| /**************************************************************************** |
| * Driver for Solarflare Solarstorm network controllers and boards |
| * Copyright 2005-2006 Fen Systems Ltd. |
| * Copyright 2006-2011 Solarflare Communications Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| #include <linux/pci.h> |
| #include <linux/module.h> |
| #include <linux/seq_file.h> |
| #include "net_driver.h" |
| #include "bitfield.h" |
| #include "efx.h" |
| #include "nic.h" |
| #include "regs.h" |
| #include "io.h" |
| #include "workarounds.h" |
| |
| /************************************************************************** |
| * |
| * Configurable values |
| * |
| ************************************************************************** |
| */ |
| |
| /* This is set to 16 for a good reason. In summary, if larger than |
| * 16, the descriptor cache holds more than a default socket |
| * buffer's worth of packets (for UDP we can only have at most one |
| * socket buffer's worth outstanding). This combined with the fact |
| * that we only get 1 TX event per descriptor cache means the NIC |
| * goes idle. |
| */ |
| #define TX_DC_ENTRIES 16 |
| #define TX_DC_ENTRIES_ORDER 1 |
| |
| #define RX_DC_ENTRIES 64 |
| #define RX_DC_ENTRIES_ORDER 3 |
| |
| /* If EFX_MAX_INT_ERRORS internal errors occur within |
| * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and |
| * disable it. |
| */ |
| #define EFX_INT_ERROR_EXPIRE 3600 |
| #define EFX_MAX_INT_ERRORS 5 |
| |
| /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times |
| */ |
| #define EFX_FLUSH_INTERVAL 10 |
| #define EFX_FLUSH_POLL_COUNT 100 |
| |
| /* Size and alignment of special buffers (4KB) */ |
| #define EFX_BUF_SIZE 4096 |
| |
| /* Depth of RX flush request fifo */ |
| #define EFX_RX_FLUSH_COUNT 4 |
| |
| /* Generated event code for efx_generate_test_event() */ |
| #define EFX_CHANNEL_MAGIC_TEST(_channel) \ |
| (0x00010100 + (_channel)->channel) |
| |
| /* Generated event code for efx_generate_fill_event() */ |
| #define EFX_CHANNEL_MAGIC_FILL(_channel) \ |
| (0x00010200 + (_channel)->channel) |
| |
| /************************************************************************** |
| * |
| * Solarstorm hardware access |
| * |
| **************************************************************************/ |
| |
| static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value, |
| unsigned int index) |
| { |
| efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base, |
| value, index); |
| } |
| |
| /* Read the current event from the event queue */ |
| static inline efx_qword_t *efx_event(struct efx_channel *channel, |
| unsigned int index) |
| { |
| return ((efx_qword_t *) (channel->eventq.addr)) + index; |
| } |
| |
| /* See if an event is present |
| * |
| * We check both the high and low dword of the event for all ones. We |
| * wrote all ones when we cleared the event, and no valid event can |
| * have all ones in either its high or low dwords. This approach is |
| * robust against reordering. |
| * |
| * Note that using a single 64-bit comparison is incorrect; even |
| * though the CPU read will be atomic, the DMA write may not be. |
| */ |
| static inline int efx_event_present(efx_qword_t *event) |
| { |
| return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) | |
| EFX_DWORD_IS_ALL_ONES(event->dword[1])); |
| } |
| |
| static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b, |
| const efx_oword_t *mask) |
| { |
| return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) || |
| ((a->u64[1] ^ b->u64[1]) & mask->u64[1]); |
| } |
| |
| int efx_nic_test_registers(struct efx_nic *efx, |
| const struct efx_nic_register_test *regs, |
| size_t n_regs) |
| { |
| unsigned address = 0, i, j; |
| efx_oword_t mask, imask, original, reg, buf; |
| |
| /* Falcon should be in loopback to isolate the XMAC from the PHY */ |
| WARN_ON(!LOOPBACK_INTERNAL(efx)); |
| |
| for (i = 0; i < n_regs; ++i) { |
| address = regs[i].address; |
| mask = imask = regs[i].mask; |
| EFX_INVERT_OWORD(imask); |
| |
| efx_reado(efx, &original, address); |
| |
| /* bit sweep on and off */ |
| for (j = 0; j < 128; j++) { |
| if (!EFX_EXTRACT_OWORD32(mask, j, j)) |
| continue; |
| |
| /* Test this testable bit can be set in isolation */ |
| EFX_AND_OWORD(reg, original, mask); |
| EFX_SET_OWORD32(reg, j, j, 1); |
| |
| efx_writeo(efx, ®, address); |
| efx_reado(efx, &buf, address); |
| |
| if (efx_masked_compare_oword(®, &buf, &mask)) |
| goto fail; |
| |
| /* Test this testable bit can be cleared in isolation */ |
| EFX_OR_OWORD(reg, original, mask); |
| EFX_SET_OWORD32(reg, j, j, 0); |
| |
| efx_writeo(efx, ®, address); |
| efx_reado(efx, &buf, address); |
| |
| if (efx_masked_compare_oword(®, &buf, &mask)) |
| goto fail; |
| } |
| |
| efx_writeo(efx, &original, address); |
| } |
| |
| return 0; |
| |
| fail: |
| netif_err(efx, hw, efx->net_dev, |
| "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT |
| " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg), |
| EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask)); |
| return -EIO; |
| } |
| |
| /************************************************************************** |
| * |
| * Special buffer handling |
| * Special buffers are used for event queues and the TX and RX |
| * descriptor rings. |
| * |
| *************************************************************************/ |
| |
| /* |
| * Initialise a special buffer |
| * |
| * This will define a buffer (previously allocated via |
| * efx_alloc_special_buffer()) in the buffer table, allowing |
| * it to be used for event queues, descriptor rings etc. |
| */ |
| static void |
| efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) |
| { |
| efx_qword_t buf_desc; |
| int index; |
| dma_addr_t dma_addr; |
| int i; |
| |
| EFX_BUG_ON_PARANOID(!buffer->addr); |
| |
| /* Write buffer descriptors to NIC */ |
| for (i = 0; i < buffer->entries; i++) { |
| index = buffer->index + i; |
| dma_addr = buffer->dma_addr + (i * 4096); |
| netif_dbg(efx, probe, efx->net_dev, |
| "mapping special buffer %d at %llx\n", |
| index, (unsigned long long)dma_addr); |
| EFX_POPULATE_QWORD_3(buf_desc, |
| FRF_AZ_BUF_ADR_REGION, 0, |
| FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12, |
| FRF_AZ_BUF_OWNER_ID_FBUF, 0); |
| efx_write_buf_tbl(efx, &buf_desc, index); |
| } |
| } |
| |
| /* Unmaps a buffer and clears the buffer table entries */ |
| static void |
| efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) |
| { |
| efx_oword_t buf_tbl_upd; |
| unsigned int start = buffer->index; |
| unsigned int end = (buffer->index + buffer->entries - 1); |
| |
| if (!buffer->entries) |
| return; |
| |
| netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n", |
| buffer->index, buffer->index + buffer->entries - 1); |
| |
| EFX_POPULATE_OWORD_4(buf_tbl_upd, |
| FRF_AZ_BUF_UPD_CMD, 0, |
| FRF_AZ_BUF_CLR_CMD, 1, |
| FRF_AZ_BUF_CLR_END_ID, end, |
| FRF_AZ_BUF_CLR_START_ID, start); |
| efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD); |
| } |
| |
| /* |
| * Allocate a new special buffer |
| * |
| * This allocates memory for a new buffer, clears it and allocates a |
| * new buffer ID range. It does not write into the buffer table. |
| * |
| * This call will allocate 4KB buffers, since 8KB buffers can't be |
| * used for event queues and descriptor rings. |
| */ |
| static int efx_alloc_special_buffer(struct efx_nic *efx, |
| struct efx_special_buffer *buffer, |
| unsigned int len) |
| { |
| len = ALIGN(len, EFX_BUF_SIZE); |
| |
| buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len, |
| &buffer->dma_addr, GFP_KERNEL); |
| if (!buffer->addr) |
| return -ENOMEM; |
| buffer->len = len; |
| buffer->entries = len / EFX_BUF_SIZE; |
| BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1)); |
| |
| /* All zeros is a potentially valid event so memset to 0xff */ |
| memset(buffer->addr, 0xff, len); |
| |
| /* Select new buffer ID */ |
| buffer->index = efx->next_buffer_table; |
| efx->next_buffer_table += buffer->entries; |
| |
| netif_dbg(efx, probe, efx->net_dev, |
| "allocating special buffers %d-%d at %llx+%x " |
| "(virt %p phys %llx)\n", buffer->index, |
| buffer->index + buffer->entries - 1, |
| (u64)buffer->dma_addr, len, |
| buffer->addr, (u64)virt_to_phys(buffer->addr)); |
| |
| return 0; |
| } |
| |
| static void |
| efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) |
| { |
| if (!buffer->addr) |
| return; |
| |
| netif_dbg(efx, hw, efx->net_dev, |
| "deallocating special buffers %d-%d at %llx+%x " |
| "(virt %p phys %llx)\n", buffer->index, |
| buffer->index + buffer->entries - 1, |
| (u64)buffer->dma_addr, buffer->len, |
| buffer->addr, (u64)virt_to_phys(buffer->addr)); |
| |
| dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr, |
| buffer->dma_addr); |
| buffer->addr = NULL; |
| buffer->entries = 0; |
| } |
| |
| /************************************************************************** |
| * |
| * Generic buffer handling |
| * These buffers are used for interrupt status and MAC stats |
| * |
| **************************************************************************/ |
| |
| int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, |
| unsigned int len) |
| { |
| buffer->addr = pci_alloc_consistent(efx->pci_dev, len, |
| &buffer->dma_addr); |
| if (!buffer->addr) |
| return -ENOMEM; |
| buffer->len = len; |
| memset(buffer->addr, 0, len); |
| return 0; |
| } |
| |
| void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer) |
| { |
| if (buffer->addr) { |
| pci_free_consistent(efx->pci_dev, buffer->len, |
| buffer->addr, buffer->dma_addr); |
| buffer->addr = NULL; |
| } |
| } |
| |
| /************************************************************************** |
| * |
| * TX path |
| * |
| **************************************************************************/ |
| |
| /* Returns a pointer to the specified transmit descriptor in the TX |
| * descriptor queue belonging to the specified channel. |
| */ |
| static inline efx_qword_t * |
| efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index) |
| { |
| return ((efx_qword_t *) (tx_queue->txd.addr)) + index; |
| } |
| |
| /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ |
| static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue) |
| { |
| unsigned write_ptr; |
| efx_dword_t reg; |
| |
| write_ptr = tx_queue->write_count & tx_queue->ptr_mask; |
| EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr); |
| efx_writed_page(tx_queue->efx, ®, |
| FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue); |
| } |
| |
| /* Write pointer and first descriptor for TX descriptor ring */ |
| static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue, |
| const efx_qword_t *txd) |
| { |
| unsigned write_ptr; |
| efx_oword_t reg; |
| |
| BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0); |
| BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0); |
| |
| write_ptr = tx_queue->write_count & tx_queue->ptr_mask; |
| EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true, |
| FRF_AZ_TX_DESC_WPTR, write_ptr); |
| reg.qword[0] = *txd; |
| efx_writeo_page(tx_queue->efx, ®, |
| FR_BZ_TX_DESC_UPD_P0, tx_queue->queue); |
| } |
| |
| static inline bool |
| efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count) |
| { |
| unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count); |
| |
| if (empty_read_count == 0) |
| return false; |
| |
| tx_queue->empty_read_count = 0; |
| return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0; |
| } |
| |
| /* For each entry inserted into the software descriptor ring, create a |
| * descriptor in the hardware TX descriptor ring (in host memory), and |
| * write a doorbell. |
| */ |
| void efx_nic_push_buffers(struct efx_tx_queue *tx_queue) |
| { |
| |
| struct efx_tx_buffer *buffer; |
| efx_qword_t *txd; |
| unsigned write_ptr; |
| unsigned old_write_count = tx_queue->write_count; |
| |
| BUG_ON(tx_queue->write_count == tx_queue->insert_count); |
| |
| do { |
| write_ptr = tx_queue->write_count & tx_queue->ptr_mask; |
| buffer = &tx_queue->buffer[write_ptr]; |
| txd = efx_tx_desc(tx_queue, write_ptr); |
| ++tx_queue->write_count; |
| |
| /* Create TX descriptor ring entry */ |
| EFX_POPULATE_QWORD_4(*txd, |
| FSF_AZ_TX_KER_CONT, buffer->continuation, |
| FSF_AZ_TX_KER_BYTE_COUNT, buffer->len, |
| FSF_AZ_TX_KER_BUF_REGION, 0, |
| FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr); |
| } while (tx_queue->write_count != tx_queue->insert_count); |
| |
| wmb(); /* Ensure descriptors are written before they are fetched */ |
| |
| if (efx_may_push_tx_desc(tx_queue, old_write_count)) { |
| txd = efx_tx_desc(tx_queue, |
| old_write_count & tx_queue->ptr_mask); |
| efx_push_tx_desc(tx_queue, txd); |
| ++tx_queue->pushes; |
| } else { |
| efx_notify_tx_desc(tx_queue); |
| } |
| } |
| |
| /* Allocate hardware resources for a TX queue */ |
| int efx_nic_probe_tx(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| unsigned entries; |
| |
| entries = tx_queue->ptr_mask + 1; |
| return efx_alloc_special_buffer(efx, &tx_queue->txd, |
| entries * sizeof(efx_qword_t)); |
| } |
| |
| void efx_nic_init_tx(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| efx_oword_t reg; |
| |
| tx_queue->flushed = FLUSH_NONE; |
| |
| /* Pin TX descriptor ring */ |
| efx_init_special_buffer(efx, &tx_queue->txd); |
| |
| /* Push TX descriptor ring to card */ |
| EFX_POPULATE_OWORD_10(reg, |
| FRF_AZ_TX_DESCQ_EN, 1, |
| FRF_AZ_TX_ISCSI_DDIG_EN, 0, |
| FRF_AZ_TX_ISCSI_HDIG_EN, 0, |
| FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index, |
| FRF_AZ_TX_DESCQ_EVQ_ID, |
| tx_queue->channel->channel, |
| FRF_AZ_TX_DESCQ_OWNER_ID, 0, |
| FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue, |
| FRF_AZ_TX_DESCQ_SIZE, |
| __ffs(tx_queue->txd.entries), |
| FRF_AZ_TX_DESCQ_TYPE, 0, |
| FRF_BZ_TX_NON_IP_DROP_DIS, 1); |
| |
| if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { |
| int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD; |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum); |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, |
| !csum); |
| } |
| |
| efx_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base, |
| tx_queue->queue); |
| |
| if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) { |
| /* Only 128 bits in this register */ |
| BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128); |
| |
| efx_reado(efx, ®, FR_AA_TX_CHKSM_CFG); |
| if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) |
| clear_bit_le(tx_queue->queue, (void *)®); |
| else |
| set_bit_le(tx_queue->queue, (void *)®); |
| efx_writeo(efx, ®, FR_AA_TX_CHKSM_CFG); |
| } |
| |
| if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { |
| EFX_POPULATE_OWORD_1(reg, |
| FRF_BZ_TX_PACE, |
| (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? |
| FFE_BZ_TX_PACE_OFF : |
| FFE_BZ_TX_PACE_RESERVED); |
| efx_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL, |
| tx_queue->queue); |
| } |
| } |
| |
| static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| efx_oword_t tx_flush_descq; |
| |
| tx_queue->flushed = FLUSH_PENDING; |
| |
| /* Post a flush command */ |
| EFX_POPULATE_OWORD_2(tx_flush_descq, |
| FRF_AZ_TX_FLUSH_DESCQ_CMD, 1, |
| FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue); |
| efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ); |
| } |
| |
| void efx_nic_fini_tx(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| efx_oword_t tx_desc_ptr; |
| |
| /* The queue should have been flushed */ |
| WARN_ON(tx_queue->flushed != FLUSH_DONE); |
| |
| /* Remove TX descriptor ring from card */ |
| EFX_ZERO_OWORD(tx_desc_ptr); |
| efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, |
| tx_queue->queue); |
| |
| /* Unpin TX descriptor ring */ |
| efx_fini_special_buffer(efx, &tx_queue->txd); |
| } |
| |
| /* Free buffers backing TX queue */ |
| void efx_nic_remove_tx(struct efx_tx_queue *tx_queue) |
| { |
| efx_free_special_buffer(tx_queue->efx, &tx_queue->txd); |
| } |
| |
| /************************************************************************** |
| * |
| * RX path |
| * |
| **************************************************************************/ |
| |
| /* Returns a pointer to the specified descriptor in the RX descriptor queue */ |
| static inline efx_qword_t * |
| efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index) |
| { |
| return ((efx_qword_t *) (rx_queue->rxd.addr)) + index; |
| } |
| |
| /* This creates an entry in the RX descriptor queue */ |
| static inline void |
| efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index) |
| { |
| struct efx_rx_buffer *rx_buf; |
| efx_qword_t *rxd; |
| |
| rxd = efx_rx_desc(rx_queue, index); |
| rx_buf = efx_rx_buffer(rx_queue, index); |
| EFX_POPULATE_QWORD_3(*rxd, |
| FSF_AZ_RX_KER_BUF_SIZE, |
| rx_buf->len - |
| rx_queue->efx->type->rx_buffer_padding, |
| FSF_AZ_RX_KER_BUF_REGION, 0, |
| FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); |
| } |
| |
| /* This writes to the RX_DESC_WPTR register for the specified receive |
| * descriptor ring. |
| */ |
| void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| efx_dword_t reg; |
| unsigned write_ptr; |
| |
| while (rx_queue->notified_count != rx_queue->added_count) { |
| efx_build_rx_desc( |
| rx_queue, |
| rx_queue->notified_count & rx_queue->ptr_mask); |
| ++rx_queue->notified_count; |
| } |
| |
| wmb(); |
| write_ptr = rx_queue->added_count & rx_queue->ptr_mask; |
| EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr); |
| efx_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0, |
| efx_rx_queue_index(rx_queue)); |
| } |
| |
| int efx_nic_probe_rx(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| unsigned entries; |
| |
| entries = rx_queue->ptr_mask + 1; |
| return efx_alloc_special_buffer(efx, &rx_queue->rxd, |
| entries * sizeof(efx_qword_t)); |
| } |
| |
| void efx_nic_init_rx(struct efx_rx_queue *rx_queue) |
| { |
| efx_oword_t rx_desc_ptr; |
| struct efx_nic *efx = rx_queue->efx; |
| bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0; |
| bool iscsi_digest_en = is_b0; |
| |
| netif_dbg(efx, hw, efx->net_dev, |
| "RX queue %d ring in special buffers %d-%d\n", |
| efx_rx_queue_index(rx_queue), rx_queue->rxd.index, |
| rx_queue->rxd.index + rx_queue->rxd.entries - 1); |
| |
| rx_queue->flushed = FLUSH_NONE; |
| |
| /* Pin RX descriptor ring */ |
| efx_init_special_buffer(efx, &rx_queue->rxd); |
| |
| /* Push RX descriptor ring to card */ |
| EFX_POPULATE_OWORD_10(rx_desc_ptr, |
| FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en, |
| FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en, |
| FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index, |
| FRF_AZ_RX_DESCQ_EVQ_ID, |
| efx_rx_queue_channel(rx_queue)->channel, |
| FRF_AZ_RX_DESCQ_OWNER_ID, 0, |
| FRF_AZ_RX_DESCQ_LABEL, |
| efx_rx_queue_index(rx_queue), |
| FRF_AZ_RX_DESCQ_SIZE, |
| __ffs(rx_queue->rxd.entries), |
| FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ , |
| /* For >=B0 this is scatter so disable */ |
| FRF_AZ_RX_DESCQ_JUMBO, !is_b0, |
| FRF_AZ_RX_DESCQ_EN, 1); |
| efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, |
| efx_rx_queue_index(rx_queue)); |
| } |
| |
| static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| efx_oword_t rx_flush_descq; |
| |
| rx_queue->flushed = FLUSH_PENDING; |
| |
| /* Post a flush command */ |
| EFX_POPULATE_OWORD_2(rx_flush_descq, |
| FRF_AZ_RX_FLUSH_DESCQ_CMD, 1, |
| FRF_AZ_RX_FLUSH_DESCQ, |
| efx_rx_queue_index(rx_queue)); |
| efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ); |
| } |
| |
| void efx_nic_fini_rx(struct efx_rx_queue *rx_queue) |
| { |
| efx_oword_t rx_desc_ptr; |
| struct efx_nic *efx = rx_queue->efx; |
| |
| /* The queue should already have been flushed */ |
| WARN_ON(rx_queue->flushed != FLUSH_DONE); |
| |
| /* Remove RX descriptor ring from card */ |
| EFX_ZERO_OWORD(rx_desc_ptr); |
| efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, |
| efx_rx_queue_index(rx_queue)); |
| |
| /* Unpin RX descriptor ring */ |
| efx_fini_special_buffer(efx, &rx_queue->rxd); |
| } |
| |
| /* Free buffers backing RX queue */ |
| void efx_nic_remove_rx(struct efx_rx_queue *rx_queue) |
| { |
| efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd); |
| } |
| |
| /************************************************************************** |
| * |
| * Event queue processing |
| * Event queues are processed by per-channel tasklets. |
| * |
| **************************************************************************/ |
| |
| /* Update a channel's event queue's read pointer (RPTR) register |
| * |
| * This writes the EVQ_RPTR_REG register for the specified channel's |
| * event queue. |
| */ |
| void efx_nic_eventq_read_ack(struct efx_channel *channel) |
| { |
| efx_dword_t reg; |
| struct efx_nic *efx = channel->efx; |
| |
| EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr); |
| efx_writed_table(efx, ®, efx->type->evq_rptr_tbl_base, |
| channel->channel); |
| } |
| |
| /* Use HW to insert a SW defined event */ |
| static void efx_generate_event(struct efx_channel *channel, efx_qword_t *event) |
| { |
| efx_oword_t drv_ev_reg; |
| |
| BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 || |
| FRF_AZ_DRV_EV_DATA_WIDTH != 64); |
| drv_ev_reg.u32[0] = event->u32[0]; |
| drv_ev_reg.u32[1] = event->u32[1]; |
| drv_ev_reg.u32[2] = 0; |
| drv_ev_reg.u32[3] = 0; |
| EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel); |
| efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV); |
| } |
| |
| /* Handle a transmit completion event |
| * |
| * The NIC batches TX completion events; the message we receive is of |
| * the form "complete all TX events up to this index". |
| */ |
| static int |
| efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) |
| { |
| unsigned int tx_ev_desc_ptr; |
| unsigned int tx_ev_q_label; |
| struct efx_tx_queue *tx_queue; |
| struct efx_nic *efx = channel->efx; |
| int tx_packets = 0; |
| |
| if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) { |
| /* Transmit completion */ |
| tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR); |
| tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); |
| tx_queue = efx_channel_get_tx_queue( |
| channel, tx_ev_q_label % EFX_TXQ_TYPES); |
| tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) & |
| tx_queue->ptr_mask); |
| channel->irq_mod_score += tx_packets; |
| efx_xmit_done(tx_queue, tx_ev_desc_ptr); |
| } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) { |
| /* Rewrite the FIFO write pointer */ |
| tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); |
| tx_queue = efx_channel_get_tx_queue( |
| channel, tx_ev_q_label % EFX_TXQ_TYPES); |
| |
| if (efx_dev_registered(efx)) |
| netif_tx_lock(efx->net_dev); |
| efx_notify_tx_desc(tx_queue); |
| if (efx_dev_registered(efx)) |
| netif_tx_unlock(efx->net_dev); |
| } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) && |
| EFX_WORKAROUND_10727(efx)) { |
| efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); |
| } else { |
| netif_err(efx, tx_err, efx->net_dev, |
| "channel %d unexpected TX event " |
| EFX_QWORD_FMT"\n", channel->channel, |
| EFX_QWORD_VAL(*event)); |
| } |
| |
| return tx_packets; |
| } |
| |
| /* Detect errors included in the rx_evt_pkt_ok bit. */ |
| static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue, |
| const efx_qword_t *event, |
| bool *rx_ev_pkt_ok, |
| bool *discard) |
| { |
| struct efx_channel *channel = efx_rx_queue_channel(rx_queue); |
| struct efx_nic *efx = rx_queue->efx; |
| bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err; |
| bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err; |
| bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc; |
| bool rx_ev_other_err, rx_ev_pause_frm; |
| bool rx_ev_hdr_type, rx_ev_mcast_pkt; |
| unsigned rx_ev_pkt_type; |
| |
| rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); |
| rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); |
| rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC); |
| rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE); |
| rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event, |
| FSF_AZ_RX_EV_BUF_OWNER_ID_ERR); |
| rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event, |
| FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR); |
| rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event, |
| FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR); |
| rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR); |
| rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC); |
| rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ? |
| 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB)); |
| rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR); |
| |
| /* Every error apart from tobe_disc and pause_frm */ |
| rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err | |
| rx_ev_buf_owner_id_err | rx_ev_eth_crc_err | |
| rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err); |
| |
| /* Count errors that are not in MAC stats. Ignore expected |
| * checksum errors during self-test. */ |
| if (rx_ev_frm_trunc) |
| ++channel->n_rx_frm_trunc; |
| else if (rx_ev_tobe_disc) |
| ++channel->n_rx_tobe_disc; |
| else if (!efx->loopback_selftest) { |
| if (rx_ev_ip_hdr_chksum_err) |
| ++channel->n_rx_ip_hdr_chksum_err; |
| else if (rx_ev_tcp_udp_chksum_err) |
| ++channel->n_rx_tcp_udp_chksum_err; |
| } |
| |
| /* The frame must be discarded if any of these are true. */ |
| *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib | |
| rx_ev_tobe_disc | rx_ev_pause_frm); |
| |
| /* TOBE_DISC is expected on unicast mismatches; don't print out an |
| * error message. FRM_TRUNC indicates RXDP dropped the packet due |
| * to a FIFO overflow. |
| */ |
| #ifdef EFX_ENABLE_DEBUG |
| if (rx_ev_other_err && net_ratelimit()) { |
| netif_dbg(efx, rx_err, efx->net_dev, |
| " RX queue %d unexpected RX event " |
| EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n", |
| efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event), |
| rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "", |
| rx_ev_ip_hdr_chksum_err ? |
| " [IP_HDR_CHKSUM_ERR]" : "", |
| rx_ev_tcp_udp_chksum_err ? |
| " [TCP_UDP_CHKSUM_ERR]" : "", |
| rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "", |
| rx_ev_frm_trunc ? " [FRM_TRUNC]" : "", |
| rx_ev_drib_nib ? " [DRIB_NIB]" : "", |
| rx_ev_tobe_disc ? " [TOBE_DISC]" : "", |
| rx_ev_pause_frm ? " [PAUSE]" : ""); |
| } |
| #endif |
| } |
| |
| /* Handle receive events that are not in-order. */ |
| static void |
| efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| unsigned expected, dropped; |
| |
| expected = rx_queue->removed_count & rx_queue->ptr_mask; |
| dropped = (index - expected) & rx_queue->ptr_mask; |
| netif_info(efx, rx_err, efx->net_dev, |
| "dropped %d events (index=%d expected=%d)\n", |
| dropped, index, expected); |
| |
| efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ? |
| RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); |
| } |
| |
| /* Handle a packet received event |
| * |
| * The NIC gives a "discard" flag if it's a unicast packet with the |
| * wrong destination address |
| * Also "is multicast" and "matches multicast filter" flags can be used to |
| * discard non-matching multicast packets. |
| */ |
| static void |
| efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event) |
| { |
| unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt; |
| unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt; |
| unsigned expected_ptr; |
| bool rx_ev_pkt_ok, discard = false, checksummed; |
| struct efx_rx_queue *rx_queue; |
| |
| /* Basic packet information */ |
| rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT); |
| rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK); |
| rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); |
| WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT)); |
| WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1); |
| WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) != |
| channel->channel); |
| |
| rx_queue = efx_channel_get_rx_queue(channel); |
| |
| rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR); |
| expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask; |
| if (unlikely(rx_ev_desc_ptr != expected_ptr)) |
| efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr); |
| |
| if (likely(rx_ev_pkt_ok)) { |
| /* If packet is marked as OK and packet type is TCP/IP or |
| * UDP/IP, then we can rely on the hardware checksum. |
| */ |
| checksummed = |
| rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP || |
| rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP; |
| } else { |
| efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard); |
| checksummed = false; |
| } |
| |
| /* Detect multicast packets that didn't match the filter */ |
| rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); |
| if (rx_ev_mcast_pkt) { |
| unsigned int rx_ev_mcast_hash_match = |
| EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH); |
| |
| if (unlikely(!rx_ev_mcast_hash_match)) { |
| ++channel->n_rx_mcast_mismatch; |
| discard = true; |
| } |
| } |
| |
| channel->irq_mod_score += 2; |
| |
| /* Handle received packet */ |
| efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, |
| checksummed, discard); |
| } |
| |
| static void |
| efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event) |
| { |
| struct efx_nic *efx = channel->efx; |
| unsigned code; |
| |
| code = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC); |
| if (code == EFX_CHANNEL_MAGIC_TEST(channel)) |
| ++channel->magic_count; |
| else if (code == EFX_CHANNEL_MAGIC_FILL(channel)) |
| /* The queue must be empty, so we won't receive any rx |
| * events, so efx_process_channel() won't refill the |
| * queue. Refill it here */ |
| efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel)); |
| else |
| netif_dbg(efx, hw, efx->net_dev, "channel %d received " |
| "generated event "EFX_QWORD_FMT"\n", |
| channel->channel, EFX_QWORD_VAL(*event)); |
| } |
| |
| static void |
| efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) |
| { |
| struct efx_nic *efx = channel->efx; |
| unsigned int ev_sub_code; |
| unsigned int ev_sub_data; |
| |
| ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE); |
| ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); |
| |
| switch (ev_sub_code) { |
| case FSE_AZ_TX_DESCQ_FLS_DONE_EV: |
| netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n", |
| channel->channel, ev_sub_data); |
| break; |
| case FSE_AZ_RX_DESCQ_FLS_DONE_EV: |
| netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n", |
| channel->channel, ev_sub_data); |
| break; |
| case FSE_AZ_EVQ_INIT_DONE_EV: |
| netif_dbg(efx, hw, efx->net_dev, |
| "channel %d EVQ %d initialised\n", |
| channel->channel, ev_sub_data); |
| break; |
| case FSE_AZ_SRM_UPD_DONE_EV: |
| netif_vdbg(efx, hw, efx->net_dev, |
| "channel %d SRAM update done\n", channel->channel); |
| break; |
| case FSE_AZ_WAKE_UP_EV: |
| netif_vdbg(efx, hw, efx->net_dev, |
| "channel %d RXQ %d wakeup event\n", |
| channel->channel, ev_sub_data); |
| break; |
| case FSE_AZ_TIMER_EV: |
| netif_vdbg(efx, hw, efx->net_dev, |
| "channel %d RX queue %d timer expired\n", |
| channel->channel, ev_sub_data); |
| break; |
| case FSE_AA_RX_RECOVER_EV: |
| netif_err(efx, rx_err, efx->net_dev, |
| "channel %d seen DRIVER RX_RESET event. " |
| "Resetting.\n", channel->channel); |
| atomic_inc(&efx->rx_reset); |
| efx_schedule_reset(efx, |
| EFX_WORKAROUND_6555(efx) ? |
| RESET_TYPE_RX_RECOVERY : |
| RESET_TYPE_DISABLE); |
| break; |
| case FSE_BZ_RX_DSC_ERROR_EV: |
| netif_err(efx, rx_err, efx->net_dev, |
| "RX DMA Q %d reports descriptor fetch error." |
| " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data); |
| efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH); |
| break; |
| case FSE_BZ_TX_DSC_ERROR_EV: |
| netif_err(efx, tx_err, efx->net_dev, |
| "TX DMA Q %d reports descriptor fetch error." |
| " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data); |
| efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); |
| break; |
| default: |
| netif_vdbg(efx, hw, efx->net_dev, |
| "channel %d unknown driver event code %d " |
| "data %04x\n", channel->channel, ev_sub_code, |
| ev_sub_data); |
| break; |
| } |
| } |
| |
| int efx_nic_process_eventq(struct efx_channel *channel, int budget) |
| { |
| struct efx_nic *efx = channel->efx; |
| unsigned int read_ptr; |
| efx_qword_t event, *p_event; |
| int ev_code; |
| int tx_packets = 0; |
| int spent = 0; |
| |
| read_ptr = channel->eventq_read_ptr; |
| |
| for (;;) { |
| p_event = efx_event(channel, read_ptr); |
| event = *p_event; |
| |
| if (!efx_event_present(&event)) |
| /* End of events */ |
| break; |
| |
| netif_vdbg(channel->efx, intr, channel->efx->net_dev, |
| "channel %d event is "EFX_QWORD_FMT"\n", |
| channel->channel, EFX_QWORD_VAL(event)); |
| |
| /* Clear this event by marking it all ones */ |
| EFX_SET_QWORD(*p_event); |
| |
| /* Increment read pointer */ |
| read_ptr = (read_ptr + 1) & channel->eventq_mask; |
| |
| ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE); |
| |
| switch (ev_code) { |
| case FSE_AZ_EV_CODE_RX_EV: |
| efx_handle_rx_event(channel, &event); |
| if (++spent == budget) |
| goto out; |
| break; |
| case FSE_AZ_EV_CODE_TX_EV: |
| tx_packets += efx_handle_tx_event(channel, &event); |
| if (tx_packets > efx->txq_entries) { |
| spent = budget; |
| goto out; |
| } |
| break; |
| case FSE_AZ_EV_CODE_DRV_GEN_EV: |
| efx_handle_generated_event(channel, &event); |
| break; |
| case FSE_AZ_EV_CODE_DRIVER_EV: |
| efx_handle_driver_event(channel, &event); |
| break; |
| case FSE_CZ_EV_CODE_MCDI_EV: |
| efx_mcdi_process_event(channel, &event); |
| break; |
| case FSE_AZ_EV_CODE_GLOBAL_EV: |
| if (efx->type->handle_global_event && |
| efx->type->handle_global_event(channel, &event)) |
| break; |
| /* else fall through */ |
| default: |
| netif_err(channel->efx, hw, channel->efx->net_dev, |
| "channel %d unknown event type %d (data " |
| EFX_QWORD_FMT ")\n", channel->channel, |
| ev_code, EFX_QWORD_VAL(event)); |
| } |
| } |
| |
| out: |
| channel->eventq_read_ptr = read_ptr; |
| return spent; |
| } |
| |
| |
| /* Allocate buffer table entries for event queue */ |
| int efx_nic_probe_eventq(struct efx_channel *channel) |
| { |
| struct efx_nic *efx = channel->efx; |
| unsigned entries; |
| |
| entries = channel->eventq_mask + 1; |
| return efx_alloc_special_buffer(efx, &channel->eventq, |
| entries * sizeof(efx_qword_t)); |
| } |
| |
| void efx_nic_init_eventq(struct efx_channel *channel) |
| { |
| efx_oword_t reg; |
| struct efx_nic *efx = channel->efx; |
| |
| netif_dbg(efx, hw, efx->net_dev, |
| "channel %d event queue in special buffers %d-%d\n", |
| channel->channel, channel->eventq.index, |
| channel->eventq.index + channel->eventq.entries - 1); |
| |
| if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) { |
| EFX_POPULATE_OWORD_3(reg, |
| FRF_CZ_TIMER_Q_EN, 1, |
| FRF_CZ_HOST_NOTIFY_MODE, 0, |
| FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS); |
| efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); |
| } |
| |
| /* Pin event queue buffer */ |
| efx_init_special_buffer(efx, &channel->eventq); |
| |
| /* Fill event queue with all ones (i.e. empty events) */ |
| memset(channel->eventq.addr, 0xff, channel->eventq.len); |
| |
| /* Push event queue to card */ |
| EFX_POPULATE_OWORD_3(reg, |
| FRF_AZ_EVQ_EN, 1, |
| FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries), |
| FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index); |
| efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, |
| channel->channel); |
| |
| efx->type->push_irq_moderation(channel); |
| } |
| |
| void efx_nic_fini_eventq(struct efx_channel *channel) |
| { |
| efx_oword_t reg; |
| struct efx_nic *efx = channel->efx; |
| |
| /* Remove event queue from card */ |
| EFX_ZERO_OWORD(reg); |
| efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, |
| channel->channel); |
| if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) |
| efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); |
| |
| /* Unpin event queue */ |
| efx_fini_special_buffer(efx, &channel->eventq); |
| } |
| |
| /* Free buffers backing event queue */ |
| void efx_nic_remove_eventq(struct efx_channel *channel) |
| { |
| efx_free_special_buffer(channel->efx, &channel->eventq); |
| } |
| |
| |
| void efx_nic_generate_test_event(struct efx_channel *channel) |
| { |
| unsigned int magic = EFX_CHANNEL_MAGIC_TEST(channel); |
| efx_qword_t test_event; |
| |
| EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE, |
| FSE_AZ_EV_CODE_DRV_GEN_EV, |
| FSF_AZ_DRV_GEN_EV_MAGIC, magic); |
| efx_generate_event(channel, &test_event); |
| } |
| |
| void efx_nic_generate_fill_event(struct efx_channel *channel) |
| { |
| unsigned int magic = EFX_CHANNEL_MAGIC_FILL(channel); |
| efx_qword_t test_event; |
| |
| EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE, |
| FSE_AZ_EV_CODE_DRV_GEN_EV, |
| FSF_AZ_DRV_GEN_EV_MAGIC, magic); |
| efx_generate_event(channel, &test_event); |
| } |
| |
| /************************************************************************** |
| * |
| * Flush handling |
| * |
| **************************************************************************/ |
| |
| |
| static void efx_poll_flush_events(struct efx_nic *efx) |
| { |
| struct efx_channel *channel = efx_get_channel(efx, 0); |
| struct efx_tx_queue *tx_queue; |
| struct efx_rx_queue *rx_queue; |
| unsigned int read_ptr = channel->eventq_read_ptr; |
| unsigned int end_ptr = (read_ptr - 1) & channel->eventq_mask; |
| |
| do { |
| efx_qword_t *event = efx_event(channel, read_ptr); |
| int ev_code, ev_sub_code, ev_queue; |
| bool ev_failed; |
| |
| if (!efx_event_present(event)) |
| break; |
| |
| ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE); |
| ev_sub_code = EFX_QWORD_FIELD(*event, |
| FSF_AZ_DRIVER_EV_SUBCODE); |
| if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV && |
| ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) { |
| ev_queue = EFX_QWORD_FIELD(*event, |
| FSF_AZ_DRIVER_EV_SUBDATA); |
| if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) { |
| tx_queue = efx_get_tx_queue( |
| efx, ev_queue / EFX_TXQ_TYPES, |
| ev_queue % EFX_TXQ_TYPES); |
| tx_queue->flushed = FLUSH_DONE; |
| } |
| } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV && |
| ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) { |
| ev_queue = EFX_QWORD_FIELD( |
| *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); |
| ev_failed = EFX_QWORD_FIELD( |
| *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); |
| if (ev_queue < efx->n_rx_channels) { |
| rx_queue = efx_get_rx_queue(efx, ev_queue); |
| rx_queue->flushed = |
| ev_failed ? FLUSH_FAILED : FLUSH_DONE; |
| } |
| } |
| |
| /* We're about to destroy the queue anyway, so |
| * it's ok to throw away every non-flush event */ |
| EFX_SET_QWORD(*event); |
| |
| read_ptr = (read_ptr + 1) & channel->eventq_mask; |
| } while (read_ptr != end_ptr); |
| |
| channel->eventq_read_ptr = read_ptr; |
| } |
| |
| /* Handle tx and rx flushes at the same time, since they run in |
| * parallel in the hardware and there's no reason for us to |
| * serialise them */ |
| int efx_nic_flush_queues(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| struct efx_rx_queue *rx_queue; |
| struct efx_tx_queue *tx_queue; |
| int i, tx_pending, rx_pending; |
| |
| /* If necessary prepare the hardware for flushing */ |
| efx->type->prepare_flush(efx); |
| |
| /* Flush all tx queues in parallel */ |
| efx_for_each_channel(channel, efx) { |
| efx_for_each_possible_channel_tx_queue(tx_queue, channel) { |
| if (tx_queue->initialised) |
| efx_flush_tx_queue(tx_queue); |
| } |
| } |
| |
| /* The hardware supports four concurrent rx flushes, each of which may |
| * need to be retried if there is an outstanding descriptor fetch */ |
| for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) { |
| rx_pending = tx_pending = 0; |
| efx_for_each_channel(channel, efx) { |
| efx_for_each_channel_rx_queue(rx_queue, channel) { |
| if (rx_queue->flushed == FLUSH_PENDING) |
| ++rx_pending; |
| } |
| } |
| efx_for_each_channel(channel, efx) { |
| efx_for_each_channel_rx_queue(rx_queue, channel) { |
| if (rx_pending == EFX_RX_FLUSH_COUNT) |
| break; |
| if (rx_queue->flushed == FLUSH_FAILED || |
| rx_queue->flushed == FLUSH_NONE) { |
| efx_flush_rx_queue(rx_queue); |
| ++rx_pending; |
| } |
| } |
| efx_for_each_possible_channel_tx_queue(tx_queue, channel) { |
| if (tx_queue->initialised && |
| tx_queue->flushed != FLUSH_DONE) |
| ++tx_pending; |
| } |
| } |
| |
| if (rx_pending == 0 && tx_pending == 0) |
| return 0; |
| |
| msleep(EFX_FLUSH_INTERVAL); |
| efx_poll_flush_events(efx); |
| } |
| |
| /* Mark the queues as all flushed. We're going to return failure |
| * leading to a reset, or fake up success anyway */ |
| efx_for_each_channel(channel, efx) { |
| efx_for_each_possible_channel_tx_queue(tx_queue, channel) { |
| if (tx_queue->initialised && |
| tx_queue->flushed != FLUSH_DONE) |
| netif_err(efx, hw, efx->net_dev, |
| "tx queue %d flush command timed out\n", |
| tx_queue->queue); |
| tx_queue->flushed = FLUSH_DONE; |
| } |
| efx_for_each_channel_rx_queue(rx_queue, channel) { |
| if (rx_queue->flushed != FLUSH_DONE) |
| netif_err(efx, hw, efx->net_dev, |
| "rx queue %d flush command timed out\n", |
| efx_rx_queue_index(rx_queue)); |
| rx_queue->flushed = FLUSH_DONE; |
| } |
| } |
| |
| return -ETIMEDOUT; |
| } |
| |
| /************************************************************************** |
| * |
| * Hardware interrupts |
| * The hardware interrupt handler does very little work; all the event |
| * queue processing is carried out by per-channel tasklets. |
| * |
| **************************************************************************/ |
| |
| /* Enable/disable/generate interrupts */ |
| static inline void efx_nic_interrupts(struct efx_nic *efx, |
| bool enabled, bool force) |
| { |
| efx_oword_t int_en_reg_ker; |
| |
| EFX_POPULATE_OWORD_3(int_en_reg_ker, |
| FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level, |
| FRF_AZ_KER_INT_KER, force, |
| FRF_AZ_DRV_INT_EN_KER, enabled); |
| efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER); |
| } |
| |
| void efx_nic_enable_interrupts(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| |
| EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr)); |
| wmb(); /* Ensure interrupt vector is clear before interrupts enabled */ |
| |
| /* Enable interrupts */ |
| efx_nic_interrupts(efx, true, false); |
| |
| /* Force processing of all the channels to get the EVQ RPTRs up to |
| date */ |
| efx_for_each_channel(channel, efx) |
| efx_schedule_channel(channel); |
| } |
| |
| void efx_nic_disable_interrupts(struct efx_nic *efx) |
| { |
| /* Disable interrupts */ |
| efx_nic_interrupts(efx, false, false); |
| } |
| |
| /* Generate a test interrupt |
| * Interrupt must already have been enabled, otherwise nasty things |
| * may happen. |
| */ |
| void efx_nic_generate_interrupt(struct efx_nic *efx) |
| { |
| efx_nic_interrupts(efx, true, true); |
| } |
| |
| /* Process a fatal interrupt |
| * Disable bus mastering ASAP and schedule a reset |
| */ |
| irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| efx_oword_t *int_ker = efx->irq_status.addr; |
| efx_oword_t fatal_intr; |
| int error, mem_perr; |
| |
| efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER); |
| error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR); |
| |
| netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status " |
| EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker), |
| EFX_OWORD_VAL(fatal_intr), |
| error ? "disabling bus mastering" : "no recognised error"); |
| |
| /* If this is a memory parity error dump which blocks are offending */ |
| mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) || |
| EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER)); |
| if (mem_perr) { |
| efx_oword_t reg; |
| efx_reado(efx, ®, FR_AZ_MEM_STAT); |
| netif_err(efx, hw, efx->net_dev, |
| "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n", |
| EFX_OWORD_VAL(reg)); |
| } |
| |
| /* Disable both devices */ |
| pci_clear_master(efx->pci_dev); |
| if (efx_nic_is_dual_func(efx)) |
| pci_clear_master(nic_data->pci_dev2); |
| efx_nic_disable_interrupts(efx); |
| |
| /* Count errors and reset or disable the NIC accordingly */ |
| if (efx->int_error_count == 0 || |
| time_after(jiffies, efx->int_error_expire)) { |
| efx->int_error_count = 0; |
| efx->int_error_expire = |
| jiffies + EFX_INT_ERROR_EXPIRE * HZ; |
| } |
| if (++efx->int_error_count < EFX_MAX_INT_ERRORS) { |
| netif_err(efx, hw, efx->net_dev, |
| "SYSTEM ERROR - reset scheduled\n"); |
| efx_schedule_reset(efx, RESET_TYPE_INT_ERROR); |
| } else { |
| netif_err(efx, hw, efx->net_dev, |
| "SYSTEM ERROR - max number of errors seen." |
| "NIC will be disabled\n"); |
| efx_schedule_reset(efx, RESET_TYPE_DISABLE); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* Handle a legacy interrupt |
| * Acknowledges the interrupt and schedule event queue processing. |
| */ |
| static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id) |
| { |
| struct efx_nic *efx = dev_id; |
| efx_oword_t *int_ker = efx->irq_status.addr; |
| irqreturn_t result = IRQ_NONE; |
| struct efx_channel *channel; |
| efx_dword_t reg; |
| u32 queues; |
| int syserr; |
| |
| /* Could this be ours? If interrupts are disabled then the |
| * channel state may not be valid. |
| */ |
| if (!efx->legacy_irq_enabled) |
| return result; |
| |
| /* Read the ISR which also ACKs the interrupts */ |
| efx_readd(efx, ®, FR_BZ_INT_ISR0); |
| queues = EFX_EXTRACT_DWORD(reg, 0, 31); |
| |
| /* Check to see if we have a serious error condition */ |
| if (queues & (1U << efx->fatal_irq_level)) { |
| syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); |
| if (unlikely(syserr)) |
| return efx_nic_fatal_interrupt(efx); |
| } |
| |
| if (queues != 0) { |
| if (EFX_WORKAROUND_15783(efx)) |
| efx->irq_zero_count = 0; |
| |
| /* Schedule processing of any interrupting queues */ |
| efx_for_each_channel(channel, efx) { |
| if (queues & 1) |
| efx_schedule_channel(channel); |
| queues >>= 1; |
| } |
| result = IRQ_HANDLED; |
| |
| } else if (EFX_WORKAROUND_15783(efx)) { |
| efx_qword_t *event; |
| |
| /* We can't return IRQ_HANDLED more than once on seeing ISR=0 |
| * because this might be a shared interrupt. */ |
| if (efx->irq_zero_count++ == 0) |
| result = IRQ_HANDLED; |
| |
| /* Ensure we schedule or rearm all event queues */ |
| efx_for_each_channel(channel, efx) { |
| event = efx_event(channel, channel->eventq_read_ptr); |
| if (efx_event_present(event)) |
| efx_schedule_channel(channel); |
| else |
| efx_nic_eventq_read_ack(channel); |
| } |
| } |
| |
| if (result == IRQ_HANDLED) { |
| efx->last_irq_cpu = raw_smp_processor_id(); |
| netif_vdbg(efx, intr, efx->net_dev, |
| "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", |
| irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); |
| } |
| |
| return result; |
| } |
| |
| /* Handle an MSI interrupt |
| * |
| * Handle an MSI hardware interrupt. This routine schedules event |
| * queue processing. No interrupt acknowledgement cycle is necessary. |
| * Also, we never need to check that the interrupt is for us, since |
| * MSI interrupts cannot be shared. |
| */ |
| static irqreturn_t efx_msi_interrupt(int irq, void *dev_id) |
| { |
| struct efx_channel *channel = *(struct efx_channel **)dev_id; |
| struct efx_nic *efx = channel->efx; |
| efx_oword_t *int_ker = efx->irq_status.addr; |
| int syserr; |
| |
| efx->last_irq_cpu = raw_smp_processor_id(); |
| netif_vdbg(efx, intr, efx->net_dev, |
| "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", |
| irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); |
| |
| /* Check to see if we have a serious error condition */ |
| if (channel->channel == efx->fatal_irq_level) { |
| syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); |
| if (unlikely(syserr)) |
| return efx_nic_fatal_interrupt(efx); |
| } |
| |
| /* Schedule processing of the channel */ |
| efx_schedule_channel(channel); |
| |
| return IRQ_HANDLED; |
| } |
| |
| |
| /* Setup RSS indirection table. |
| * This maps from the hash value of the packet to RXQ |
| */ |
| void efx_nic_push_rx_indir_table(struct efx_nic *efx) |
| { |
| size_t i = 0; |
| efx_dword_t dword; |
| |
| if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) |
| return; |
| |
| BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) != |
| FR_BZ_RX_INDIRECTION_TBL_ROWS); |
| |
| for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) { |
| EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE, |
| efx->rx_indir_table[i]); |
| efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i); |
| } |
| } |
| |
| /* Hook interrupt handler(s) |
| * Try MSI and then legacy interrupts. |
| */ |
| int efx_nic_init_interrupt(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| int rc; |
| |
| if (!EFX_INT_MODE_USE_MSI(efx)) { |
| irq_handler_t handler; |
| if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) |
| handler = efx_legacy_interrupt; |
| else |
| handler = falcon_legacy_interrupt_a1; |
| |
| rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED, |
| efx->name, efx); |
| if (rc) { |
| netif_err(efx, drv, efx->net_dev, |
| "failed to hook legacy IRQ %d\n", |
| efx->pci_dev->irq); |
| goto fail1; |
| } |
| return 0; |
| } |
| |
| /* Hook MSI or MSI-X interrupt */ |
| efx_for_each_channel(channel, efx) { |
| rc = request_irq(channel->irq, efx_msi_interrupt, |
| IRQF_PROBE_SHARED, /* Not shared */ |
| efx->channel_name[channel->channel], |
| &efx->channel[channel->channel]); |
| if (rc) { |
| netif_err(efx, drv, efx->net_dev, |
| "failed to hook IRQ %d\n", channel->irq); |
| goto fail2; |
| } |
| } |
| |
| return 0; |
| |
| fail2: |
| efx_for_each_channel(channel, efx) |
| free_irq(channel->irq, &efx->channel[channel->channel]); |
| fail1: |
| return rc; |
| } |
| |
| void efx_nic_fini_interrupt(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| efx_oword_t reg; |
| |
| /* Disable MSI/MSI-X interrupts */ |
| efx_for_each_channel(channel, efx) { |
| if (channel->irq) |
| free_irq(channel->irq, &efx->channel[channel->channel]); |
| } |
| |
| /* ACK legacy interrupt */ |
| if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) |
| efx_reado(efx, ®, FR_BZ_INT_ISR0); |
| else |
| falcon_irq_ack_a1(efx); |
| |
| /* Disable legacy interrupt */ |
| if (efx->legacy_irq) |
| free_irq(efx->legacy_irq, efx); |
| } |
| |
| u32 efx_nic_fpga_ver(struct efx_nic *efx) |
| { |
| efx_oword_t altera_build; |
| efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD); |
| return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER); |
| } |
| |
| void efx_nic_init_common(struct efx_nic *efx) |
| { |
| efx_oword_t temp; |
| |
| /* Set positions of descriptor caches in SRAM. */ |
| EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, |
| efx->type->tx_dc_base / 8); |
| efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG); |
| EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, |
| efx->type->rx_dc_base / 8); |
| efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG); |
| |
| /* Set TX descriptor cache size. */ |
| BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER)); |
| EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER); |
| efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG); |
| |
| /* Set RX descriptor cache size. Set low watermark to size-8, as |
| * this allows most efficient prefetching. |
| */ |
| BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER)); |
| EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER); |
| efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG); |
| EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8); |
| efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM); |
| |
| /* Program INT_KER address */ |
| EFX_POPULATE_OWORD_2(temp, |
| FRF_AZ_NORM_INT_VEC_DIS_KER, |
| EFX_INT_MODE_USE_MSI(efx), |
| FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr); |
| efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER); |
| |
| if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx)) |
| /* Use an interrupt level unused by event queues */ |
| efx->fatal_irq_level = 0x1f; |
| else |
| /* Use a valid MSI-X vector */ |
| efx->fatal_irq_level = 0; |
| |
| /* Enable all the genuinely fatal interrupts. (They are still |
| * masked by the overall interrupt mask, controlled by |
| * falcon_interrupts()). |
| * |
| * Note: All other fatal interrupts are enabled |
| */ |
| EFX_POPULATE_OWORD_3(temp, |
| FRF_AZ_ILL_ADR_INT_KER_EN, 1, |
| FRF_AZ_RBUF_OWN_INT_KER_EN, 1, |
| FRF_AZ_TBUF_OWN_INT_KER_EN, 1); |
| if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) |
| EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1); |
| EFX_INVERT_OWORD(temp); |
| efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER); |
| |
| efx_nic_push_rx_indir_table(efx); |
| |
| /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be |
| * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q. |
| */ |
| efx_reado(efx, &temp, FR_AZ_TX_RESERVED); |
| EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe); |
| EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1); |
| EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1); |
| EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1); |
| EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1); |
| /* Enable SW_EV to inherit in char driver - assume harmless here */ |
| EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1); |
| /* Prefetch threshold 2 => fetch when descriptor cache half empty */ |
| EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2); |
| /* Disable hardware watchdog which can misfire */ |
| EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff); |
| /* Squash TX of packets of 16 bytes or less */ |
| if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) |
| EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1); |
| efx_writeo(efx, &temp, FR_AZ_TX_RESERVED); |
| |
| if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { |
| EFX_POPULATE_OWORD_4(temp, |
| /* Default values */ |
| FRF_BZ_TX_PACE_SB_NOT_AF, 0x15, |
| FRF_BZ_TX_PACE_SB_AF, 0xb, |
| FRF_BZ_TX_PACE_FB_BASE, 0, |
| /* Allow large pace values in the |
| * fast bin. */ |
| FRF_BZ_TX_PACE_BIN_TH, |
| FFE_BZ_TX_PACE_RESERVED); |
| efx_writeo(efx, &temp, FR_BZ_TX_PACE); |
| } |
| } |
| |
| /* Register dump */ |
| |
| #define REGISTER_REVISION_A 1 |
| #define REGISTER_REVISION_B 2 |
| #define REGISTER_REVISION_C 3 |
| #define REGISTER_REVISION_Z 3 /* latest revision */ |
| |
| struct efx_nic_reg { |
| u32 offset:24; |
| u32 min_revision:2, max_revision:2; |
| }; |
| |
| #define REGISTER(name, min_rev, max_rev) { \ |
| FR_ ## min_rev ## max_rev ## _ ## name, \ |
| REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \ |
| } |
| #define REGISTER_AA(name) REGISTER(name, A, A) |
| #define REGISTER_AB(name) REGISTER(name, A, B) |
| #define REGISTER_AZ(name) REGISTER(name, A, Z) |
| #define REGISTER_BB(name) REGISTER(name, B, B) |
| #define REGISTER_BZ(name) REGISTER(name, B, Z) |
| #define REGISTER_CZ(name) REGISTER(name, C, Z) |
| |
| static const struct efx_nic_reg efx_nic_regs[] = { |
| REGISTER_AZ(ADR_REGION), |
| REGISTER_AZ(INT_EN_KER), |
| REGISTER_BZ(INT_EN_CHAR), |
| REGISTER_AZ(INT_ADR_KER), |
| REGISTER_BZ(INT_ADR_CHAR), |
| /* INT_ACK_KER is WO */ |
| /* INT_ISR0 is RC */ |
| REGISTER_AZ(HW_INIT), |
| REGISTER_CZ(USR_EV_CFG), |
| REGISTER_AB(EE_SPI_HCMD), |
| REGISTER_AB(EE_SPI_HADR), |
| REGISTER_AB(EE_SPI_HDATA), |
| REGISTER_AB(EE_BASE_PAGE), |
| REGISTER_AB(EE_VPD_CFG0), |
| /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */ |
| /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */ |
| /* PCIE_CORE_INDIRECT is indirect */ |
| REGISTER_AB(NIC_STAT), |
| REGISTER_AB(GPIO_CTL), |
| REGISTER_AB(GLB_CTL), |
| /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */ |
| REGISTER_BZ(DP_CTRL), |
| REGISTER_AZ(MEM_STAT), |
| REGISTER_AZ(CS_DEBUG), |
| REGISTER_AZ(ALTERA_BUILD), |
| REGISTER_AZ(CSR_SPARE), |
| REGISTER_AB(PCIE_SD_CTL0123), |
| REGISTER_AB(PCIE_SD_CTL45), |
| REGISTER_AB(PCIE_PCS_CTL_STAT), |
| /* DEBUG_DATA_OUT is not used */ |
| /* DRV_EV is WO */ |
| REGISTER_AZ(EVQ_CTL), |
| REGISTER_AZ(EVQ_CNT1), |
| REGISTER_AZ(EVQ_CNT2), |
| REGISTER_AZ(BUF_TBL_CFG), |
| REGISTER_AZ(SRM_RX_DC_CFG), |
| REGISTER_AZ(SRM_TX_DC_CFG), |
| REGISTER_AZ(SRM_CFG), |
| /* BUF_TBL_UPD is WO */ |
| REGISTER_AZ(SRM_UPD_EVQ), |
| REGISTER_AZ(SRAM_PARITY), |
| REGISTER_AZ(RX_CFG), |
| REGISTER_BZ(RX_FILTER_CTL), |
| /* RX_FLUSH_DESCQ is WO */ |
| REGISTER_AZ(RX_DC_CFG), |
| REGISTER_AZ(RX_DC_PF_WM), |
| REGISTER_BZ(RX_RSS_TKEY), |
| /* RX_NODESC_DROP is RC */ |
| REGISTER_AA(RX_SELF_RST), |
| /* RX_DEBUG, RX_PUSH_DROP are not used */ |
| REGISTER_CZ(RX_RSS_IPV6_REG1), |
| REGISTER_CZ(RX_RSS_IPV6_REG2), |
| REGISTER_CZ(RX_RSS_IPV6_REG3), |
| /* TX_FLUSH_DESCQ is WO */ |
| REGISTER_AZ(TX_DC_CFG), |
| REGISTER_AA(TX_CHKSM_CFG), |
| REGISTER_AZ(TX_CFG), |
| /* TX_PUSH_DROP is not used */ |
| REGISTER_AZ(TX_RESERVED), |
| REGISTER_BZ(TX_PACE), |
| /* TX_PACE_DROP_QID is RC */ |
| REGISTER_BB(TX_VLAN), |
| REGISTER_BZ(TX_IPFIL_PORTEN), |
| REGISTER_AB(MD_TXD), |
| REGISTER_AB(MD_RXD), |
| REGISTER_AB(MD_CS), |
| REGISTER_AB(MD_PHY_ADR), |
| REGISTER_AB(MD_ID), |
| /* MD_STAT is RC */ |
| REGISTER_AB(MAC_STAT_DMA), |
| REGISTER_AB(MAC_CTRL), |
| REGISTER_BB(GEN_MODE), |
| REGISTER_AB(MAC_MC_HASH_REG0), |
| REGISTER_AB(MAC_MC_HASH_REG1), |
| REGISTER_AB(GM_CFG1), |
| REGISTER_AB(GM_CFG2), |
| /* GM_IPG and GM_HD are not used */ |
| REGISTER_AB(GM_MAX_FLEN), |
| /* GM_TEST is not used */ |
| REGISTER_AB(GM_ADR1), |
| REGISTER_AB(GM_ADR2), |
| REGISTER_AB(GMF_CFG0), |
| REGISTER_AB(GMF_CFG1), |
| REGISTER_AB(GMF_CFG2), |
| REGISTER_AB(GMF_CFG3), |
| REGISTER_AB(GMF_CFG4), |
| REGISTER_AB(GMF_CFG5), |
| REGISTER_BB(TX_SRC_MAC_CTL), |
| REGISTER_AB(XM_ADR_LO), |
| REGISTER_AB(XM_ADR_HI), |
| REGISTER_AB(XM_GLB_CFG), |
| REGISTER_AB(XM_TX_CFG), |
| REGISTER_AB(XM_RX_CFG), |
| REGISTER_AB(XM_MGT_INT_MASK), |
| REGISTER_AB(XM_FC), |
| REGISTER_AB(XM_PAUSE_TIME), |
| REGISTER_AB(XM_TX_PARAM), |
| REGISTER_AB(XM_RX_PARAM), |
| /* XM_MGT_INT_MSK (note no 'A') is RC */ |
| REGISTER_AB(XX_PWR_RST), |
| REGISTER_AB(XX_SD_CTL), |
| REGISTER_AB(XX_TXDRV_CTL), |
| /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */ |
| /* XX_CORE_STAT is partly RC */ |
| }; |
| |
| struct efx_nic_reg_table { |
| u32 offset:24; |
| u32 min_revision:2, max_revision:2; |
| u32 step:6, rows:21; |
| }; |
| |
| #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \ |
| offset, \ |
| REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \ |
| step, rows \ |
| } |
| #define REGISTER_TABLE(name, min_rev, max_rev) \ |
| REGISTER_TABLE_DIMENSIONS( \ |
| name, FR_ ## min_rev ## max_rev ## _ ## name, \ |
| min_rev, max_rev, \ |
| FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \ |
| FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS) |
| #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A) |
| #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z) |
| #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B) |
| #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z) |
| #define REGISTER_TABLE_BB_CZ(name) \ |
| REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \ |
| FR_BZ_ ## name ## _STEP, \ |
| FR_BB_ ## name ## _ROWS), \ |
| REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \ |
| FR_BZ_ ## name ## _STEP, \ |
| FR_CZ_ ## name ## _ROWS) |
| #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z) |
| |
| static const struct efx_nic_reg_table efx_nic_reg_tables[] = { |
| /* DRIVER is not used */ |
| /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */ |
| REGISTER_TABLE_BB(TX_IPFIL_TBL), |
| REGISTER_TABLE_BB(TX_SRC_MAC_TBL), |
| REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER), |
| REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL), |
| REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER), |
| REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL), |
| REGISTER_TABLE_AA(EVQ_PTR_TBL_KER), |
| REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL), |
| /* We can't reasonably read all of the buffer table (up to 8MB!). |
| * However this driver will only use a few entries. Reading |
| * 1K entries allows for some expansion of queue count and |
| * size before we need to change the version. */ |
| REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER, |
| A, A, 8, 1024), |
| REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL, |
| B, Z, 8, 1024), |
| REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0), |
| REGISTER_TABLE_BB_CZ(TIMER_TBL), |
| REGISTER_TABLE_BB_CZ(TX_PACE_TBL), |
| REGISTER_TABLE_BZ(RX_INDIRECTION_TBL), |
| /* TX_FILTER_TBL0 is huge and not used by this driver */ |
| REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0), |
| REGISTER_TABLE_CZ(MC_TREG_SMEM), |
| /* MSIX_PBA_TABLE is not mapped */ |
| /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */ |
| REGISTER_TABLE_BZ(RX_FILTER_TBL0), |
| }; |
| |
| size_t efx_nic_get_regs_len(struct efx_nic *efx) |
| { |
| const struct efx_nic_reg *reg; |
| const struct efx_nic_reg_table *table; |
| size_t len = 0; |
| |
| for (reg = efx_nic_regs; |
| reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); |
| reg++) |
| if (efx->type->revision >= reg->min_revision && |
| efx->type->revision <= reg->max_revision) |
| len += sizeof(efx_oword_t); |
| |
| for (table = efx_nic_reg_tables; |
| table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); |
| table++) |
| if (efx->type->revision >= table->min_revision && |
| efx->type->revision <= table->max_revision) |
| len += table->rows * min_t(size_t, table->step, 16); |
| |
| return len; |
| } |
| |
| void efx_nic_get_regs(struct efx_nic *efx, void *buf) |
| { |
| const struct efx_nic_reg *reg; |
| const struct efx_nic_reg_table *table; |
| |
| for (reg = efx_nic_regs; |
| reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); |
| reg++) { |
| if (efx->type->revision >= reg->min_revision && |
| efx->type->revision <= reg->max_revision) { |
| efx_reado(efx, (efx_oword_t *)buf, reg->offset); |
| buf += sizeof(efx_oword_t); |
| } |
| } |
| |
| for (table = efx_nic_reg_tables; |
| table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); |
| table++) { |
| size_t size, i; |
| |
| if (!(efx->type->revision >= table->min_revision && |
| efx->type->revision <= table->max_revision)) |
| continue; |
| |
| size = min_t(size_t, table->step, 16); |
| |
| for (i = 0; i < table->rows; i++) { |
| switch (table->step) { |
| case 4: /* 32-bit register or SRAM */ |
| efx_readd_table(efx, buf, table->offset, i); |
| break; |
| case 8: /* 64-bit SRAM */ |
| efx_sram_readq(efx, |
| efx->membase + table->offset, |
| buf, i); |
| break; |
| case 16: /* 128-bit register */ |
| efx_reado_table(efx, buf, table->offset, i); |
| break; |
| case 32: /* 128-bit register, interleaved */ |
| efx_reado_table(efx, buf, table->offset, 2 * i); |
| break; |
| default: |
| WARN_ON(1); |
| return; |
| } |
| buf += size; |
| } |
| } |
| } |