blob: c48cbe731356539abf7df8ac1c94a09701b546f7 [file] [log] [blame]
/*
* xHCI host controller driver
*
* Copyright (C) 2008 Intel Corp.
*
* Author: Sarah Sharp
* Some code borrowed from the Linux EHCI driver.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/usb.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/dmapool.h>
#include <linux/dma-mapping.h>
#include "xhci.h"
#include "xhci-trace.h"
/*
* Allocates a generic ring segment from the ring pool, sets the dma address,
* initializes the segment to zero, and sets the private next pointer to NULL.
*
* Section 4.11.1.1:
* "All components of all Command and Transfer TRBs shall be initialized to '0'"
*/
static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
unsigned int cycle_state, gfp_t flags)
{
struct xhci_segment *seg;
dma_addr_t dma;
int i;
seg = kzalloc(sizeof *seg, flags);
if (!seg)
return NULL;
seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
if (!seg->trbs) {
kfree(seg);
return NULL;
}
memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
if (cycle_state == 0) {
for (i = 0; i < TRBS_PER_SEGMENT; i++)
seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
}
seg->dma = dma;
seg->next = NULL;
return seg;
}
static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
{
if (seg->trbs) {
dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
seg->trbs = NULL;
}
kfree(seg);
}
static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
struct xhci_segment *first)
{
struct xhci_segment *seg;
seg = first->next;
while (seg != first) {
struct xhci_segment *next = seg->next;
xhci_segment_free(xhci, seg);
seg = next;
}
xhci_segment_free(xhci, first);
}
/*
* Make the prev segment point to the next segment.
*
* Change the last TRB in the prev segment to be a Link TRB which points to the
* DMA address of the next segment. The caller needs to set any Link TRB
* related flags, such as End TRB, Toggle Cycle, and no snoop.
*/
static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
struct xhci_segment *next, enum xhci_ring_type type)
{
u32 val;
if (!prev || !next)
return;
prev->next = next;
if (type != TYPE_EVENT) {
prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
cpu_to_le64(next->dma);
/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
val &= ~TRB_TYPE_BITMASK;
val |= TRB_TYPE(TRB_LINK);
/* Always set the chain bit with 0.95 hardware */
/* Set chain bit for isoc rings on AMD 0.96 host */
if (xhci_link_trb_quirk(xhci) ||
(type == TYPE_ISOC &&
(xhci->quirks & XHCI_AMD_0x96_HOST)))
val |= TRB_CHAIN;
prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
}
}
/*
* Link the ring to the new segments.
* Set Toggle Cycle for the new ring if needed.
*/
static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
struct xhci_segment *first, struct xhci_segment *last,
unsigned int num_segs)
{
struct xhci_segment *next;
if (!ring || !first || !last)
return;
next = ring->enq_seg->next;
xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
xhci_link_segments(xhci, last, next, ring->type);
ring->num_segs += num_segs;
ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
&= ~cpu_to_le32(LINK_TOGGLE);
last->trbs[TRBS_PER_SEGMENT-1].link.control
|= cpu_to_le32(LINK_TOGGLE);
ring->last_seg = last;
}
}
/*
* We need a radix tree for mapping physical addresses of TRBs to which stream
* ID they belong to. We need to do this because the host controller won't tell
* us which stream ring the TRB came from. We could store the stream ID in an
* event data TRB, but that doesn't help us for the cancellation case, since the
* endpoint may stop before it reaches that event data TRB.
*
* The radix tree maps the upper portion of the TRB DMA address to a ring
* segment that has the same upper portion of DMA addresses. For example, say I
* have segments of size 1KB, that are always 1KB aligned. A segment may
* start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
* key to the stream ID is 0x43244. I can use the DMA address of the TRB to
* pass the radix tree a key to get the right stream ID:
*
* 0x10c90fff >> 10 = 0x43243
* 0x10c912c0 >> 10 = 0x43244
* 0x10c91400 >> 10 = 0x43245
*
* Obviously, only those TRBs with DMA addresses that are within the segment
* will make the radix tree return the stream ID for that ring.
*
* Caveats for the radix tree:
*
* The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
* unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
* 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
* key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
* PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
* extended systems (where the DMA address can be bigger than 32-bits),
* if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
*/
static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
struct xhci_ring *ring,
struct xhci_segment *seg,
gfp_t mem_flags)
{
unsigned long key;
int ret;
key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
/* Skip any segments that were already added. */
if (radix_tree_lookup(trb_address_map, key))
return 0;
ret = radix_tree_maybe_preload(mem_flags);
if (ret)
return ret;
ret = radix_tree_insert(trb_address_map,
key, ring);
radix_tree_preload_end();
return ret;
}
static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
struct xhci_segment *seg)
{
unsigned long key;
key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
if (radix_tree_lookup(trb_address_map, key))
radix_tree_delete(trb_address_map, key);
}
static int xhci_update_stream_segment_mapping(
struct radix_tree_root *trb_address_map,
struct xhci_ring *ring,
struct xhci_segment *first_seg,
struct xhci_segment *last_seg,
gfp_t mem_flags)
{
struct xhci_segment *seg;
struct xhci_segment *failed_seg;
int ret;
if (WARN_ON_ONCE(trb_address_map == NULL))
return 0;
seg = first_seg;
do {
ret = xhci_insert_segment_mapping(trb_address_map,
ring, seg, mem_flags);
if (ret)
goto remove_streams;
if (seg == last_seg)
return 0;
seg = seg->next;
} while (seg != first_seg);
return 0;
remove_streams:
failed_seg = seg;
seg = first_seg;
do {
xhci_remove_segment_mapping(trb_address_map, seg);
if (seg == failed_seg)
return ret;
seg = seg->next;
} while (seg != first_seg);
return ret;
}
static void xhci_remove_stream_mapping(struct xhci_ring *ring)
{
struct xhci_segment *seg;
if (WARN_ON_ONCE(ring->trb_address_map == NULL))
return;
seg = ring->first_seg;
do {
xhci_remove_segment_mapping(ring->trb_address_map, seg);
seg = seg->next;
} while (seg != ring->first_seg);
}
static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
{
return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
ring->first_seg, ring->last_seg, mem_flags);
}
/* XXX: Do we need the hcd structure in all these functions? */
void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
{
if (!ring)
return;
if (ring->first_seg) {
if (ring->type == TYPE_STREAM)
xhci_remove_stream_mapping(ring);
xhci_free_segments_for_ring(xhci, ring->first_seg);
}
kfree(ring);
}
static void xhci_initialize_ring_info(struct xhci_ring *ring,
unsigned int cycle_state)
{
/* The ring is empty, so the enqueue pointer == dequeue pointer */
ring->enqueue = ring->first_seg->trbs;
ring->enq_seg = ring->first_seg;
ring->dequeue = ring->enqueue;
ring->deq_seg = ring->first_seg;
/* The ring is initialized to 0. The producer must write 1 to the cycle
* bit to handover ownership of the TRB, so PCS = 1. The consumer must
* compare CCS to the cycle bit to check ownership, so CCS = 1.
*
* New rings are initialized with cycle state equal to 1; if we are
* handling ring expansion, set the cycle state equal to the old ring.
*/
ring->cycle_state = cycle_state;
/* Not necessary for new rings, but needed for re-initialized rings */
ring->enq_updates = 0;
ring->deq_updates = 0;
/*
* Each segment has a link TRB, and leave an extra TRB for SW
* accounting purpose
*/
ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
}
/* Allocate segments and link them for a ring */
static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
struct xhci_segment **first, struct xhci_segment **last,
unsigned int num_segs, unsigned int cycle_state,
enum xhci_ring_type type, gfp_t flags)
{
struct xhci_segment *prev;
prev = xhci_segment_alloc(xhci, cycle_state, flags);
if (!prev)
return -ENOMEM;
num_segs--;
*first = prev;
while (num_segs > 0) {
struct xhci_segment *next;
next = xhci_segment_alloc(xhci, cycle_state, flags);
if (!next) {
prev = *first;
while (prev) {
next = prev->next;
xhci_segment_free(xhci, prev);
prev = next;
}
return -ENOMEM;
}
xhci_link_segments(xhci, prev, next, type);
prev = next;
num_segs--;
}
xhci_link_segments(xhci, prev, *first, type);
*last = prev;
return 0;
}
/**
* Create a new ring with zero or more segments.
*
* Link each segment together into a ring.
* Set the end flag and the cycle toggle bit on the last segment.
* See section 4.9.1 and figures 15 and 16.
*/
static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
unsigned int num_segs, unsigned int cycle_state,
enum xhci_ring_type type, gfp_t flags)
{
struct xhci_ring *ring;
int ret;
ring = kzalloc(sizeof *(ring), flags);
if (!ring)
return NULL;
ring->num_segs = num_segs;
INIT_LIST_HEAD(&ring->td_list);
ring->type = type;
if (num_segs == 0)
return ring;
ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
&ring->last_seg, num_segs, cycle_state, type, flags);
if (ret)
goto fail;
/* Only event ring does not use link TRB */
if (type != TYPE_EVENT) {
/* See section 4.9.2.1 and 6.4.4.1 */
ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
cpu_to_le32(LINK_TOGGLE);
}
xhci_initialize_ring_info(ring, cycle_state);
return ring;
fail:
kfree(ring);
return NULL;
}
void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev,
unsigned int ep_index)
{
int rings_cached;
rings_cached = virt_dev->num_rings_cached;
if (rings_cached < XHCI_MAX_RINGS_CACHED) {
virt_dev->ring_cache[rings_cached] =
virt_dev->eps[ep_index].ring;
virt_dev->num_rings_cached++;
xhci_dbg(xhci, "Cached old ring, "
"%d ring%s cached\n",
virt_dev->num_rings_cached,
(virt_dev->num_rings_cached > 1) ? "s" : "");
} else {
xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
xhci_dbg(xhci, "Ring cache full (%d rings), "
"freeing ring\n",
virt_dev->num_rings_cached);
}
virt_dev->eps[ep_index].ring = NULL;
}
/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
* pointers to the beginning of the ring.
*/
static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
struct xhci_ring *ring, unsigned int cycle_state,
enum xhci_ring_type type)
{
struct xhci_segment *seg = ring->first_seg;
int i;
do {
memset(seg->trbs, 0,
sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
if (cycle_state == 0) {
for (i = 0; i < TRBS_PER_SEGMENT; i++)
seg->trbs[i].link.control |=
cpu_to_le32(TRB_CYCLE);
}
/* All endpoint rings have link TRBs */
xhci_link_segments(xhci, seg, seg->next, type);
seg = seg->next;
} while (seg != ring->first_seg);
ring->type = type;
xhci_initialize_ring_info(ring, cycle_state);
/* td list should be empty since all URBs have been cancelled,
* but just in case...
*/
INIT_LIST_HEAD(&ring->td_list);
}
/*
* Expand an existing ring.
* Look for a cached ring or allocate a new ring which has same segment numbers
* and link the two rings.
*/
int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
unsigned int num_trbs, gfp_t flags)
{
struct xhci_segment *first;
struct xhci_segment *last;
unsigned int num_segs;
unsigned int num_segs_needed;
int ret;
num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
(TRBS_PER_SEGMENT - 1);
/* Allocate number of segments we needed, or double the ring size */
num_segs = ring->num_segs > num_segs_needed ?
ring->num_segs : num_segs_needed;
ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
num_segs, ring->cycle_state, ring->type, flags);
if (ret)
return -ENOMEM;
if (ring->type == TYPE_STREAM)
ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
ring, first, last, flags);
if (ret) {
struct xhci_segment *next;
do {
next = first->next;
xhci_segment_free(xhci, first);
if (first == last)
break;
first = next;
} while (true);
return ret;
}
xhci_link_rings(xhci, ring, first, last, num_segs);
xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
"ring expansion succeed, now has %d segments",
ring->num_segs);
return 0;
}
#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
int type, gfp_t flags)
{
struct xhci_container_ctx *ctx;
if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
return NULL;
ctx = kzalloc(sizeof(*ctx), flags);
if (!ctx)
return NULL;
ctx->type = type;
ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
if (type == XHCI_CTX_TYPE_INPUT)
ctx->size += CTX_SIZE(xhci->hcc_params);
ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
if (!ctx->bytes) {
kfree(ctx);
return NULL;
}
memset(ctx->bytes, 0, ctx->size);
return ctx;
}
static void xhci_free_container_ctx(struct xhci_hcd *xhci,
struct xhci_container_ctx *ctx)
{
if (!ctx)
return;
dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
kfree(ctx);
}
struct xhci_input_control_ctx *xhci_get_input_control_ctx(
struct xhci_container_ctx *ctx)
{
if (ctx->type != XHCI_CTX_TYPE_INPUT)
return NULL;
return (struct xhci_input_control_ctx *)ctx->bytes;
}
struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
struct xhci_container_ctx *ctx)
{
if (ctx->type == XHCI_CTX_TYPE_DEVICE)
return (struct xhci_slot_ctx *)ctx->bytes;
return (struct xhci_slot_ctx *)
(ctx->bytes + CTX_SIZE(xhci->hcc_params));
}
struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
struct xhci_container_ctx *ctx,
unsigned int ep_index)
{
/* increment ep index by offset of start of ep ctx array */
ep_index++;
if (ctx->type == XHCI_CTX_TYPE_INPUT)
ep_index++;
return (struct xhci_ep_ctx *)
(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
}
/***************** Streams structures manipulation *************************/
static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
unsigned int num_stream_ctxs,
struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
{
struct device *dev = xhci_to_hcd(xhci)->self.controller;
size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
if (size > MEDIUM_STREAM_ARRAY_SIZE)
dma_free_coherent(dev, size,
stream_ctx, dma);
else if (size <= SMALL_STREAM_ARRAY_SIZE)
return dma_pool_free(xhci->small_streams_pool,
stream_ctx, dma);
else
return dma_pool_free(xhci->medium_streams_pool,
stream_ctx, dma);
}
/*
* The stream context array for each endpoint with bulk streams enabled can
* vary in size, based on:
* - how many streams the endpoint supports,
* - the maximum primary stream array size the host controller supports,
* - and how many streams the device driver asks for.
*
* The stream context array must be a power of 2, and can be as small as
* 64 bytes or as large as 1MB.
*/
static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
unsigned int num_stream_ctxs, dma_addr_t *dma,
gfp_t mem_flags)
{
struct device *dev = xhci_to_hcd(xhci)->self.controller;
size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
if (size > MEDIUM_STREAM_ARRAY_SIZE)
return dma_alloc_coherent(dev, size,
dma, mem_flags);
else if (size <= SMALL_STREAM_ARRAY_SIZE)
return dma_pool_alloc(xhci->small_streams_pool,
mem_flags, dma);
else
return dma_pool_alloc(xhci->medium_streams_pool,
mem_flags, dma);
}
struct xhci_ring *xhci_dma_to_transfer_ring(
struct xhci_virt_ep *ep,
u64 address)
{
if (ep->ep_state & EP_HAS_STREAMS)
return radix_tree_lookup(&ep->stream_info->trb_address_map,
address >> TRB_SEGMENT_SHIFT);
return ep->ring;
}
struct xhci_ring *xhci_stream_id_to_ring(
struct xhci_virt_device *dev,
unsigned int ep_index,
unsigned int stream_id)
{
struct xhci_virt_ep *ep = &dev->eps[ep_index];
if (stream_id == 0)
return ep->ring;
if (!ep->stream_info)
return NULL;
if (stream_id > ep->stream_info->num_streams)
return NULL;
return ep->stream_info->stream_rings[stream_id];
}
/*
* Change an endpoint's internal structure so it supports stream IDs. The
* number of requested streams includes stream 0, which cannot be used by device
* drivers.
*
* The number of stream contexts in the stream context array may be bigger than
* the number of streams the driver wants to use. This is because the number of
* stream context array entries must be a power of two.
*/
struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
unsigned int num_stream_ctxs,
unsigned int num_streams, gfp_t mem_flags)
{
struct xhci_stream_info *stream_info;
u32 cur_stream;
struct xhci_ring *cur_ring;
u64 addr;
int ret;
xhci_dbg(xhci, "Allocating %u streams and %u "
"stream context array entries.\n",
num_streams, num_stream_ctxs);
if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
return NULL;
}
xhci->cmd_ring_reserved_trbs++;
stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
if (!stream_info)
goto cleanup_trbs;
stream_info->num_streams = num_streams;
stream_info->num_stream_ctxs = num_stream_ctxs;
/* Initialize the array of virtual pointers to stream rings. */
stream_info->stream_rings = kzalloc(
sizeof(struct xhci_ring *)*num_streams,
mem_flags);
if (!stream_info->stream_rings)
goto cleanup_info;
/* Initialize the array of DMA addresses for stream rings for the HW. */
stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
num_stream_ctxs, &stream_info->ctx_array_dma,
mem_flags);
if (!stream_info->stream_ctx_array)
goto cleanup_ctx;
memset(stream_info->stream_ctx_array, 0,
sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
/* Allocate everything needed to free the stream rings later */
stream_info->free_streams_command =
xhci_alloc_command(xhci, true, true, mem_flags);
if (!stream_info->free_streams_command)
goto cleanup_ctx;
INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
/* Allocate rings for all the streams that the driver will use,
* and add their segment DMA addresses to the radix tree.
* Stream 0 is reserved.
*/
for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
stream_info->stream_rings[cur_stream] =
xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
cur_ring = stream_info->stream_rings[cur_stream];
if (!cur_ring)
goto cleanup_rings;
cur_ring->stream_id = cur_stream;
cur_ring->trb_address_map = &stream_info->trb_address_map;
/* Set deq ptr, cycle bit, and stream context type */
addr = cur_ring->first_seg->dma |
SCT_FOR_CTX(SCT_PRI_TR) |
cur_ring->cycle_state;
stream_info->stream_ctx_array[cur_stream].stream_ring =
cpu_to_le64(addr);
xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
cur_stream, (unsigned long long) addr);
ret = xhci_update_stream_mapping(cur_ring, mem_flags);
if (ret) {
xhci_ring_free(xhci, cur_ring);
stream_info->stream_rings[cur_stream] = NULL;
goto cleanup_rings;
}
}
/* Leave the other unused stream ring pointers in the stream context
* array initialized to zero. This will cause the xHC to give us an
* error if the device asks for a stream ID we don't have setup (if it
* was any other way, the host controller would assume the ring is
* "empty" and wait forever for data to be queued to that stream ID).
*/
return stream_info;
cleanup_rings:
for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
cur_ring = stream_info->stream_rings[cur_stream];
if (cur_ring) {
xhci_ring_free(xhci, cur_ring);
stream_info->stream_rings[cur_stream] = NULL;
}
}
xhci_free_command(xhci, stream_info->free_streams_command);
cleanup_ctx:
kfree(stream_info->stream_rings);
cleanup_info:
kfree(stream_info);
cleanup_trbs:
xhci->cmd_ring_reserved_trbs--;
return NULL;
}
/*
* Sets the MaxPStreams field and the Linear Stream Array field.
* Sets the dequeue pointer to the stream context array.
*/
void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
struct xhci_ep_ctx *ep_ctx,
struct xhci_stream_info *stream_info)
{
u32 max_primary_streams;
/* MaxPStreams is the number of stream context array entries, not the
* number we're actually using. Must be in 2^(MaxPstreams + 1) format.
* fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
*/
max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
"Setting number of stream ctx array entries to %u",
1 << (max_primary_streams + 1));
ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
| EP_HAS_LSA);
ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
}
/*
* Sets the MaxPStreams field and the Linear Stream Array field to 0.
* Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
* not at the beginning of the ring).
*/
void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
struct xhci_virt_ep *ep)
{
dma_addr_t addr;
ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
}
/* Frees all stream contexts associated with the endpoint,
*
* Caller should fix the endpoint context streams fields.
*/
void xhci_free_stream_info(struct xhci_hcd *xhci,
struct xhci_stream_info *stream_info)
{
int cur_stream;
struct xhci_ring *cur_ring;
if (!stream_info)
return;
for (cur_stream = 1; cur_stream < stream_info->num_streams;
cur_stream++) {
cur_ring = stream_info->stream_rings[cur_stream];
if (cur_ring) {
xhci_ring_free(xhci, cur_ring);
stream_info->stream_rings[cur_stream] = NULL;
}
}
xhci_free_command(xhci, stream_info->free_streams_command);
xhci->cmd_ring_reserved_trbs--;
if (stream_info->stream_ctx_array)
xhci_free_stream_ctx(xhci,
stream_info->num_stream_ctxs,
stream_info->stream_ctx_array,
stream_info->ctx_array_dma);
kfree(stream_info->stream_rings);
kfree(stream_info);
}
/***************** Device context manipulation *************************/
static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
struct xhci_virt_ep *ep)
{
setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
(unsigned long)ep);
ep->xhci = xhci;
}
static void xhci_free_tt_info(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev,
int slot_id)
{
struct list_head *tt_list_head;
struct xhci_tt_bw_info *tt_info, *next;
bool slot_found = false;
/* If the device never made it past the Set Address stage,
* it may not have the real_port set correctly.
*/
if (virt_dev->real_port == 0 ||
virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
xhci_dbg(xhci, "Bad real port.\n");
return;
}
tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
/* Multi-TT hubs will have more than one entry */
if (tt_info->slot_id == slot_id) {
slot_found = true;
list_del(&tt_info->tt_list);
kfree(tt_info);
} else if (slot_found) {
break;
}
}
}
int xhci_alloc_tt_info(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev,
struct usb_device *hdev,
struct usb_tt *tt, gfp_t mem_flags)
{
struct xhci_tt_bw_info *tt_info;
unsigned int num_ports;
int i, j;
if (!tt->multi)
num_ports = 1;
else
num_ports = hdev->maxchild;
for (i = 0; i < num_ports; i++, tt_info++) {
struct xhci_interval_bw_table *bw_table;
tt_info = kzalloc(sizeof(*tt_info), mem_flags);
if (!tt_info)
goto free_tts;
INIT_LIST_HEAD(&tt_info->tt_list);
list_add(&tt_info->tt_list,
&xhci->rh_bw[virt_dev->real_port - 1].tts);
tt_info->slot_id = virt_dev->udev->slot_id;
if (tt->multi)
tt_info->ttport = i+1;
bw_table = &tt_info->bw_table;
for (j = 0; j < XHCI_MAX_INTERVAL; j++)
INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
}
return 0;
free_tts:
xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
return -ENOMEM;
}
/* All the xhci_tds in the ring's TD list should be freed at this point.
* Should be called with xhci->lock held if there is any chance the TT lists
* will be manipulated by the configure endpoint, allocate device, or update
* hub functions while this function is removing the TT entries from the list.
*/
void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
{
struct xhci_virt_device *dev;
int i;
int old_active_eps = 0;
/* Slot ID 0 is reserved */
if (slot_id == 0 || !xhci->devs[slot_id])
return;
dev = xhci->devs[slot_id];
xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
if (!dev)
return;
if (dev->tt_info)
old_active_eps = dev->tt_info->active_eps;
for (i = 0; i < 31; ++i) {
if (dev->eps[i].ring)
xhci_ring_free(xhci, dev->eps[i].ring);
if (dev->eps[i].stream_info)
xhci_free_stream_info(xhci,
dev->eps[i].stream_info);
/* Endpoints on the TT/root port lists should have been removed
* when usb_disable_device() was called for the device.
* We can't drop them anyway, because the udev might have gone
* away by this point, and we can't tell what speed it was.
*/
if (!list_empty(&dev->eps[i].bw_endpoint_list))
xhci_warn(xhci, "Slot %u endpoint %u "
"not removed from BW list!\n",
slot_id, i);
}
/* If this is a hub, free the TT(s) from the TT list */
xhci_free_tt_info(xhci, dev, slot_id);
/* If necessary, update the number of active TTs on this root port */
xhci_update_tt_active_eps(xhci, dev, old_active_eps);
if (dev->ring_cache) {
for (i = 0; i < dev->num_rings_cached; i++)
xhci_ring_free(xhci, dev->ring_cache[i]);
kfree(dev->ring_cache);
}
if (dev->in_ctx)
xhci_free_container_ctx(xhci, dev->in_ctx);
if (dev->out_ctx)
xhci_free_container_ctx(xhci, dev->out_ctx);
kfree(xhci->devs[slot_id]);
xhci->devs[slot_id] = NULL;
}
int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
struct usb_device *udev, gfp_t flags)
{
struct xhci_virt_device *dev;
int i;
/* Slot ID 0 is reserved */
if (slot_id == 0 || xhci->devs[slot_id]) {
xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
return 0;
}
xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
if (!xhci->devs[slot_id])
return 0;
dev = xhci->devs[slot_id];
/* Allocate the (output) device context that will be used in the HC. */
dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
if (!dev->out_ctx)
goto fail;
xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
(unsigned long long)dev->out_ctx->dma);
/* Allocate the (input) device context for address device command */
dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
if (!dev->in_ctx)
goto fail;
xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
(unsigned long long)dev->in_ctx->dma);
/* Initialize the cancellation list and watchdog timers for each ep */
for (i = 0; i < 31; i++) {
xhci_init_endpoint_timer(xhci, &dev->eps[i]);
INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
}
/* Allocate endpoint 0 ring */
dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
if (!dev->eps[0].ring)
goto fail;
/* Allocate pointers to the ring cache */
dev->ring_cache = kzalloc(
sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
flags);
if (!dev->ring_cache)
goto fail;
dev->num_rings_cached = 0;
init_completion(&dev->cmd_completion);
dev->udev = udev;
/* Point to output device context in dcbaa. */
xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
slot_id,
&xhci->dcbaa->dev_context_ptrs[slot_id],
le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
return 1;
fail:
xhci_free_virt_device(xhci, slot_id);
return 0;
}
void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
struct usb_device *udev)
{
struct xhci_virt_device *virt_dev;
struct xhci_ep_ctx *ep0_ctx;
struct xhci_ring *ep_ring;
virt_dev = xhci->devs[udev->slot_id];
ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
ep_ring = virt_dev->eps[0].ring;
/*
* FIXME we don't keep track of the dequeue pointer very well after a
* Set TR dequeue pointer, so we're setting the dequeue pointer of the
* host to our enqueue pointer. This should only be called after a
* configured device has reset, so all control transfers should have
* been completed or cancelled before the reset.
*/
ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
ep_ring->enqueue)
| ep_ring->cycle_state);
}
/*
* The xHCI roothub may have ports of differing speeds in any order in the port
* status registers. xhci->port_array provides an array of the port speed for
* each offset into the port status registers.
*
* The xHCI hardware wants to know the roothub port number that the USB device
* is attached to (or the roothub port its ancestor hub is attached to). All we
* know is the index of that port under either the USB 2.0 or the USB 3.0
* roothub, but that doesn't give us the real index into the HW port status
* registers. Call xhci_find_raw_port_number() to get real index.
*/
static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
struct usb_device *udev)
{
struct usb_device *top_dev;
struct usb_hcd *hcd;
if (udev->speed == USB_SPEED_SUPER)
hcd = xhci->shared_hcd;
else
hcd = xhci->main_hcd;
for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
top_dev = top_dev->parent)
/* Found device below root hub */;
return xhci_find_raw_port_number(hcd, top_dev->portnum);
}
/* Setup an xHCI virtual device for a Set Address command */
int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
{
struct xhci_virt_device *dev;
struct xhci_ep_ctx *ep0_ctx;
struct xhci_slot_ctx *slot_ctx;
u32 port_num;
u32 max_packets;
struct usb_device *top_dev;
dev = xhci->devs[udev->slot_id];
/* Slot ID 0 is reserved */
if (udev->slot_id == 0 || !dev) {
xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
udev->slot_id);
return -EINVAL;
}
ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
/* 3) Only the control endpoint is valid - one endpoint context */
slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
switch (udev->speed) {
case USB_SPEED_SUPER:
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
max_packets = MAX_PACKET(512);
break;
case USB_SPEED_HIGH:
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
max_packets = MAX_PACKET(64);
break;
/* USB core guesses at a 64-byte max packet first for FS devices */
case USB_SPEED_FULL:
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
max_packets = MAX_PACKET(64);
break;
case USB_SPEED_LOW:
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
max_packets = MAX_PACKET(8);
break;
case USB_SPEED_WIRELESS:
xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
return -EINVAL;
break;
default:
/* Speed was set earlier, this shouldn't happen. */
return -EINVAL;
}
/* Find the root hub port this device is under */
port_num = xhci_find_real_port_number(xhci, udev);
if (!port_num)
return -EINVAL;
slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
/* Set the port number in the virtual_device to the faked port number */
for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
top_dev = top_dev->parent)
/* Found device below root hub */;
dev->fake_port = top_dev->portnum;
dev->real_port = port_num;
xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
/* Find the right bandwidth table that this device will be a part of.
* If this is a full speed device attached directly to a root port (or a
* decendent of one), it counts as a primary bandwidth domain, not a
* secondary bandwidth domain under a TT. An xhci_tt_info structure
* will never be created for the HS root hub.
*/
if (!udev->tt || !udev->tt->hub->parent) {
dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
} else {
struct xhci_root_port_bw_info *rh_bw;
struct xhci_tt_bw_info *tt_bw;
rh_bw = &xhci->rh_bw[port_num - 1];
/* Find the right TT. */
list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
if (tt_bw->slot_id != udev->tt->hub->slot_id)
continue;
if (!dev->udev->tt->multi ||
(udev->tt->multi &&
tt_bw->ttport == dev->udev->ttport)) {
dev->bw_table = &tt_bw->bw_table;
dev->tt_info = tt_bw;
break;
}
}
if (!dev->tt_info)
xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
}
/* Is this a LS/FS device under an external HS hub? */
if (udev->tt && udev->tt->hub->parent) {
slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
(udev->ttport << 8));
if (udev->tt->multi)
slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
}
xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
/* Step 4 - ring already allocated */
/* Step 5 */
ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
max_packets);
ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
dev->eps[0].ring->cycle_state);
/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
return 0;
}
/*
* Convert interval expressed as 2^(bInterval - 1) == interval into
* straight exponent value 2^n == interval.
*
*/
static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
struct usb_host_endpoint *ep)
{
unsigned int interval;
interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
if (interval != ep->desc.bInterval - 1)
dev_warn(&udev->dev,
"ep %#x - rounding interval to %d %sframes\n",
ep->desc.bEndpointAddress,
1 << interval,
udev->speed == USB_SPEED_FULL ? "" : "micro");
if (udev->speed == USB_SPEED_FULL) {
/*
* Full speed isoc endpoints specify interval in frames,
* not microframes. We are using microframes everywhere,
* so adjust accordingly.
*/
interval += 3; /* 1 frame = 2^3 uframes */
}
return interval;
}
/*
* Convert bInterval expressed in microframes (in 1-255 range) to exponent of
* microframes, rounded down to nearest power of 2.
*/
static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
struct usb_host_endpoint *ep, unsigned int desc_interval,
unsigned int min_exponent, unsigned int max_exponent)
{
unsigned int interval;
interval = fls(desc_interval) - 1;
interval = clamp_val(interval, min_exponent, max_exponent);
if ((1 << interval) != desc_interval)
dev_warn(&udev->dev,
"ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
ep->desc.bEndpointAddress,
1 << interval,
desc_interval);
return interval;
}
static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
struct usb_host_endpoint *ep)
{
if (ep->desc.bInterval == 0)
return 0;
return xhci_microframes_to_exponent(udev, ep,
ep->desc.bInterval, 0, 15);
}
static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
struct usb_host_endpoint *ep)
{
return xhci_microframes_to_exponent(udev, ep,
ep->desc.bInterval * 8, 3, 10);
}
/* Return the polling or NAK interval.
*
* The polling interval is expressed in "microframes". If xHCI's Interval field
* is set to N, it will service the endpoint every 2^(Interval)*125us.
*
* The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
* is set to 0.
*/
static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
struct usb_host_endpoint *ep)
{
unsigned int interval = 0;
switch (udev->speed) {
case USB_SPEED_HIGH:
/* Max NAK rate */
if (usb_endpoint_xfer_control(&ep->desc) ||
usb_endpoint_xfer_bulk(&ep->desc)) {
interval = xhci_parse_microframe_interval(udev, ep);
break;
}
/* Fall through - SS and HS isoc/int have same decoding */
case USB_SPEED_SUPER:
if (usb_endpoint_xfer_int(&ep->desc) ||
usb_endpoint_xfer_isoc(&ep->desc)) {
interval = xhci_parse_exponent_interval(udev, ep);
}
break;
case USB_SPEED_FULL:
if (usb_endpoint_xfer_isoc(&ep->desc)) {
interval = xhci_parse_exponent_interval(udev, ep);
break;
}
/*
* Fall through for interrupt endpoint interval decoding
* since it uses the same rules as low speed interrupt
* endpoints.
*/
case USB_SPEED_LOW:
if (usb_endpoint_xfer_int(&ep->desc) ||
usb_endpoint_xfer_isoc(&ep->desc)) {
interval = xhci_parse_frame_interval(udev, ep);
}
break;
default:
BUG();
}
return EP_INTERVAL(interval);
}
/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
* High speed endpoint descriptors can define "the number of additional
* transaction opportunities per microframe", but that goes in the Max Burst
* endpoint context field.
*/
static u32 xhci_get_endpoint_mult(struct usb_device *udev,
struct usb_host_endpoint *ep)
{
if (udev->speed != USB_SPEED_SUPER ||
!usb_endpoint_xfer_isoc(&ep->desc))
return 0;
return ep->ss_ep_comp.bmAttributes;
}
static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
{
int in;
u32 type;
in = usb_endpoint_dir_in(&ep->desc);
if (usb_endpoint_xfer_control(&ep->desc)) {
type = EP_TYPE(CTRL_EP);
} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
if (in)
type = EP_TYPE(BULK_IN_EP);
else
type = EP_TYPE(BULK_OUT_EP);
} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
if (in)
type = EP_TYPE(ISOC_IN_EP);
else
type = EP_TYPE(ISOC_OUT_EP);
} else if (usb_endpoint_xfer_int(&ep->desc)) {
if (in)
type = EP_TYPE(INT_IN_EP);
else
type = EP_TYPE(INT_OUT_EP);
} else {
type = 0;
}
return type;
}
/* Return the maximum endpoint service interval time (ESIT) payload.
* Basically, this is the maxpacket size, multiplied by the burst size
* and mult size.
*/
static u32 xhci_get_max_esit_payload(struct usb_device *udev,
struct usb_host_endpoint *ep)
{
int max_burst;
int max_packet;
/* Only applies for interrupt or isochronous endpoints */
if (usb_endpoint_xfer_control(&ep->desc) ||
usb_endpoint_xfer_bulk(&ep->desc))
return 0;
if (udev->speed == USB_SPEED_SUPER)
return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
/* A 0 in max burst means 1 transfer per ESIT */
return max_packet * (max_burst + 1);
}
/* Set up an endpoint with one ring segment. Do not allocate stream rings.
* Drivers will have to call usb_alloc_streams() to do that.
*/
int xhci_endpoint_init(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev,
struct usb_device *udev,
struct usb_host_endpoint *ep,
gfp_t mem_flags)
{
unsigned int ep_index;
struct xhci_ep_ctx *ep_ctx;
struct xhci_ring *ep_ring;
unsigned int max_packet;
unsigned int max_burst;
enum xhci_ring_type type;
u32 max_esit_payload;
u32 endpoint_type;
ep_index = xhci_get_endpoint_index(&ep->desc);
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
endpoint_type = xhci_get_endpoint_type(ep);
if (!endpoint_type)
return -EINVAL;
ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
type = usb_endpoint_type(&ep->desc);
/* Set up the endpoint ring */
virt_dev->eps[ep_index].new_ring =
xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
if (!virt_dev->eps[ep_index].new_ring) {
/* Attempt to use the ring cache */
if (virt_dev->num_rings_cached == 0)
return -ENOMEM;
virt_dev->num_rings_cached--;
virt_dev->eps[ep_index].new_ring =
virt_dev->ring_cache[virt_dev->num_rings_cached];
virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1, type);
}
virt_dev->eps[ep_index].skip = false;
ep_ring = virt_dev->eps[ep_index].new_ring;
ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
| EP_MULT(xhci_get_endpoint_mult(udev, ep)));
/* FIXME dig Mult and streams info out of ep companion desc */
/* Allow 3 retries for everything but isoc;
* CErr shall be set to 0 for Isoch endpoints.
*/
if (!usb_endpoint_xfer_isoc(&ep->desc))
ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
else
ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
/* Set the max packet size and max burst */
max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
max_burst = 0;
switch (udev->speed) {
case USB_SPEED_SUPER:
/* dig out max burst from ep companion desc */
max_burst = ep->ss_ep_comp.bMaxBurst;
break;
case USB_SPEED_HIGH:
/* Some devices get this wrong */
if (usb_endpoint_xfer_bulk(&ep->desc))
max_packet = 512;
/* bits 11:12 specify the number of additional transaction
* opportunities per microframe (USB 2.0, section 9.6.6)
*/
if (usb_endpoint_xfer_isoc(&ep->desc) ||
usb_endpoint_xfer_int(&ep->desc)) {
max_burst = (usb_endpoint_maxp(&ep->desc)
& 0x1800) >> 11;
}
break;
case USB_SPEED_FULL:
case USB_SPEED_LOW:
break;
default:
BUG();
}
ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
MAX_BURST(max_burst));
max_esit_payload = xhci_get_max_esit_payload(udev, ep);
ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
/*
* XXX no idea how to calculate the average TRB buffer length for bulk
* endpoints, as the driver gives us no clue how big each scatter gather
* list entry (or buffer) is going to be.
*
* For isochronous and interrupt endpoints, we set it to the max
* available, until we have new API in the USB core to allow drivers to
* declare how much bandwidth they actually need.
*
* Normally, it would be calculated by taking the total of the buffer
* lengths in the TD and then dividing by the number of TRBs in a TD,
* including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
* use Event Data TRBs, and we don't chain in a link TRB on short
* transfers, we're basically dividing by 1.
*
* xHCI 1.0 and 1.1 specification indicates that the Average TRB Length
* should be set to 8 for control endpoints.
*/
if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
else
ep_ctx->tx_info |=
cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
/* FIXME Debug endpoint context */
return 0;
}
void xhci_endpoint_zero(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev,
struct usb_host_endpoint *ep)
{
unsigned int ep_index;
struct xhci_ep_ctx *ep_ctx;
ep_index = xhci_get_endpoint_index(&ep->desc);
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
ep_ctx->ep_info = 0;
ep_ctx->ep_info2 = 0;
ep_ctx->deq = 0;
ep_ctx->tx_info = 0;
/* Don't free the endpoint ring until the set interface or configuration
* request succeeds.
*/
}
void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
{
bw_info->ep_interval = 0;
bw_info->mult = 0;
bw_info->num_packets = 0;
bw_info->max_packet_size = 0;
bw_info->type = 0;
bw_info->max_esit_payload = 0;
}
void xhci_update_bw_info(struct xhci_hcd *xhci,
struct xhci_container_ctx *in_ctx,
struct xhci_input_control_ctx *ctrl_ctx,
struct xhci_virt_device *virt_dev)
{
struct xhci_bw_info *bw_info;
struct xhci_ep_ctx *ep_ctx;
unsigned int ep_type;
int i;
for (i = 1; i < 31; ++i) {
bw_info = &virt_dev->eps[i].bw_info;
/* We can't tell what endpoint type is being dropped, but
* unconditionally clearing the bandwidth info for non-periodic
* endpoints should be harmless because the info will never be
* set in the first place.
*/
if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
/* Dropped endpoint */
xhci_clear_endpoint_bw_info(bw_info);
continue;
}
if (EP_IS_ADDED(ctrl_ctx, i)) {
ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
/* Ignore non-periodic endpoints */
if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
ep_type != ISOC_IN_EP &&
ep_type != INT_IN_EP)
continue;
/* Added or changed endpoint */
bw_info->ep_interval = CTX_TO_EP_INTERVAL(
le32_to_cpu(ep_ctx->ep_info));
/* Number of packets and mult are zero-based in the
* input context, but we want one-based for the
* interval table.
*/
bw_info->mult = CTX_TO_EP_MULT(
le32_to_cpu(ep_ctx->ep_info)) + 1;
bw_info->num_packets = CTX_TO_MAX_BURST(
le32_to_cpu(ep_ctx->ep_info2)) + 1;
bw_info->max_packet_size = MAX_PACKET_DECODED(
le32_to_cpu(ep_ctx->ep_info2));
bw_info->type = ep_type;
bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
le32_to_cpu(ep_ctx->tx_info));
}
}
}
/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
* Useful when you want to change one particular aspect of the endpoint and then
* issue a configure endpoint command.
*/
void xhci_endpoint_copy(struct xhci_hcd *xhci,
struct xhci_container_ctx *in_ctx,
struct xhci_container_ctx *out_ctx,
unsigned int ep_index)
{
struct xhci_ep_ctx *out_ep_ctx;
struct xhci_ep_ctx *in_ep_ctx;
out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
in_ep_ctx->ep_info = out_ep_ctx->ep_info;
in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
in_ep_ctx->deq = out_ep_ctx->deq;
in_ep_ctx->tx_info = out_ep_ctx->tx_info;
}
/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
* Useful when you want to change one particular aspect of the endpoint and then
* issue a configure endpoint command. Only the context entries field matters,
* but we'll copy the whole thing anyway.
*/
void xhci_slot_copy(struct xhci_hcd *xhci,
struct xhci_container_ctx *in_ctx,
struct xhci_container_ctx *out_ctx)
{
struct xhci_slot_ctx *in_slot_ctx;
struct xhci_slot_ctx *out_slot_ctx;
in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
in_slot_ctx->dev_info = out_slot_ctx->dev_info;
in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
in_slot_ctx->tt_info = out_slot_ctx->tt_info;
in_slot_ctx->dev_state = out_slot_ctx->dev_state;
}
/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
{
int i;
struct device *dev = xhci_to_hcd(xhci)->self.controller;
int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Allocating %d scratchpad buffers", num_sp);
if (!num_sp)
return 0;
xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
if (!xhci->scratchpad)
goto fail_sp;
xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
num_sp * sizeof(u64),
&xhci->scratchpad->sp_dma, flags);
if (!xhci->scratchpad->sp_array)
goto fail_sp2;
xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
if (!xhci->scratchpad->sp_buffers)
goto fail_sp3;
xhci->scratchpad->sp_dma_buffers =
kzalloc(sizeof(dma_addr_t) * num_sp, flags);
if (!xhci->scratchpad->sp_dma_buffers)
goto fail_sp4;
xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
for (i = 0; i < num_sp; i++) {
dma_addr_t dma;
void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
flags);
if (!buf)
goto fail_sp5;
xhci->scratchpad->sp_array[i] = dma;
xhci->scratchpad->sp_buffers[i] = buf;
xhci->scratchpad->sp_dma_buffers[i] = dma;
}
return 0;
fail_sp5:
for (i = i - 1; i >= 0; i--) {
dma_free_coherent(dev, xhci->page_size,
xhci->scratchpad->sp_buffers[i],
xhci->scratchpad->sp_dma_buffers[i]);
}
kfree(xhci->scratchpad->sp_dma_buffers);
fail_sp4:
kfree(xhci->scratchpad->sp_buffers);
fail_sp3:
dma_free_coherent(dev, num_sp * sizeof(u64),
xhci->scratchpad->sp_array,
xhci->scratchpad->sp_dma);
fail_sp2:
kfree(xhci->scratchpad);
xhci->scratchpad = NULL;
fail_sp:
return -ENOMEM;
}
static void scratchpad_free(struct xhci_hcd *xhci)
{
int num_sp;
int i;
struct device *dev = xhci_to_hcd(xhci)->self.controller;
if (!xhci->scratchpad)
return;
num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
for (i = 0; i < num_sp; i++) {
dma_free_coherent(dev, xhci->page_size,
xhci->scratchpad->sp_buffers[i],
xhci->scratchpad->sp_dma_buffers[i]);
}
kfree(xhci->scratchpad->sp_dma_buffers);
kfree(xhci->scratchpad->sp_buffers);
dma_free_coherent(dev, num_sp * sizeof(u64),
xhci->scratchpad->sp_array,
xhci->scratchpad->sp_dma);
kfree(xhci->scratchpad);
xhci->scratchpad = NULL;
}
struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
bool allocate_in_ctx, bool allocate_completion,
gfp_t mem_flags)
{
struct xhci_command *command;
command = kzalloc(sizeof(*command), mem_flags);
if (!command)
return NULL;
if (allocate_in_ctx) {
command->in_ctx =
xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
mem_flags);
if (!command->in_ctx) {
kfree(command);
return NULL;
}
}
if (allocate_completion) {
command->completion =
kzalloc(sizeof(struct completion), mem_flags);
if (!command->completion) {
xhci_free_container_ctx(xhci, command->in_ctx);
kfree(command);
return NULL;
}
init_completion(command->completion);
}
command->status = 0;
INIT_LIST_HEAD(&command->cmd_list);
return command;
}
void xhci_urb_free_priv(struct urb_priv *urb_priv)
{
if (urb_priv) {
kfree(urb_priv->td[0]);
kfree(urb_priv);
}
}
void xhci_free_command(struct xhci_hcd *xhci,
struct xhci_command *command)
{
xhci_free_container_ctx(xhci,
command->in_ctx);
kfree(command->completion);
kfree(command);
}
void xhci_mem_cleanup(struct xhci_hcd *xhci)
{
struct device *dev = xhci_to_hcd(xhci)->self.controller;
int size;
int i, j, num_ports;
del_timer_sync(&xhci->cmd_timer);
/* Free the Event Ring Segment Table and the actual Event Ring */
size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
if (xhci->erst.entries)
dma_free_coherent(dev, size,
xhci->erst.entries, xhci->erst.erst_dma_addr);
xhci->erst.entries = NULL;
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
if (xhci->event_ring)
xhci_ring_free(xhci, xhci->event_ring);
xhci->event_ring = NULL;
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
if (xhci->lpm_command)
xhci_free_command(xhci, xhci->lpm_command);
xhci->lpm_command = NULL;
if (xhci->cmd_ring)
xhci_ring_free(xhci, xhci->cmd_ring);
xhci->cmd_ring = NULL;
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
xhci_cleanup_command_queue(xhci);
num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
for (i = 0; i < num_ports && xhci->rh_bw; i++) {
struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
struct list_head *ep = &bwt->interval_bw[j].endpoints;
while (!list_empty(ep))
list_del_init(ep->next);
}
}
for (i = 1; i < MAX_HC_SLOTS; ++i)
xhci_free_virt_device(xhci, i);
dma_pool_destroy(xhci->segment_pool);
xhci->segment_pool = NULL;
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
dma_pool_destroy(xhci->device_pool);
xhci->device_pool = NULL;
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
dma_pool_destroy(xhci->small_streams_pool);
xhci->small_streams_pool = NULL;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Freed small stream array pool");
dma_pool_destroy(xhci->medium_streams_pool);
xhci->medium_streams_pool = NULL;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Freed medium stream array pool");
if (xhci->dcbaa)
dma_free_coherent(dev, sizeof(*xhci->dcbaa),
xhci->dcbaa, xhci->dcbaa->dma);
xhci->dcbaa = NULL;
scratchpad_free(xhci);
if (!xhci->rh_bw)
goto no_bw;
for (i = 0; i < num_ports; i++) {
struct xhci_tt_bw_info *tt, *n;
list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
list_del(&tt->tt_list);
kfree(tt);
}
}
no_bw:
xhci->cmd_ring_reserved_trbs = 0;
xhci->num_usb2_ports = 0;
xhci->num_usb3_ports = 0;
xhci->num_active_eps = 0;
kfree(xhci->usb2_ports);
kfree(xhci->usb3_ports);
kfree(xhci->port_array);
kfree(xhci->rh_bw);
kfree(xhci->ext_caps);
xhci->page_size = 0;
xhci->page_shift = 0;
xhci->bus_state[0].bus_suspended = 0;
xhci->bus_state[1].bus_suspended = 0;
}
static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
struct xhci_segment *input_seg,
union xhci_trb *start_trb,
union xhci_trb *end_trb,
dma_addr_t input_dma,
struct xhci_segment *result_seg,
char *test_name, int test_number)
{
unsigned long long start_dma;
unsigned long long end_dma;
struct xhci_segment *seg;
start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
if (seg != result_seg) {
xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
test_name, test_number);
xhci_warn(xhci, "Tested TRB math w/ seg %p and "
"input DMA 0x%llx\n",
input_seg,
(unsigned long long) input_dma);
xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
"ending TRB %p (0x%llx DMA)\n",
start_trb, start_dma,
end_trb, end_dma);
xhci_warn(xhci, "Expected seg %p, got seg %p\n",
result_seg, seg);
trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
true);
return -1;
}
return 0;
}
/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
{
struct {
dma_addr_t input_dma;
struct xhci_segment *result_seg;
} simple_test_vector [] = {
/* A zeroed DMA field should fail */
{ 0, NULL },
/* One TRB before the ring start should fail */
{ xhci->event_ring->first_seg->dma - 16, NULL },
/* One byte before the ring start should fail */
{ xhci->event_ring->first_seg->dma - 1, NULL },
/* Starting TRB should succeed */
{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
/* Ending TRB should succeed */
{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
xhci->event_ring->first_seg },
/* One byte after the ring end should fail */
{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
/* One TRB after the ring end should fail */
{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
/* An address of all ones should fail */
{ (dma_addr_t) (~0), NULL },
};
struct {
struct xhci_segment *input_seg;
union xhci_trb *start_trb;
union xhci_trb *end_trb;
dma_addr_t input_dma;
struct xhci_segment *result_seg;
} complex_test_vector [] = {
/* Test feeding a valid DMA address from a different ring */
{ .input_seg = xhci->event_ring->first_seg,
.start_trb = xhci->event_ring->first_seg->trbs,
.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
.input_dma = xhci->cmd_ring->first_seg->dma,
.result_seg = NULL,
},
/* Test feeding a valid end TRB from a different ring */
{ .input_seg = xhci->event_ring->first_seg,
.start_trb = xhci->event_ring->first_seg->trbs,
.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
.input_dma = xhci->cmd_ring->first_seg->dma,
.result_seg = NULL,
},
/* Test feeding a valid start and end TRB from a different ring */
{ .input_seg = xhci->event_ring->first_seg,
.start_trb = xhci->cmd_ring->first_seg->trbs,
.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
.input_dma = xhci->cmd_ring->first_seg->dma,
.result_seg = NULL,
},
/* TRB in this ring, but after this TD */
{ .input_seg = xhci->event_ring->first_seg,
.start_trb = &xhci->event_ring->first_seg->trbs[0],
.end_trb = &xhci->event_ring->first_seg->trbs[3],
.input_dma = xhci->event_ring->first_seg->dma + 4*16,
.result_seg = NULL,
},
/* TRB in this ring, but before this TD */
{ .input_seg = xhci->event_ring->first_seg,
.start_trb = &xhci->event_ring->first_seg->trbs[3],
.end_trb = &xhci->event_ring->first_seg->trbs[6],
.input_dma = xhci->event_ring->first_seg->dma + 2*16,
.result_seg = NULL,
},
/* TRB in this ring, but after this wrapped TD */
{ .input_seg = xhci->event_ring->first_seg,
.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
.end_trb = &xhci->event_ring->first_seg->trbs[1],
.input_dma = xhci->event_ring->first_seg->dma + 2*16,
.result_seg = NULL,
},
/* TRB in this ring, but before this wrapped TD */
{ .input_seg = xhci->event_ring->first_seg,
.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
.end_trb = &xhci->event_ring->first_seg->trbs[1],
.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
.result_seg = NULL,
},
/* TRB not in this ring, and we have a wrapped TD */
{ .input_seg = xhci->event_ring->first_seg,
.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
.end_trb = &xhci->event_ring->first_seg->trbs[1],
.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
.result_seg = NULL,
},
};
unsigned int num_tests;
int i, ret;
num_tests = ARRAY_SIZE(simple_test_vector);
for (i = 0; i < num_tests; i++) {
ret = xhci_test_trb_in_td(xhci,
xhci->event_ring->first_seg,
xhci->event_ring->first_seg->trbs,
&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
simple_test_vector[i].input_dma,
simple_test_vector[i].result_seg,
"Simple", i);
if (ret < 0)
return ret;
}
num_tests = ARRAY_SIZE(complex_test_vector);
for (i = 0; i < num_tests; i++) {
ret = xhci_test_trb_in_td(xhci,
complex_test_vector[i].input_seg,
complex_test_vector[i].start_trb,
complex_test_vector[i].end_trb,
complex_test_vector[i].input_dma,
complex_test_vector[i].result_seg,
"Complex", i);
if (ret < 0)
return ret;
}
xhci_dbg(xhci, "TRB math tests passed.\n");
return 0;
}
static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
{
u64 temp;
dma_addr_t deq;
deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
xhci->event_ring->dequeue);
if (deq == 0 && !in_interrupt())
xhci_warn(xhci, "WARN something wrong with SW event ring "
"dequeue ptr.\n");
/* Update HC event ring dequeue pointer */
temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
temp &= ERST_PTR_MASK;
/* Don't clear the EHB bit (which is RW1C) because
* there might be more events to service.
*/
temp &= ~ERST_EHB;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Write event ring dequeue pointer, "
"preserving EHB bit");
xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
&xhci->ir_set->erst_dequeue);
}
static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
__le32 __iomem *addr, u8 major_revision, int max_caps)
{
u32 temp, port_offset, port_count;
int i;
struct xhci_hub *rhub;
temp = readl(addr);
if (XHCI_EXT_PORT_MAJOR(temp) == 0x03) {
rhub = &xhci->usb3_rhub;
} else if (XHCI_EXT_PORT_MAJOR(temp) <= 0x02) {
rhub = &xhci->usb2_rhub;
} else {
xhci_warn(xhci, "Ignoring unknown port speed, "
"Ext Cap %p, revision = 0x%x\n",
addr, major_revision);
/* Ignoring port protocol we can't understand. FIXME */
return;
}
rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
/* Port offset and count in the third dword, see section 7.2 */
temp = readl(addr + 2);
port_offset = XHCI_EXT_PORT_OFF(temp);
port_count = XHCI_EXT_PORT_COUNT(temp);
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Ext Cap %p, port offset = %u, "
"count = %u, revision = 0x%x",
addr, port_offset, port_count, major_revision);
/* Port count includes the current port offset */
if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
/* WTF? "Valid values are ‘1’ to MaxPorts" */
return;
rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
if (rhub->psi_count) {
rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
GFP_KERNEL);
if (!rhub->psi)
rhub->psi_count = 0;
rhub->psi_uid_count++;
for (i = 0; i < rhub->psi_count; i++) {
rhub->psi[i] = readl(addr + 4 + i);
/* count unique ID values, two consecutive entries can
* have the same ID if link is assymetric
*/
if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
rhub->psi_uid_count++;
xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
XHCI_EXT_PORT_PSIV(rhub->psi[i]),
XHCI_EXT_PORT_PSIE(rhub->psi[i]),
XHCI_EXT_PORT_PLT(rhub->psi[i]),
XHCI_EXT_PORT_PFD(rhub->psi[i]),
XHCI_EXT_PORT_LP(rhub->psi[i]),
XHCI_EXT_PORT_PSIM(rhub->psi[i]));
}
}
/* cache usb2 port capabilities */
if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
xhci->ext_caps[xhci->num_ext_caps++] = temp;
/* Check the host's USB2 LPM capability */
if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
(temp & XHCI_L1C)) {
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"xHCI 0.96: support USB2 software lpm");
xhci->sw_lpm_support = 1;
}
if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"xHCI 1.0: support USB2 software lpm");
xhci->sw_lpm_support = 1;
if (temp & XHCI_HLC) {
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"xHCI 1.0: support USB2 hardware lpm");
xhci->hw_lpm_support = 1;
}
}
port_offset--;
for (i = port_offset; i < (port_offset + port_count); i++) {
/* Duplicate entry. Ignore the port if the revisions differ. */
if (xhci->port_array[i] != 0) {
xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
" port %u\n", addr, i);
xhci_warn(xhci, "Port was marked as USB %u, "
"duplicated as USB %u\n",
xhci->port_array[i], major_revision);
/* Only adjust the roothub port counts if we haven't
* found a similar duplicate.
*/
if (xhci->port_array[i] != major_revision &&
xhci->port_array[i] != DUPLICATE_ENTRY) {
if (xhci->port_array[i] == 0x03)
xhci->num_usb3_ports--;
else
xhci->num_usb2_ports--;
xhci->port_array[i] = DUPLICATE_ENTRY;
}
/* FIXME: Should we disable the port? */
continue;
}
xhci->port_array[i] = major_revision;
if (major_revision == 0x03)
xhci->num_usb3_ports++;
else
xhci->num_usb2_ports++;
}
/* FIXME: Should we disable ports not in the Extended Capabilities? */
}
/*
* Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
* specify what speeds each port is supposed to be. We can't count on the port
* speed bits in the PORTSC register being correct until a device is connected,
* but we need to set up the two fake roothubs with the correct number of USB
* 3.0 and USB 2.0 ports at host controller initialization time.
*/
static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
{
__le32 __iomem *addr, *tmp_addr;
u32 offset, tmp_offset;
unsigned int num_ports;
int i, j, port_index;
int cap_count = 0;
addr = &xhci->cap_regs->hcc_params;
offset = XHCI_HCC_EXT_CAPS(readl(addr));
if (offset == 0) {
xhci_err(xhci, "No Extended Capability registers, "
"unable to set up roothub.\n");
return -ENODEV;
}
num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
if (!xhci->port_array)
return -ENOMEM;
xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
if (!xhci->rh_bw)
return -ENOMEM;
for (i = 0; i < num_ports; i++) {
struct xhci_interval_bw_table *bw_table;
INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
bw_table = &xhci->rh_bw[i].bw_table;
for (j = 0; j < XHCI_MAX_INTERVAL; j++)
INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
}
/*
* For whatever reason, the first capability offset is from the
* capability register base, not from the HCCPARAMS register.
* See section 5.3.6 for offset calculation.
*/
addr = &xhci->cap_regs->hc_capbase + offset;
tmp_addr = addr;
tmp_offset = offset;
/* count extended protocol capability entries for later caching */
do {
u32 cap_id;
cap_id = readl(tmp_addr);
if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
cap_count++;
tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
tmp_addr += tmp_offset;
} while (tmp_offset);
xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
if (!xhci->ext_caps)
return -ENOMEM;
while (1) {
u32 cap_id;
cap_id = readl(addr);
if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
xhci_add_in_port(xhci, num_ports, addr,
(u8) XHCI_EXT_PORT_MAJOR(cap_id),
cap_count);
offset = XHCI_EXT_CAPS_NEXT(cap_id);
if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
== num_ports)
break;
/*
* Once you're into the Extended Capabilities, the offset is
* always relative to the register holding the offset.
*/
addr += offset;
}
if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
xhci_warn(xhci, "No ports on the roothubs?\n");
return -ENODEV;
}
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Found %u USB 2.0 ports and %u USB 3.0 ports.",
xhci->num_usb2_ports, xhci->num_usb3_ports);
/* Place limits on the number of roothub ports so that the hub
* descriptors aren't longer than the USB core will allocate.
*/
if (xhci->num_usb3_ports > 15) {
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Limiting USB 3.0 roothub ports to 15.");
xhci->num_usb3_ports = 15;
}
if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Limiting USB 2.0 roothub ports to %u.",
USB_MAXCHILDREN);
xhci->num_usb2_ports = USB_MAXCHILDREN;
}
/*
* Note we could have all USB 3.0 ports, or all USB 2.0 ports.
* Not sure how the USB core will handle a hub with no ports...
*/
if (xhci->num_usb2_ports) {
xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
xhci->num_usb2_ports, flags);
if (!xhci->usb2_ports)
return -ENOMEM;
port_index = 0;
for (i = 0; i < num_ports; i++) {
if (xhci->port_array[i] == 0x03 ||
xhci->port_array[i] == 0 ||
xhci->port_array[i] == DUPLICATE_ENTRY)
continue;
xhci->usb2_ports[port_index] =
&xhci->op_regs->port_status_base +
NUM_PORT_REGS*i;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"USB 2.0 port at index %u, "
"addr = %p", i,
xhci->usb2_ports[port_index]);
port_index++;
if (port_index == xhci->num_usb2_ports)
break;
}
}
if (xhci->num_usb3_ports) {
xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
xhci->num_usb3_ports, flags);
if (!xhci->usb3_ports)
return -ENOMEM;
port_index = 0;
for (i = 0; i < num_ports; i++)
if (xhci->port_array[i] == 0x03) {
xhci->usb3_ports[port_index] =
&xhci->op_regs->port_status_base +
NUM_PORT_REGS*i;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"USB 3.0 port at index %u, "
"addr = %p", i,
xhci->usb3_ports[port_index]);
port_index++;
if (port_index == xhci->num_usb3_ports)
break;
}
}
return 0;
}
int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
{
dma_addr_t dma;
struct device *dev = xhci_to_hcd(xhci)->self.controller;
unsigned int val, val2;
u64 val_64;
struct xhci_segment *seg;
u32 page_size, temp;
int i;
INIT_LIST_HEAD(&xhci->cmd_list);
/* init command timeout timer */
setup_timer(&xhci->cmd_timer, xhci_handle_command_timeout,
(unsigned long)xhci);
page_size = readl(&xhci->op_regs->page_size);
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Supported page size register = 0x%x", page_size);
for (i = 0; i < 16; i++) {
if ((0x1 & page_size) != 0)
break;
page_size = page_size >> 1;
}
if (i < 16)
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Supported page size of %iK", (1 << (i+12)) / 1024);
else
xhci_warn(xhci, "WARN: no supported page size\n");
/* Use 4K pages, since that's common and the minimum the HC supports */
xhci->page_shift = 12;
xhci->page_size = 1 << xhci->page_shift;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"HCD page size set to %iK", xhci->page_size / 1024);
/*
* Program the Number of Device Slots Enabled field in the CONFIG
* register with the max value of slots the HC can handle.
*/
val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// xHC can handle at most %d device slots.", val);
val2 = readl(&xhci->op_regs->config_reg);
val |= (val2 & ~HCS_SLOTS_MASK);
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Setting Max device slots reg = 0x%x.", val);
writel(val, &xhci->op_regs->config_reg);
/*
* Section 5.4.8 - doorbell array must be
* "physically contiguous and 64-byte (cache line) aligned".
*/
xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
GFP_KERNEL);
if (!xhci->dcbaa)
goto fail;
memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
xhci->dcbaa->dma = dma;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Device context base array address = 0x%llx (DMA), %p (virt)",
(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
/*
* Initialize the ring segment pool. The ring must be a contiguous
* structure comprised of TRBs. The TRBs must be 16 byte aligned,
* however, the command ring segment needs 64-byte aligned segments
* and our use of dma addresses in the trb_address_map radix tree needs
* TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
*/
xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
/* See Table 46 and Note on Figure 55 */
xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2112, 64, xhci->page_size);
if (!xhci->segment_pool || !xhci->device_pool)
goto fail;
/* Linear stream context arrays don't have any boundary restrictions,
* and only need to be 16-byte aligned.
*/
xhci->small_streams_pool =
dma_pool_create("xHCI 256 byte stream ctx arrays",
dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
xhci->medium_streams_pool =
dma_pool_create("xHCI 1KB stream ctx arrays",
dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
* will be allocated with dma_alloc_coherent()
*/
if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
goto fail;
/* Set up the command ring to have one segments for now. */
xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
if (!xhci->cmd_ring)
goto fail;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Allocated command ring at %p", xhci->cmd_ring);
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
(unsigned long long)xhci->cmd_ring->first_seg->dma);
/* Set the address in the Command Ring Control register */
val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
xhci->cmd_ring->cycle_state;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Setting command ring address to 0x%x", val);
xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
xhci_dbg_cmd_ptrs(xhci);
xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
if (!xhci->lpm_command)
goto fail;
/* Reserve one command ring TRB for disabling LPM.
* Since the USB core grabs the shared usb_bus bandwidth mutex before
* disabling LPM, we only need to reserve one TRB for all devices.
*/
xhci->cmd_ring_reserved_trbs++;
val = readl(&xhci->cap_regs->db_off);
val &= DBOFF_MASK;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Doorbell array is located at offset 0x%x"
" from cap regs base addr", val);
xhci->dba = (void __iomem *) xhci->cap_regs + val;
xhci_dbg_regs(xhci);
xhci_print_run_regs(xhci);
/* Set ir_set to interrupt register set 0 */
xhci->ir_set = &xhci->run_regs->ir_set[0];
/*
* Event ring setup: Allocate a normal ring, but also setup
* the event ring segment table (ERST). Section 4.9.3.
*/
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
flags);
if (!xhci->event_ring)
goto fail;
if (xhci_check_trb_in_td_math(xhci) < 0)
goto fail;
xhci->erst.entries = dma_alloc_coherent(dev,
sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
GFP_KERNEL);
if (!xhci->erst.entries)
goto fail;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Allocated event ring segment table at 0x%llx",
(unsigned long long)dma);
memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
xhci->erst.num_entries = ERST_NUM_SEGS;
xhci->erst.erst_dma_addr = dma;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
xhci->erst.num_entries,
xhci->erst.entries,
(unsigned long long)xhci->erst.erst_dma_addr);
/* set ring base address and size for each segment table entry */
for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
struct xhci_erst_entry *entry = &xhci->erst.entries[val];
entry->seg_addr = cpu_to_le64(seg->dma);
entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
entry->rsvd = 0;
seg = seg->next;
}
/* set ERST count with the number of entries in the segment table */
val = readl(&xhci->ir_set->erst_size);
val &= ERST_SIZE_MASK;
val |= ERST_NUM_SEGS;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Write ERST size = %i to ir_set 0 (some bits preserved)",
val);
writel(val, &xhci->ir_set->erst_size);
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Set ERST entries to point to event ring.");
/* set the segment table base address */
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Set ERST base address for ir_set 0 = 0x%llx",
(unsigned long long)xhci->erst.erst_dma_addr);
val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
val_64 &= ERST_PTR_MASK;
val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
/* Set the event ring dequeue address */
xhci_set_hc_event_deq(xhci);
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Wrote ERST address to ir_set 0.");
xhci_print_ir_set(xhci, 0);
/*
* XXX: Might need to set the Interrupter Moderation Register to
* something other than the default (~1ms minimum between interrupts).
* See section 5.5.1.2.
*/
init_completion(&xhci->addr_dev);
for (i = 0; i < MAX_HC_SLOTS; ++i)
xhci->devs[i] = NULL;
for (i = 0; i < USB_MAXCHILDREN; ++i) {
xhci->bus_state[0].resume_done[i] = 0;
xhci->bus_state[1].resume_done[i] = 0;
/* Only the USB 2.0 completions will ever be used. */
init_completion(&xhci->bus_state[1].rexit_done[i]);
}
if (scratchpad_alloc(xhci, flags))
goto fail;
if (xhci_setup_port_arrays(xhci, flags))
goto fail;
/* Enable USB 3.0 device notifications for function remote wake, which
* is necessary for allowing USB 3.0 devices to do remote wakeup from
* U3 (device suspend).
*/
temp = readl(&xhci->op_regs->dev_notification);
temp &= ~DEV_NOTE_MASK;
temp |= DEV_NOTE_FWAKE;
writel(temp, &xhci->op_regs->dev_notification);
return 0;
fail:
xhci_warn(xhci, "Couldn't initialize memory\n");
xhci_halt(xhci);
xhci_reset(xhci);
xhci_mem_cleanup(xhci);
return -ENOMEM;
}