserve some of the lower zone memory (otherwise we risk |
| * to run OOM on the lower zones despite there's tons of freeable ram |
| * on the higher zones). This array is recalculated at runtime if the |
| * sysctl_lowmem_reserve_ratio sysctl changes. |
| */ |
| unsigned long lowmem_reserve[MAX_NR_ZONES]; |
| |
| #ifdef CONFIG_NUMA |
| int node; |
| /* |
| * zone reclaim becomes active if more unmapped pages exist. |
| */ |
| unsigned long min_unmapped_pages; |
| unsigned long min_slab_pages; |
| struct per_cpu_pageset *pageset[NR_CPUS]; |
| #else |
| struct per_cpu_pageset pageset[NR_CPUS]; |
| #endif |
| /* |
| * free areas of different sizes |
| */ |
| spinlock_t lock; |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| /* see spanned/present_pages for more description */ |
| seqlock_t span_seqlock; |
| #endif |
| struct free_area free_area[MAX_ORDER]; |
| |
| #ifndef CONFIG_SPARSEMEM |
| /* |
| * Flags for a pageblock_nr_pages block. See pageblock-flags.h. |
| * In SPARSEMEM, this map is stored in struct mem_section |
| */ |
| unsigned long *pageblock_flags; |
| #endif /* CONFIG_SPARSEMEM */ |
| |
| |
| ZONE_PADDING(_pad1_) |
| |
| /* Fields commonly accessed by the page reclaim scanner */ |
| spinlock_t lru_lock; |
| struct { |
| struct list_head list; |
| unsigned long nr_scan; |
| } lru[NR_LRU_LISTS]; |
| |
| struct zone_reclaim_stat reclaim_stat; |
| |
| unsigned long pages_scanned; /* since last reclaim */ |
| unsigned long flags; /* zone flags, see below */ |
| |
| /* Zone statistics */ |
| atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; |
| |
| /* |
| * prev_priority holds the scanning priority for this zone. It is |
| * defined as the scanning priority at which we achieved our reclaim |
| * target at the previous try_to_free_pages() or balance_pgdat() |
| * invokation. |
| * |
| * We use prev_priority as a measure of how much stress page reclaim is |
| * under - it drives the swappiness decision: whether to unmap mapped |
| * pages. |
| * |
| * Access to both this field is quite racy even on uniprocessor. But |
| * it is expected to average out OK. |
| */ |
| int prev_priority; |
| |
| /* |
| * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on |
| * this zone's LRU. Maintained by the pageout code. |
| */ |
| unsigned int inactive_ratio; |
| |
| |
| ZONE_PADDING(_pad2_) |
| /* Rarely used or read-mostly fields */ |
| |
| /* |
| * wait_table -- the array holding the hash table |
| * wait_table_hash_nr_entries -- the size of the hash table array |
| * wait_table_bits -- wait_table_size == (1 << wait_table_bits) |
| * |
| * The purpose of all these is to keep track of the people |
| * waiting for a page to become available and make them |
| * runnable again when possible. The trouble is that this |
| * consumes a lot of space, especially when so few things |
| * wait on pages at a given time. So instead of using |
| * per-page waitqueues, we use a waitqueue hash table. |
| * |
| * The bucket discipline is to sleep on the same queue when |
| * colliding and wake all in that wait queue when removing. |
| * When something wakes, it must check to be sure its page is |
| * truly available, a la thundering herd. The cost of a |
| * collision is great, but given the expected load of the |
| * table, they should be so rare as to be outweighed by the |
| * benefits from the saved space. |
| * |
| * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the |
| * primary users of these fields, and in mm/page_alloc.c |
| * free_area_init_core() performs the initialization of them. |
| */ |
| wait_queue_head_t * wait_table; |
| unsigned long wait_table_hash_nr_entries; |
| unsigned long wait_table_bits; |
| |
| /* |
| * Discontig memory support fields. |
| */ |
| struct pglist_data *zone_pgdat; |
| /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ |
| unsigned long zone_start_pfn; |
| |
| /* |
| * zone_start_pfn, spanned_pages and present_pages are all |
| * protected by span_seqlock. It is a seqlock because it has |
| * to be read outside of zone->lock, and it is done in the main |
| * allocator path. But, it is written quite infrequently. |
| * |
| * The lock is declared along with zone->lock because it is |
| * frequently read in proximity to zone->lock. It's good to |
| * give them a chance of being in the same cacheline. |
| */ |
| unsigned long spanned_pages; /* total size, including holes */ |
| unsigned long present_pages; /* amount of memory (excluding holes) */ |
| |
| /* |
| * rarely used fields: |
| */ |
| const char *name; |
| } ____cacheline_internodealigned_in_smp; |
| |
| typedef enum { |
| ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */ |
| ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ |
| ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ |
| } zone_flags_t; |
| |
| static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) |
| { |
| set_bit(flag, &zone->flags); |
| } |
| |
| static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) |
| { |
| return test_and_set_bit(flag, &zone->flags); |
| } |
| |
| static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) |
| { |
| clear_bit(flag, &zone->flags); |
| } |
| |
| static inline int zone_is_all_unreclaimable(const struct zone *zone) |
| { |
| return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags); |
| } |
| |
| static inline int zone_is_reclaim_locked(const struct zone *zone) |
| { |
| return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); |
| } |
| |
| static inline int zone_is_oom_locked(const struct zone *zone) |
| { |
| return test_bit(ZONE_OOM_LOCKED, &zone->flags); |
| } |
| |
| /* |
| * The "priority" of VM scanning is how much of the queues we will scan in one |
| * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the |
| * queues ("queue_length >> 12") during an aging round. |
| */ |
| #define DEF_PRIORITY 12 |
| |
| /* Maximum number of zones on a zonelist */ |
| #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) |
| |
| #ifdef CONFIG_NUMA |
| |
| /* |
| * The NUMA zonelists are doubled becausse we need zonelists that restrict the |
| * allocations to a single node for GFP_THISNODE. |
| * |
| * [0] : Zonelist with fallback |
| * [1] : No fallback (GFP_THISNODE) |
| */ |
| #define MAX_ZONELISTS 2 |
| |
| |
| /* |
| * We cache key information from each zonelist for smaller cache |
| * footprint when scanning for free pages in get_page_from_freelist(). |
| * |
| * 1) The BITMAP fullzones tracks which zones in a zonelist have come |
| * up short of free memory since the last time (last_fullzone_zap) |
| * we zero'd fullzones. |
| * 2) The array z_to_n[] maps each zone in the zonelist to its node |
| * id, so that we can efficiently evaluate whether that node is |
| * set in the current tasks mems_allowed. |
| * |
| * Both fullzones and z_to_n[] are one-to-one with the zonelist, |
| * indexed by a zones offset in the zonelist zones[] array. |
| * |
| * The get_page_from_freelist() routine does two scans. During the |
| * first scan, we skip zones whose corresponding bit in 'fullzones' |
| * is set or whose corresponding node in current->mems_allowed (which |
| * comes from cpusets) is not set. During the second scan, we bypass |
| * this zonelist_cache, to ensure we look methodically at each zone. |
| * |
| * Once per second, we zero out (zap) fullzones, forcing us to |
| * reconsider nodes that might have regained more free memory. |
| * The field last_full_zap is the time we last zapped fullzones. |
| * |
| * This mechanism reduces the amount of time we waste repeatedly |
| * reexaming zones for free memory when they just came up low on |
| * memory momentarilly ago. |
| * |
| * The zonelist_cache struct members logically belong in struct |
| * zonelist. However, the mempolicy zonelists constructed for |
| * MPOL_BIND are intentionally variable length (and usually much |
| * shorter). A general purpose mechanism for handling structs with |
| * multiple variable length members is more mechanism than we want |
| * here. We resort to some special case hackery instead. |
| * |
| * The MPOL_BIND zonelists don't need this zonelist_cache (in good |
| * part because they are shorter), so we put the fixed length stuff |
| * at the front of the zonelist struct, ending in a variable length |
| * zones[], as is needed by MPOL_BIND. |
| * |
| * Then we put the optional zonelist cache on the end of the zonelist |
| * struct. This optional stuff is found by a 'zlcache_ptr' pointer in |
| * the fixed length portion at the front of the struct. This pointer |
| * both enables us to find the zonelist cache, and in the case of |
| * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) |
| * to know that the zonelist cache is not there. |
| * |
| * The end result is that struct zonelists come in two flavors: |
| * 1) The full, fixed length version, shown below, and |
| * 2) The custom zonelists for MPOL_BIND. |
| * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. |
| * |
| * Even though there may be multiple CPU cores on a node modifying |
| * fullzones or last_full_zap in the same zonelist_cache at the same |
| * time, we don't lock it. This is just hint data - if it is wrong now |
| * and then, the allocator will still function, perhaps a bit slower. |
| */ |
| |
| |
| struct zonelist_cache { |
| unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ |
| DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ |
| unsigned long last_full_zap; /* when last zap'd (jiffies) */ |
| }; |
| #else |
| #define MAX_ZONELISTS 1 |
| struct zonelist_cache; |
| #endif |
| |
| /* |
| * This struct contains information about a zone in a zonelist. It is stored |
| * here to avoid dereferences into large structures and lookups of tables |
| */ |
| struct zoneref { |
| struct zone *zone; /* Pointer to actual zone */ |
| int zone_idx; /* zone_idx(zoneref->zone) */ |
| }; |
| |
| /* |
| * One allocation request operates on a zonelist. A zonelist |
| * is a list of zones, the first one is the 'goal' of the |
| * allocation, the other zones are fallback zones, in decreasing |
| * priority. |
| * |
| * If zlcache_ptr is not NULL, then it is just the address of zlcache, |
| * as explained above. If zlcache_ptr is NULL, there is no zlcache. |
| * * |
| * To speed the reading of the zonelist, the zonerefs contain the zone index |
| * of the entry being read. Helper functions to access information given |
| * a struct zoneref are |
| * |
| * zonelist_zone() - Return the struct zone * for an entry in _zonerefs |
| * zonelist_zone_idx() - Return the index of the zone for an entry |
| * zonelist_node_idx() - Return the index of the node for an entry |
| */ |
| struct zonelist { |
| struct zonelist_cache *zlcache_ptr; // NULL or &zlcache |
| struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; |
| #ifdef CONFIG_NUMA |
| struct zonelist_cache zlcache; // optional ... |
| #endif |
| }; |
| |
| #ifdef CONFIG_ARCH_POPULATES_NODE_MAP |
| struct node_active_region { |
| unsigned long start_pfn; |
| unsigned long end_pfn; |
| int nid; |
| }; |
| #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ |
| |
| #ifndef CONFIG_DISCONTIGMEM |
| /* The array of struct pages - for discontigmem use pgdat->lmem_map */ |
| extern struct page *mem_map; |
| #endif |
| |
| /* |
| * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM |
| * (mostly NUMA machines?) to denote a higher-level memory zone than the |
| * zone denotes. |
| * |
| * On NUMA machines, each NUMA node would have a pg_data_t to describe |
| * it's memory layout. |
| * |
| * Memory statistics and page replacement data structures are maintained on a |
| * per-zone basis. |
| */ |
| struct bootmem_data; |
| typedef struct pglist_data { |
| struct zone node_zones[MAX_NR_ZONES]; |
| struct zonelist node_zonelists[MAX_ZONELISTS]; |
| int nr_zones; |
| #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ |
| struct page *node_mem_map; |
| #ifdef CONFIG_CGROUP_MEM_RES_CTLR |
| struct page_cgroup *node_page_cgroup; |
| #endif |
| #endif |
| struct bootmem_data *bdata; |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| /* |
| * Must be held any time you expect node_start_pfn, node_present_pages |
| * or node_spanned_pages stay constant. Holding this will also |
| * guarantee that any pfn_valid() stays that way. |
| * |
| * Nests above zone->lock and zone->size_seqlock. |
| */ |
| spinlock_t node_size_lock; |
| #endif |
| unsigned long node_start_pfn; |
| unsigned long node_present_pages; /* total number of physical pages */ |
| unsigned long node_spanned_pages; /* total size of physical page |
| range, including holes */ |
| int node_id; |
| wait_queue_head_t kswapd_wait; |
| struct task_struct *kswapd; |
| int kswapd_max_order; |
| } pg_data_t; |
| |
| #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) |
| #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) |
| #ifdef CONFIG_FLAT_NODE_MEM_MAP |
| #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) |
| #else |
| #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) |
| #endif |
| #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) |
| |
| #include <linux/memory_hotplug.h> |
| |
| void get_zone_counts(unsigned long *active, unsigned long *inactive, |
| unsigned long *free); |
| void build_all_zonelists(void); |
| void wakeup_kswapd(struct zone *zone, int order); |
| int zone_watermark_ok(struct zone *z, int order, unsigned long mark, |
| int classzone_idx, int alloc_flags); |
| enum memmap_context { |
| MEMMAP_EARLY, |
| MEMMAP_HOTPLUG, |
| }; |
| extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, |
| unsigned long size, |
| enum memmap_context context); |
| |
| #ifdef CONFIG_HAVE_MEMORY_PRESENT |
| void memory_present(int nid, unsigned long start, unsigned long end); |
| #else |
| static inline void memory_present(int nid, unsigned long start, unsigned long end) {} |
| #endif |
| |
| #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE |
| unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); |
| #endif |
| |
| /* |
| * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. |
| */ |
| #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) |
| |
| static inline int populated_zone(struct zone *zone) |
| { |
| return (!!zone->present_pages); |
| } |
| |
| extern int movable_zone; |
| |
| static inline int zone_movable_is_highmem(void) |
| { |
| #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) |
| return movable_zone == ZONE_HIGHMEM; |
| #else |
| return 0; |
| #endif |
| } |
| |
| static inline int is_highmem_idx(enum zone_type idx) |
| { |
| #ifdef CONFIG_HIGHMEM |
| return (idx == ZONE_HIGHMEM || |
| (idx == ZONE_MOVABLE && zone_movable_is_highmem())); |
| #else |
| return 0; |
| #endif |
| } |
| |
| static inline int is_normal_idx(enum zone_type idx) |
| { |
| return (idx == ZONE_NORMAL); |
| } |
| |
| /** |
| * is_highmem - helper function to quickly check if a struct zone is a |
| * highmem zone or not. This is an attempt to keep references |
| * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. |
| * @zone - pointer to struct zone variable |
| */ |
| static inline int is_highmem(struct zone *zone) |
| { |
| #ifdef CONFIG_HIGHMEM |
| int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; |
| return zone_off == ZONE_HIGHMEM * sizeof(*zone) || |
| (zone_off == ZONE_MOVABLE * sizeof(*zone) && |
| zone_movable_is_highmem()); |
| #else |
| return 0; |
| #endif |
| } |
| |
| static inline int is_normal(struct zone *zone) |
| { |
| return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; |
| } |
| |
| static inline int is_dma32(struct zone *zone) |
| { |
| #ifdef CONFIG_ZONE_DMA32 |
| return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; |
| #else |
| return 0; |
| #endif |
| } |
| |
| static inline int is_dma(struct zone *zone) |
| { |
| #ifdef CONFIG_ZONE_DMA |
| return zone == zone->zone_pgdat->node_zones + ZONE_DMA; |
| #else |
| return 0; |
| #endif |
| } |
| |
| /* These two functions are used to setup the per zone pages min values */ |
| struct ctl_table; |
| struct file; |
| int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, |
| void __user *, size_t *, loff_t *); |
| extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; |
| int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, |
| void __user *, size_t *, loff_t *); |
| int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *, |
| void __user *, size_t *, loff_t *); |
| int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, |
| struct file *, void __user *, size_t *, loff_t *); |
| int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, |
| struct file *, void __user *, size_t *, loff_t *); |
| |
| extern int numa_zonelist_order_handler(struct ctl_table *, int, |
| struct file *, void __user *, size_t *, loff_t *); |
| extern char numa_zonelist_order[]; |
| #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ |
| |
| #include <linux/topology.h> |
| /* Returns the number of the current Node. */ |
| #ifndef numa_node_id |
| #define numa_node_id() (cpu_to_node(raw_smp_processor_id())) |
| #endif |
| |
| #ifndef CONFIG_NEED_MULTIPLE_NODES |
| |
| extern struct pglist_data contig_page_data; |
| #define NODE_DATA(nid) (&contig_page_data) |
| #define NODE_MEM_MAP(nid) mem_map |
| |
| #else /* CONFIG_NEED_MULTIPLE_NODES */ |
| |
| #include <asm/mmzone.h> |
| |
| #endif /* !CONFIG_NEED_MULTIPLE_NODES */ |
| |
| extern struct pglist_data *first_online_pgdat(void); |
| extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); |
| extern struct zone *next_zone(struct zone *zone); |
| |
| /** |
| * for_each_online_pgdat - helper macro to iterate over all online nodes |
| * @pgdat - pointer to a pg_data_t variable |
| */ |
| #define for_each_online_pgdat(pgdat) \ |
| for (pgdat = first_online_pgdat(); \ |
| pgdat; \ |
| pgdat = next_online_pgdat(pgdat)) |
| /** |
| * for_each_zone - helper macro to iterate over all memory zones |
| * @zone - pointer to struct zone variable |
| * |
| * The user only needs to declare the zone variable, for_each_zone |
| * fills it in. |
| */ |
| #define for_each_zone(zone) \ |
| for (zone = (first_online_pgdat())->node_zones; \ |
| zone; \ |
| zone = next_zone(zone)) |
| |
| static inline struct zone *zonelist_zone(struct zoneref *zoneref) |
| { |
| return zoneref->zone; |
| } |
| |
| static inline int zonelist_zone_idx(struct zoneref *zoneref) |
| { |
| return zoneref->zone_idx; |
| } |
| |
| static inline int zonelist_node_idx(struct zoneref *zoneref) |
| { |
| #ifdef CONFIG_NUMA |
| /* zone_to_nid not available in this context */ |
| return zoneref->zone->node; |
| #else |
| return 0; |
| #endif /* CONFIG_NUMA */ |
| } |
| |
| /** |
| * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point |
| * @z - The cursor used as a starting point for the search |
| * @highest_zoneidx - The zone index of the highest zone to return |
| * @nodes - An optional nodemask to filter the zonelist with |
| * @zone - The first suitable zone found is returned via this parameter |
| * |
| * This function returns the next zone at or below a given zone index that is |
| * within the allowed nodemask using a cursor as the starting point for the |
| * search. The zoneref returned is a cursor that represents the current zone |
| * being examined. It should be advanced by one before calling |
| * next_zones_zonelist again. |
| */ |
| struct zoneref *next_zones_zonelist(struct zoneref *z, |
| enum zone_type highest_zoneidx, |
| nodemask_t *nodes, |
| struct zone **zone); |
| |
| /** |
| * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist |
| * @zonelist - The zonelist to search for a suitable zone |
| * @highest_zoneidx - The zone index of the highest zone to return |
| * @nodes - An optional nodemask to filter the zonelist with |
| * @zone - The first suitable zone found is returned via this parameter |
| * |
| * This function returns the first zone at or below a given zone index that is |
| * within the allowed nodemask. The zoneref returned is a cursor that can be |
| * used to iterate the zonelist with next_zones_zonelist by advancing it by |
| * one before calling. |
| */ |
| static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, |
| enum zone_type highest_zoneidx, |
| nodemask_t *nodes, |
| struct zone **zone) |
| { |
| return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, |
| zone); |
| } |
| |
| /** |
| * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask |
| * @zone - The current zone in the iterator |
| * @z - The current pointer within zonelist->zones being iterated |
| * @zlist - The zonelist being iterated |
| * @highidx - The zone index of the highest zone to return |
| * @nodemask - Nodemask allowed by the allocator |
| * |
| * This iterator iterates though all zones at or below a given zone index and |
| * within a given nodemask |
| */ |
| #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ |
| for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ |
| zone; \ |
| z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ |
| |
| /** |
| * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index |
| * @zone - The current zone in the iterator |
| * @z - The current pointer within zonelist->zones being iterated |
| * @zlist - The zonelist being iterated |
| * @highidx - The zone index of the highest zone to return |
| * |
| * This iterator iterates though all zones at or below a given zone index. |
| */ |
| #define for_each_zone_zonelist(zone, z, zlist, highidx) \ |
| for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) |
| |
| #ifdef CONFIG_SPARSEMEM |
| #include <asm/sparsemem.h> |
| #endif |
| |
| #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ |
| !defined(CONFIG_ARCH_POPULATES_NODE_MAP) |
| static inline unsigned long early_pfn_to_nid(unsigned long pfn) |
| { |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_FLATMEM |
| #define pfn_to_nid(pfn) (0) |
| #endif |
| |
| #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) |
| #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) |
| |
| #ifdef CONFIG_SPARSEMEM |
| |
| /* |
| * SECTION_SHIFT #bits space required to store a section # |
| * |
| * PA_SECTION_SHIFT physical address to/from section number |
| * PFN_SECTION_SHIFT pfn to/from section number |
| */ |
| #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) |
| |
| #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) |
| #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) |
| |
| #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) |
| |
| #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) |
| #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) |
| |
| #define SECTION_BLOCKFLAGS_BITS \ |
| ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) |
| |
| #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS |
| #error Allocator MAX_ORDER exceeds SECTION_SIZE |
| #endif |
| |
| struct page; |
| struct page_cgroup; |
| struct mem_section { |
| /* |
| * This is, logically, a pointer to an array of struct |
| * pages. However, it is stored with some other magic. |
| * (see sparse.c::sparse_init_one_section()) |
| * |
| * Additionally during early boot we encode node id of |
| * the location of the section here to guide allocation. |
| * (see sparse.c::memory_present()) |
| * |
| * Making it a UL at least makes someone do a cast |
| * before using it wrong. |
| */ |
| unsigned long section_mem_map; |
| |
| /* See declaration of similar field in struct zone */ |
| unsigned long *pageblock_flags; |
| #ifdef CONFIG_CGROUP_MEM_RES_CTLR |
| /* |
| * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use |
| * section. (see memcontrol.h/page_cgroup.h about this.) |
| */ |
| struct page_cgroup *page_cgroup; |
| unsigned long pad; |
| #endif |
| }; |
| |
| #ifdef CONFIG_SPARSEMEM_EXTREME |
| #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) |
| #else |
| #define SECTIONS_PER_ROOT 1 |
| #endif |
| |
| #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) |
| #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT) |
| #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) |
| |
| #ifdef CONFIG_SPARSEMEM_EXTREME |
| extern struct mem_section *mem_section[NR_SECTION_ROOTS]; |
| #else |
| extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; |
| #endif |
| |
| static inline struct mem_section *__nr_to_section(unsigned long nr) |
| { |
| if (!mem_section[SECTION_NR_TO_ROOT(nr)]) |
| return NULL; |
| return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; |
| } |
| extern int __section_nr(struct mem_section* ms); |
| extern unsigned long usemap_size(void); |
| |
| /* |
| * We use the lower bits of the mem_map pointer to store |
| * a little bit of information. There should be at least |
| * 3 bits here due to 32-bit alignment. |
| */ |
| #define SECTION_MARKED_PRESENT (1UL<<0) |
| #define SECTION_HAS_MEM_MAP (1UL<<1) |
| #define SECTION_MAP_LAST_BIT (1UL<<2) |
| #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) |
| #define SECTION_NID_SHIFT 2 |
| |
| static inline struct page *__section_mem_map_addr(struct mem_section *section) |
| { |
| unsigned long map = section->section_mem_map; |
| map &= SECTION_MAP_MASK; |
| return (struct page *)map; |
| } |
| |
| static inline int present_section(struct mem_section *section) |
| { |
| return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); |
| } |
| |
| static inline int present_section_nr(unsigned long nr) |
| { |
| return present_section(__nr_to_section(nr)); |
| } |
| |
| static inline int valid_section(struct mem_section *section) |
| { |
| return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); |
| } |
| |
| static inline int valid_section_nr(unsigned long nr) |
| { |
| return valid_section(__nr_to_section(nr)); |
| } |
| |
| static inline struct mem_section *__pfn_to_section(unsigned long pfn) |
| { |
| return __nr_to_section(pfn_to_section_nr(pfn)); |
| } |
| |
| static inline int pfn_valid(unsigned long pfn) |
| { |
| if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) |
| return 0; |
| return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); |
| } |
| |
| static inline int pfn_present(unsigned long pfn) |
| { |
| if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) |
| return 0; |
| return present_section(__nr_to_section(pfn_to_section_nr(pfn))); |
| } |
| |
| /* |
| * These are _only_ used during initialisation, therefore they |
| * can use __initdata ... They could have names to indicate |
| * this restriction. |
| */ |
| #ifdef CONFIG_NUMA |
| #define pfn_to_nid(pfn) \ |
| ({ \ |
| unsigned long __pfn_to_nid_pfn = (pfn); \ |
| page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ |
| }) |
| #else |
| #define pfn_to_nid(pfn) (0) |
| #endif |
| |
| #define early_pfn_valid(pfn) pfn_valid(pfn) |
| void sparse_init(void); |
| #else |
| #define sparse_init() do {} while (0) |
| #define sparse_index_init(_sec, _nid) do {} while (0) |
| #endif /* CONFIG_SPARSEMEM */ |
| |
| #ifdef CONFIG_NODES_SPAN_OTHER_NODES |
| #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid)) |
| #else |
| #define early_pfn_in_nid(pfn, nid) (1) |
| #endif |
| |
| #ifndef early_pfn_valid |
| #define early_pfn_valid(pfn) (1) |
| #endif |
| |
| void memory_present(int nid, unsigned long start, unsigned long end); |
| unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); |
| |
| /* |
| * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we |
| * need to check pfn validility within that MAX_ORDER_NR_PAGES block. |
| * pfn_valid_within() should be used in this case; we optimise this away |
| * when we have no holes within a MAX_ORDER_NR_PAGES block. |
| */ |
| #ifdef CONFIG_HOLES_IN_ZONE |
| #define pfn_valid_within(pfn) pfn_valid(pfn) |
| #else |
| #define pfn_valid_within(pfn) (1) |
| #endif |
| |
| #endif /* !__GENERATING_BOUNDS.H */ |
| #endif /* !__ASSEMBLY__ */ |
| #endif /* _LINUX_MMZONE_H */ |