blob: e4f8eac7f7173b1e72bb2baee585ce70d4b1f01f [file] [log] [blame]
/*
* Driver for USB Windows Media Center Ed. eHome Infrared Transceivers
*
* Copyright (c) 2010 by Jarod Wilson <jarod@redhat.com>
*
* Based on the original lirc_mceusb and lirc_mceusb2 drivers, by Dan
* Conti, Martin Blatter and Daniel Melander, the latter of which was
* in turn also based on the lirc_atiusb driver by Paul Miller. The
* two mce drivers were merged into one by Jarod Wilson, with transmit
* support for the 1st-gen device added primarily by Patrick Calhoun,
* with a bit of tweaks by Jarod. Debugging improvements and proper
* support for what appears to be 3rd-gen hardware added by Jarod.
* Initial port from lirc driver to ir-core drivery by Jarod, based
* partially on a port to an earlier proposed IR infrastructure by
* Jon Smirl, which included enhancements and simplifications to the
* incoming IR buffer parsing routines.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/device.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/usb/input.h>
#include <media/rc-core.h>
#define DRIVER_VERSION "1.91"
#define DRIVER_AUTHOR "Jarod Wilson <jarod@wilsonet.com>"
#define DRIVER_DESC "Windows Media Center Ed. eHome Infrared Transceiver " \
"device driver"
#define DRIVER_NAME "mceusb"
#define USB_BUFLEN 32 /* USB reception buffer length */
#define USB_CTRL_MSG_SZ 2 /* Size of usb ctrl msg on gen1 hw */
#define MCE_G1_INIT_MSGS 40 /* Init messages on gen1 hw to throw out */
/* MCE constants */
#define MCE_CMDBUF_SIZE 384 /* MCE Command buffer length */
#define MCE_TIME_UNIT 50 /* Approx 50us resolution */
#define MCE_CODE_LENGTH 5 /* Normal length of packet (with header) */
#define MCE_PACKET_SIZE 4 /* Normal length of packet (without header) */
#define MCE_IRDATA_HEADER 0x84 /* Actual header format is 0x80 + num_bytes */
#define MCE_IRDATA_TRAILER 0x80 /* End of IR data */
#define MCE_TX_HEADER_LENGTH 3 /* # of bytes in the initializing tx header */
#define MCE_MAX_CHANNELS 2 /* Two transmitters, hardware dependent? */
#define MCE_DEFAULT_TX_MASK 0x03 /* Vals: TX1=0x01, TX2=0x02, ALL=0x03 */
#define MCE_PULSE_BIT 0x80 /* Pulse bit, MSB set == PULSE else SPACE */
#define MCE_PULSE_MASK 0x7f /* Pulse mask */
#define MCE_MAX_PULSE_LENGTH 0x7f /* Longest transmittable pulse symbol */
#define MCE_HW_CMD_HEADER 0xff /* MCE hardware command header */
#define MCE_COMMAND_HEADER 0x9f /* MCE command header */
#define MCE_COMMAND_MASK 0xe0 /* Mask out command bits */
#define MCE_COMMAND_NULL 0x00 /* These show up various places... */
/* if buf[i] & MCE_COMMAND_MASK == 0x80 and buf[i] != MCE_COMMAND_HEADER,
* then we're looking at a raw IR data sample */
#define MCE_COMMAND_IRDATA 0x80
#define MCE_PACKET_LENGTH_MASK 0x1f /* Packet length mask */
/* Sub-commands, which follow MCE_COMMAND_HEADER or MCE_HW_CMD_HEADER */
#define MCE_CMD_SIG_END 0x01 /* End of signal */
#define MCE_CMD_PING 0x03 /* Ping device */
#define MCE_CMD_UNKNOWN 0x04 /* Unknown */
#define MCE_CMD_UNKNOWN2 0x05 /* Unknown */
#define MCE_CMD_S_CARRIER 0x06 /* Set TX carrier frequency */
#define MCE_CMD_G_CARRIER 0x07 /* Get TX carrier frequency */
#define MCE_CMD_S_TXMASK 0x08 /* Set TX port bitmask */
#define MCE_CMD_UNKNOWN3 0x09 /* Unknown */
#define MCE_CMD_UNKNOWN4 0x0a /* Unknown */
#define MCE_CMD_G_REVISION 0x0b /* Get hw/sw revision */
#define MCE_CMD_S_TIMEOUT 0x0c /* Set RX timeout value */
#define MCE_CMD_G_TIMEOUT 0x0d /* Get RX timeout value */
#define MCE_CMD_UNKNOWN5 0x0e /* Unknown */
#define MCE_CMD_UNKNOWN6 0x0f /* Unknown */
#define MCE_CMD_G_RXPORTSTS 0x11 /* Get RX port status */
#define MCE_CMD_G_TXMASK 0x13 /* Set TX port bitmask */
#define MCE_CMD_S_RXSENSOR 0x14 /* Set RX sensor (std/learning) */
#define MCE_CMD_G_RXSENSOR 0x15 /* Get RX sensor (std/learning) */
#define MCE_RSP_PULSE_COUNT 0x15 /* RX pulse count (only if learning) */
#define MCE_CMD_TX_PORTS 0x16 /* Get number of TX ports */
#define MCE_CMD_G_WAKESRC 0x17 /* Get wake source */
#define MCE_CMD_UNKNOWN7 0x18 /* Unknown */
#define MCE_CMD_UNKNOWN8 0x19 /* Unknown */
#define MCE_CMD_UNKNOWN9 0x1b /* Unknown */
#define MCE_CMD_DEVICE_RESET 0xaa /* Reset the hardware */
#define MCE_RSP_CMD_INVALID 0xfe /* Invalid command issued */
/* module parameters */
#ifdef CONFIG_USB_DEBUG
static int debug = 1;
#else
static int debug;
#endif
/* general constants */
#define SEND_FLAG_IN_PROGRESS 1
#define SEND_FLAG_COMPLETE 2
#define RECV_FLAG_IN_PROGRESS 3
#define RECV_FLAG_COMPLETE 4
#define MCEUSB_RX 1
#define MCEUSB_TX 2
#define VENDOR_PHILIPS 0x0471
#define VENDOR_SMK 0x0609
#define VENDOR_TATUNG 0x1460
#define VENDOR_GATEWAY 0x107b
#define VENDOR_SHUTTLE 0x1308
#define VENDOR_SHUTTLE2 0x051c
#define VENDOR_MITSUMI 0x03ee
#define VENDOR_TOPSEED 0x1784
#define VENDOR_RICAVISION 0x179d
#define VENDOR_ITRON 0x195d
#define VENDOR_FIC 0x1509
#define VENDOR_LG 0x043e
#define VENDOR_MICROSOFT 0x045e
#define VENDOR_FORMOSA 0x147a
#define VENDOR_FINTEK 0x1934
#define VENDOR_PINNACLE 0x2304
#define VENDOR_ECS 0x1019
#define VENDOR_WISTRON 0x0fb8
#define VENDOR_COMPRO 0x185b
#define VENDOR_NORTHSTAR 0x04eb
#define VENDOR_REALTEK 0x0bda
#define VENDOR_TIVO 0x105a
#define VENDOR_CONEXANT 0x0572
enum mceusb_model_type {
MCE_GEN2 = 0, /* Most boards */
MCE_GEN1,
MCE_GEN3,
MCE_GEN2_TX_INV,
POLARIS_EVK,
CX_HYBRID_TV,
MULTIFUNCTION,
};
struct mceusb_model {
u32 mce_gen1:1;
u32 mce_gen2:1;
u32 mce_gen3:1;
u32 tx_mask_normal:1;
u32 no_tx:1;
int ir_intfnum;
const char *rc_map; /* Allow specify a per-board map */
const char *name; /* per-board name */
};
static const struct mceusb_model mceusb_model[] = {
[MCE_GEN1] = {
.mce_gen1 = 1,
.tx_mask_normal = 1,
},
[MCE_GEN2] = {
.mce_gen2 = 1,
},
[MCE_GEN2_TX_INV] = {
.mce_gen2 = 1,
.tx_mask_normal = 1,
},
[MCE_GEN3] = {
.mce_gen3 = 1,
.tx_mask_normal = 1,
},
[POLARIS_EVK] = {
/*
* In fact, the EVK is shipped without
* remotes, but we should have something handy,
* to allow testing it
*/
.rc_map = RC_MAP_RC5_HAUPPAUGE_NEW,
.name = "Conexant Hybrid TV (cx231xx) MCE IR",
},
[CX_HYBRID_TV] = {
.no_tx = 1, /* tx isn't wired up at all */
.name = "Conexant Hybrid TV (cx231xx) MCE IR",
},
[MULTIFUNCTION] = {
.mce_gen2 = 1,
.ir_intfnum = 2,
},
};
static struct usb_device_id mceusb_dev_table[] = {
/* Original Microsoft MCE IR Transceiver (often HP-branded) */
{ USB_DEVICE(VENDOR_MICROSOFT, 0x006d),
.driver_info = MCE_GEN1 },
/* Philips Infrared Transceiver - Sahara branded */
{ USB_DEVICE(VENDOR_PHILIPS, 0x0608) },
/* Philips Infrared Transceiver - HP branded */
{ USB_DEVICE(VENDOR_PHILIPS, 0x060c),
.driver_info = MCE_GEN2_TX_INV },
/* Philips SRM5100 */
{ USB_DEVICE(VENDOR_PHILIPS, 0x060d) },
/* Philips Infrared Transceiver - Omaura */
{ USB_DEVICE(VENDOR_PHILIPS, 0x060f) },
/* Philips Infrared Transceiver - Spinel plus */
{ USB_DEVICE(VENDOR_PHILIPS, 0x0613) },
/* Philips eHome Infrared Transceiver */
{ USB_DEVICE(VENDOR_PHILIPS, 0x0815) },
/* Philips/Spinel plus IR transceiver for ASUS */
{ USB_DEVICE(VENDOR_PHILIPS, 0x206c) },
/* Philips/Spinel plus IR transceiver for ASUS */
{ USB_DEVICE(VENDOR_PHILIPS, 0x2088) },
/* Realtek MCE IR Receiver and card reader */
{ USB_DEVICE(VENDOR_REALTEK, 0x0161),
.driver_info = MULTIFUNCTION },
/* SMK/Toshiba G83C0004D410 */
{ USB_DEVICE(VENDOR_SMK, 0x031d),
.driver_info = MCE_GEN2_TX_INV },
/* SMK eHome Infrared Transceiver (Sony VAIO) */
{ USB_DEVICE(VENDOR_SMK, 0x0322),
.driver_info = MCE_GEN2_TX_INV },
/* bundled with Hauppauge PVR-150 */
{ USB_DEVICE(VENDOR_SMK, 0x0334),
.driver_info = MCE_GEN2_TX_INV },
/* SMK eHome Infrared Transceiver */
{ USB_DEVICE(VENDOR_SMK, 0x0338) },
/* Tatung eHome Infrared Transceiver */
{ USB_DEVICE(VENDOR_TATUNG, 0x9150) },
/* Shuttle eHome Infrared Transceiver */
{ USB_DEVICE(VENDOR_SHUTTLE, 0xc001) },
/* Shuttle eHome Infrared Transceiver */
{ USB_DEVICE(VENDOR_SHUTTLE2, 0xc001) },
/* Gateway eHome Infrared Transceiver */
{ USB_DEVICE(VENDOR_GATEWAY, 0x3009) },
/* Mitsumi */
{ USB_DEVICE(VENDOR_MITSUMI, 0x2501) },
/* Topseed eHome Infrared Transceiver */
{ USB_DEVICE(VENDOR_TOPSEED, 0x0001),
.driver_info = MCE_GEN2_TX_INV },
/* Topseed HP eHome Infrared Transceiver */
{ USB_DEVICE(VENDOR_TOPSEED, 0x0006),
.driver_info = MCE_GEN2_TX_INV },
/* Topseed eHome Infrared Transceiver */
{ USB_DEVICE(VENDOR_TOPSEED, 0x0007),
.driver_info = MCE_GEN2_TX_INV },
/* Topseed eHome Infrared Transceiver */
{ USB_DEVICE(VENDOR_TOPSEED, 0x0008),
.driver_info = MCE_GEN3 },
/* Topseed eHome Infrared Transceiver */
{ USB_DEVICE(VENDOR_TOPSEED, 0x000a),
.driver_info = MCE_GEN2_TX_INV },
/* Topseed eHome Infrared Transceiver */
{ USB_DEVICE(VENDOR_TOPSEED, 0x0011),
.driver_info = MCE_GEN2_TX_INV },
/* Ricavision internal Infrared Transceiver */
{ USB_DEVICE(VENDOR_RICAVISION, 0x0010) },
/* Itron ione Libra Q-11 */
{ USB_DEVICE(VENDOR_ITRON, 0x7002) },
/* FIC eHome Infrared Transceiver */
{ USB_DEVICE(VENDOR_FIC, 0x9242) },
/* LG eHome Infrared Transceiver */
{ USB_DEVICE(VENDOR_LG, 0x9803) },
/* Microsoft MCE Infrared Transceiver */
{ USB_DEVICE(VENDOR_MICROSOFT, 0x00a0) },
/* Formosa eHome Infrared Transceiver */
{ USB_DEVICE(VENDOR_FORMOSA, 0xe015) },
/* Formosa21 / eHome Infrared Receiver */
{ USB_DEVICE(VENDOR_FORMOSA, 0xe016) },
/* Formosa aim / Trust MCE Infrared Receiver */
{ USB_DEVICE(VENDOR_FORMOSA, 0xe017) },
/* Formosa Industrial Computing / Beanbag Emulation Device */
{ USB_DEVICE(VENDOR_FORMOSA, 0xe018) },
/* Formosa21 / eHome Infrared Receiver */
{ USB_DEVICE(VENDOR_FORMOSA, 0xe03a) },
/* Formosa Industrial Computing AIM IR605/A */
{ USB_DEVICE(VENDOR_FORMOSA, 0xe03c) },
/* Formosa Industrial Computing */
{ USB_DEVICE(VENDOR_FORMOSA, 0xe03e) },
/* Fintek eHome Infrared Transceiver (HP branded) */
{ USB_DEVICE(VENDOR_FINTEK, 0x5168) },
/* Fintek eHome Infrared Transceiver */
{ USB_DEVICE(VENDOR_FINTEK, 0x0602) },
/* Fintek eHome Infrared Transceiver (in the AOpen MP45) */
{ USB_DEVICE(VENDOR_FINTEK, 0x0702) },
/* Pinnacle Remote Kit */
{ USB_DEVICE(VENDOR_PINNACLE, 0x0225),
.driver_info = MCE_GEN3 },
/* Elitegroup Computer Systems IR */
{ USB_DEVICE(VENDOR_ECS, 0x0f38) },
/* Wistron Corp. eHome Infrared Receiver */
{ USB_DEVICE(VENDOR_WISTRON, 0x0002) },
/* Compro K100 */
{ USB_DEVICE(VENDOR_COMPRO, 0x3020) },
/* Compro K100 v2 */
{ USB_DEVICE(VENDOR_COMPRO, 0x3082) },
/* Northstar Systems, Inc. eHome Infrared Transceiver */
{ USB_DEVICE(VENDOR_NORTHSTAR, 0xe004) },
/* TiVo PC IR Receiver */
{ USB_DEVICE(VENDOR_TIVO, 0x2000) },
/* Conexant Hybrid TV "Shelby" Polaris SDK */
{ USB_DEVICE(VENDOR_CONEXANT, 0x58a1),
.driver_info = POLARIS_EVK },
/* Conexant Hybrid TV RDU253S Polaris */
{ USB_DEVICE(VENDOR_CONEXANT, 0x58a5),
.driver_info = CX_HYBRID_TV },
/* Terminating entry */
{ }
};
/* data structure for each usb transceiver */
struct mceusb_dev {
/* ir-core bits */
struct rc_dev *rc;
/* optional features we can enable */
bool carrier_report_enabled;
bool learning_enabled;
/* core device bits */
struct device *dev;
/* usb */
struct usb_device *usbdev;
struct urb *urb_in;
struct usb_endpoint_descriptor *usb_ep_in;
struct usb_endpoint_descriptor *usb_ep_out;
/* buffers and dma */
unsigned char *buf_in;
unsigned int len_in;
dma_addr_t dma_in;
dma_addr_t dma_out;
enum {
CMD_HEADER = 0,
SUBCMD,
CMD_DATA,
PARSE_IRDATA,
} parser_state;
u8 cmd, rem; /* Remaining IR data bytes in packet */
struct {
u32 connected:1;
u32 tx_mask_normal:1;
u32 microsoft_gen1:1;
u32 no_tx:1;
} flags;
/* transmit support */
int send_flags;
u32 carrier;
unsigned char tx_mask;
char name[128];
char phys[64];
enum mceusb_model_type model;
};
/*
* MCE Device Command Strings
* Device command responses vary from device to device...
* - DEVICE_RESET resets the hardware to its default state
* - GET_REVISION fetches the hardware/software revision, common
* replies are ff 0b 45 ff 1b 08 and ff 0b 50 ff 1b 42
* - GET_CARRIER_FREQ gets the carrier mode and frequency of the
* device, with replies in the form of 9f 06 MM FF, where MM is 0-3,
* meaning clk of 10000000, 2500000, 625000 or 156250, and FF is
* ((clk / frequency) - 1)
* - GET_RX_TIMEOUT fetches the receiver timeout in units of 50us,
* response in the form of 9f 0c msb lsb
* - GET_TX_BITMASK fetches the transmitter bitmask, replies in
* the form of 9f 08 bm, where bm is the bitmask
* - GET_RX_SENSOR fetches the RX sensor setting -- long-range
* general use one or short-range learning one, in the form of
* 9f 14 ss, where ss is either 01 for long-range or 02 for short
* - SET_CARRIER_FREQ sets a new carrier mode and frequency
* - SET_TX_BITMASK sets the transmitter bitmask
* - SET_RX_TIMEOUT sets the receiver timeout
* - SET_RX_SENSOR sets which receiver sensor to use
*/
static char DEVICE_RESET[] = {MCE_COMMAND_NULL, MCE_HW_CMD_HEADER,
MCE_CMD_DEVICE_RESET};
static char GET_REVISION[] = {MCE_HW_CMD_HEADER, MCE_CMD_G_REVISION};
static char GET_UNKNOWN[] = {MCE_HW_CMD_HEADER, MCE_CMD_UNKNOWN7};
static char GET_UNKNOWN2[] = {MCE_COMMAND_HEADER, MCE_CMD_UNKNOWN2};
static char GET_CARRIER_FREQ[] = {MCE_COMMAND_HEADER, MCE_CMD_G_CARRIER};
static char GET_RX_TIMEOUT[] = {MCE_COMMAND_HEADER, MCE_CMD_G_TIMEOUT};
static char GET_TX_BITMASK[] = {MCE_COMMAND_HEADER, MCE_CMD_G_TXMASK};
static char GET_RX_SENSOR[] = {MCE_COMMAND_HEADER, MCE_CMD_G_RXSENSOR};
/* sub in desired values in lower byte or bytes for full command */
/* FIXME: make use of these for transmit.
static char SET_CARRIER_FREQ[] = {MCE_COMMAND_HEADER,
MCE_CMD_S_CARRIER, 0x00, 0x00};
static char SET_TX_BITMASK[] = {MCE_COMMAND_HEADER, MCE_CMD_S_TXMASK, 0x00};
static char SET_RX_TIMEOUT[] = {MCE_COMMAND_HEADER,
MCE_CMD_S_TIMEOUT, 0x00, 0x00};
static char SET_RX_SENSOR[] = {MCE_COMMAND_HEADER,
MCE_CMD_S_RXSENSOR, 0x00};
*/
static int mceusb_cmdsize(u8 cmd, u8 subcmd)
{
int datasize = 0;
switch (cmd) {
case MCE_COMMAND_NULL:
if (subcmd == MCE_HW_CMD_HEADER)
datasize = 1;
break;
case MCE_HW_CMD_HEADER:
switch (subcmd) {
case MCE_CMD_G_REVISION:
datasize = 2;
break;
}
case MCE_COMMAND_HEADER:
switch (subcmd) {
case MCE_CMD_UNKNOWN:
case MCE_CMD_S_CARRIER:
case MCE_CMD_S_TIMEOUT:
case MCE_RSP_PULSE_COUNT:
datasize = 2;
break;
case MCE_CMD_SIG_END:
case MCE_CMD_S_TXMASK:
case MCE_CMD_S_RXSENSOR:
datasize = 1;
break;
}
}
return datasize;
}
static void mceusb_dev_printdata(struct mceusb_dev *ir, char *buf,
int offset, int len, bool out)
{
char codes[USB_BUFLEN * 3 + 1];
char inout[9];
u8 cmd, subcmd, data1, data2;
struct device *dev = ir->dev;
int i, start, skip = 0;
if (!debug)
return;
/* skip meaningless 0xb1 0x60 header bytes on orig receiver */
if (ir->flags.microsoft_gen1 && !out && !offset)
skip = 2;
if (len <= skip)
return;
for (i = 0; i < len && i < USB_BUFLEN; i++)
snprintf(codes + i * 3, 4, "%02x ", buf[i + offset] & 0xff);
dev_info(dev, "%sx data: %s(length=%d)\n",
(out ? "t" : "r"), codes, len);
if (out)
strcpy(inout, "Request\0");
else
strcpy(inout, "Got\0");
start = offset + skip;
cmd = buf[start] & 0xff;
subcmd = buf[start + 1] & 0xff;
data1 = buf[start + 2] & 0xff;
data2 = buf[start + 3] & 0xff;
switch (cmd) {
case MCE_COMMAND_NULL:
if ((subcmd == MCE_HW_CMD_HEADER) &&
(data1 == MCE_CMD_DEVICE_RESET))
dev_info(dev, "Device reset requested\n");
else
dev_info(dev, "Unknown command 0x%02x 0x%02x\n",
cmd, subcmd);
break;
case MCE_HW_CMD_HEADER:
switch (subcmd) {
case MCE_CMD_G_REVISION:
if (len == 2)
dev_info(dev, "Get hw/sw rev?\n");
else
dev_info(dev, "hw/sw rev 0x%02x 0x%02x "
"0x%02x 0x%02x\n", data1, data2,
buf[start + 4], buf[start + 5]);
break;
case MCE_CMD_DEVICE_RESET:
dev_info(dev, "Device reset requested\n");
break;
case MCE_RSP_CMD_INVALID:
dev_info(dev, "Previous command not supported\n");
break;
case MCE_CMD_UNKNOWN7:
case MCE_CMD_UNKNOWN9:
default:
dev_info(dev, "Unknown command 0x%02x 0x%02x\n",
cmd, subcmd);
break;
}
break;
case MCE_COMMAND_HEADER:
switch (subcmd) {
case MCE_CMD_SIG_END:
dev_info(dev, "End of signal\n");
break;
case MCE_CMD_PING:
dev_info(dev, "Ping\n");
break;
case MCE_CMD_UNKNOWN:
dev_info(dev, "Resp to 9f 05 of 0x%02x 0x%02x\n",
data1, data2);
break;
case MCE_CMD_S_CARRIER:
dev_info(dev, "%s carrier mode and freq of "
"0x%02x 0x%02x\n", inout, data1, data2);
break;
case MCE_CMD_G_CARRIER:
dev_info(dev, "Get carrier mode and freq\n");
break;
case MCE_CMD_S_TXMASK:
dev_info(dev, "%s transmit blaster mask of 0x%02x\n",
inout, data1);
break;
case MCE_CMD_S_TIMEOUT:
/* value is in units of 50us, so x*50/100 or x/2 ms */
dev_info(dev, "%s receive timeout of %d ms\n",
inout, ((data1 << 8) | data2) / 2);
break;
case MCE_CMD_G_TIMEOUT:
dev_info(dev, "Get receive timeout\n");
break;
case MCE_CMD_G_TXMASK:
dev_info(dev, "Get transmit blaster mask\n");
break;
case MCE_CMD_S_RXSENSOR:
dev_info(dev, "%s %s-range receive sensor in use\n",
inout, data1 == 0x02 ? "short" : "long");
break;
case MCE_CMD_G_RXSENSOR:
/* aka MCE_RSP_PULSE_COUNT */
if (out)
dev_info(dev, "Get receive sensor\n");
else if (ir->learning_enabled)
dev_info(dev, "RX pulse count: %d\n",
((data1 << 8) | data2));
break;
case MCE_RSP_CMD_INVALID:
dev_info(dev, "Error! Hardware is likely wedged...\n");
break;
case MCE_CMD_UNKNOWN2:
case MCE_CMD_UNKNOWN3:
case MCE_CMD_UNKNOWN5:
default:
dev_info(dev, "Unknown command 0x%02x 0x%02x\n",
cmd, subcmd);
break;
}
break;
default:
break;
}
if (cmd == MCE_IRDATA_TRAILER)
dev_info(dev, "End of raw IR data\n");
else if ((cmd != MCE_COMMAND_HEADER) &&
((cmd & MCE_COMMAND_MASK) == MCE_COMMAND_IRDATA))
dev_info(dev, "Raw IR data, %d pulse/space samples\n", ir->rem);
}
static void mce_async_callback(struct urb *urb, struct pt_regs *regs)
{
struct mceusb_dev *ir;
int len;
if (!urb)
return;
ir = urb->context;
if (ir) {
len = urb->actual_length;
dev_dbg(ir->dev, "callback called (status=%d len=%d)\n",
urb->status, len);
mceusb_dev_printdata(ir, urb->transfer_buffer, 0, len, true);
}
}
/* request incoming or send outgoing usb packet - used to initialize remote */
static void mce_request_packet(struct mceusb_dev *ir,
struct usb_endpoint_descriptor *ep,
unsigned char *data, int size, int urb_type)
{
int res;
struct urb *async_urb;
struct device *dev = ir->dev;
unsigned char *async_buf;
if (urb_type == MCEUSB_TX) {
async_urb = usb_alloc_urb(0, GFP_KERNEL);
if (unlikely(!async_urb)) {
dev_err(dev, "Error, couldn't allocate urb!\n");
return;
}
async_buf = kzalloc(size, GFP_KERNEL);
if (!async_buf) {
dev_err(dev, "Error, couldn't allocate buf!\n");
usb_free_urb(async_urb);
return;
}
/* outbound data */
usb_fill_int_urb(async_urb, ir->usbdev,
usb_sndintpipe(ir->usbdev, ep->bEndpointAddress),
async_buf, size, (usb_complete_t)mce_async_callback,
ir, ep->bInterval);
memcpy(async_buf, data, size);
} else if (urb_type == MCEUSB_RX) {
/* standard request */
async_urb = ir->urb_in;
ir->send_flags = RECV_FLAG_IN_PROGRESS;
} else {
dev_err(dev, "Error! Unknown urb type %d\n", urb_type);
return;
}
dev_dbg(dev, "receive request called (size=%#x)\n", size);
async_urb->transfer_buffer_length = size;
async_urb->dev = ir->usbdev;
res = usb_submit_urb(async_urb, GFP_ATOMIC);
if (res) {
dev_dbg(dev, "receive request FAILED! (res=%d)\n", res);
return;
}
dev_dbg(dev, "receive request complete (res=%d)\n", res);
}
static void mce_async_out(struct mceusb_dev *ir, unsigned char *data, int size)
{
mce_request_packet(ir, ir->usb_ep_out, data, size, MCEUSB_TX);
}
static void mce_sync_in(struct mceusb_dev *ir, unsigned char *data, int size)
{
mce_request_packet(ir, ir->usb_ep_in, data, size, MCEUSB_RX);
}
/* Send data out the IR blaster port(s) */
static int mceusb_tx_ir(struct rc_dev *dev, int *txbuf, u32 n)
{
struct mceusb_dev *ir = dev->priv;
int i, ret = 0;
int count, cmdcount = 0;
unsigned char *cmdbuf; /* MCE command buffer */
long signal_duration = 0; /* Singnal length in us */
struct timeval start_time, end_time;
do_gettimeofday(&start_time);
count = n / sizeof(int);
cmdbuf = kzalloc(sizeof(int) * MCE_CMDBUF_SIZE, GFP_KERNEL);
if (!cmdbuf)
return -ENOMEM;
/* MCE tx init header */
cmdbuf[cmdcount++] = MCE_COMMAND_HEADER;
cmdbuf[cmdcount++] = MCE_CMD_S_TXMASK;
cmdbuf[cmdcount++] = ir->tx_mask;
/* Generate mce packet data */
for (i = 0; (i < count) && (cmdcount < MCE_CMDBUF_SIZE); i++) {
signal_duration += txbuf[i];
txbuf[i] = txbuf[i] / MCE_TIME_UNIT;
do { /* loop to support long pulses/spaces > 127*50us=6.35ms */
/* Insert mce packet header every 4th entry */
if ((cmdcount < MCE_CMDBUF_SIZE) &&
(cmdcount - MCE_TX_HEADER_LENGTH) %
MCE_CODE_LENGTH == 0)
cmdbuf[cmdcount++] = MCE_IRDATA_HEADER;
/* Insert mce packet data */
if (cmdcount < MCE_CMDBUF_SIZE)
cmdbuf[cmdcount++] =
(txbuf[i] < MCE_PULSE_BIT ?
txbuf[i] : MCE_MAX_PULSE_LENGTH) |
(i & 1 ? 0x00 : MCE_PULSE_BIT);
else {
ret = -EINVAL;
goto out;
}
} while ((txbuf[i] > MCE_MAX_PULSE_LENGTH) &&
(txbuf[i] -= MCE_MAX_PULSE_LENGTH));
}
/* Fix packet length in last header */
cmdbuf[cmdcount - (cmdcount - MCE_TX_HEADER_LENGTH) % MCE_CODE_LENGTH] =
MCE_COMMAND_IRDATA + (cmdcount - MCE_TX_HEADER_LENGTH) %
MCE_CODE_LENGTH - 1;
/* Check if we have room for the empty packet at the end */
if (cmdcount >= MCE_CMDBUF_SIZE) {
ret = -EINVAL;
goto out;
}
/* All mce commands end with an empty packet (0x80) */
cmdbuf[cmdcount++] = MCE_IRDATA_TRAILER;
/* Transmit the command to the mce device */
mce_async_out(ir, cmdbuf, cmdcount);
/*
* The lircd gap calculation expects the write function to
* wait the time it takes for the ircommand to be sent before
* it returns.
*/
do_gettimeofday(&end_time);
signal_duration -= (end_time.tv_usec - start_time.tv_usec) +
(end_time.tv_sec - start_time.tv_sec) * 1000000;
/* delay with the closest number of ticks */
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(usecs_to_jiffies(signal_duration));
out:
kfree(cmdbuf);
return ret ? ret : n;
}
/* Sets active IR outputs -- mce devices typically have two */
static int mceusb_set_tx_mask(struct rc_dev *dev, u32 mask)
{
struct mceusb_dev *ir = dev->priv;
if (ir->flags.tx_mask_normal)
ir->tx_mask = mask;
else
ir->tx_mask = (mask != MCE_DEFAULT_TX_MASK ?
mask ^ MCE_DEFAULT_TX_MASK : mask) << 1;
return 0;
}
/* Sets the send carrier frequency and mode */
static int mceusb_set_tx_carrier(struct rc_dev *dev, u32 carrier)
{
struct mceusb_dev *ir = dev->priv;
int clk = 10000000;
int prescaler = 0, divisor = 0;
unsigned char cmdbuf[4] = { MCE_COMMAND_HEADER,
MCE_CMD_S_CARRIER, 0x00, 0x00 };
/* Carrier has changed */
if (ir->carrier != carrier) {
if (carrier == 0) {
ir->carrier = carrier;
cmdbuf[2] = MCE_CMD_SIG_END;
cmdbuf[3] = MCE_IRDATA_TRAILER;
dev_dbg(ir->dev, "%s: disabling carrier "
"modulation\n", __func__);
mce_async_out(ir, cmdbuf, sizeof(cmdbuf));
return carrier;
}
for (prescaler = 0; prescaler < 4; ++prescaler) {
divisor = (clk >> (2 * prescaler)) / carrier;
if (divisor <= 0xff) {
ir->carrier = carrier;
cmdbuf[2] = prescaler;
cmdbuf[3] = divisor;
dev_dbg(ir->dev, "%s: requesting %u HZ "
"carrier\n", __func__, carrier);
/* Transmit new carrier to mce device */
mce_async_out(ir, cmdbuf, sizeof(cmdbuf));
return carrier;
}
}
return -EINVAL;
}
return carrier;
}
/*
* We don't do anything but print debug spew for many of the command bits
* we receive from the hardware, but some of them are useful information
* we want to store so that we can use them.
*/
static void mceusb_handle_command(struct mceusb_dev *ir, int index)
{
u8 hi = ir->buf_in[index + 1] & 0xff;
u8 lo = ir->buf_in[index + 2] & 0xff;
switch (ir->buf_in[index]) {
/* 2-byte return value commands */
case MCE_CMD_S_TIMEOUT:
ir->rc->timeout = US_TO_NS((hi << 8 | lo) / 2);
break;
/* 1-byte return value commands */
case MCE_CMD_S_TXMASK:
ir->tx_mask = hi;
break;
case MCE_CMD_S_RXSENSOR:
ir->learning_enabled = (hi == 0x02);
break;
default:
break;
}
}
static void mceusb_process_ir_data(struct mceusb_dev *ir, int buf_len)
{
DEFINE_IR_RAW_EVENT(rawir);
int i = 0;
/* skip meaningless 0xb1 0x60 header bytes on orig receiver */
if (ir->flags.microsoft_gen1)
i = 2;
/* if there's no data, just return now */
if (buf_len <= i)
return;
for (; i < buf_len; i++) {
switch (ir->parser_state) {
case SUBCMD:
ir->rem = mceusb_cmdsize(ir->cmd, ir->buf_in[i]);
mceusb_dev_printdata(ir, ir->buf_in, i - 1,
ir->rem + 2, false);
mceusb_handle_command(ir, i);
ir->parser_state = CMD_DATA;
break;
case PARSE_IRDATA:
ir->rem--;
init_ir_raw_event(&rawir);
rawir.pulse = ((ir->buf_in[i] & MCE_PULSE_BIT) != 0);
rawir.duration = (ir->buf_in[i] & MCE_PULSE_MASK)
* US_TO_NS(MCE_TIME_UNIT);
dev_dbg(ir->dev, "Storing %s with duration %d\n",
rawir.pulse ? "pulse" : "space",
rawir.duration);
ir_raw_event_store_with_filter(ir->rc, &rawir);
break;
case CMD_DATA:
ir->rem--;
break;
case CMD_HEADER:
/* decode mce packets of the form (84),AA,BB,CC,DD */
/* IR data packets can span USB messages - rem */
ir->cmd = ir->buf_in[i];
if ((ir->cmd == MCE_COMMAND_HEADER) ||
((ir->cmd & MCE_COMMAND_MASK) !=
MCE_COMMAND_IRDATA)) {
ir->parser_state = SUBCMD;
continue;
}
ir->rem = (ir->cmd & MCE_PACKET_LENGTH_MASK);
mceusb_dev_printdata(ir, ir->buf_in,
i, ir->rem + 1, false);
if (ir->rem)
ir->parser_state = PARSE_IRDATA;
else
ir_raw_event_reset(ir->rc);
break;
}
if (ir->parser_state != CMD_HEADER && !ir->rem)
ir->parser_state = CMD_HEADER;
}
dev_dbg(ir->dev, "processed IR data, calling ir_raw_event_handle\n");
ir_raw_event_handle(ir->rc);
}
static void mceusb_dev_recv(struct urb *urb, struct pt_regs *regs)
{
struct mceusb_dev *ir;
int buf_len;
if (!urb)
return;
ir = urb->context;
if (!ir) {
usb_unlink_urb(urb);
return;
}
buf_len = urb->actual_length;
if (ir->send_flags == RECV_FLAG_IN_PROGRESS) {
ir->send_flags = SEND_FLAG_COMPLETE;
dev_dbg(ir->dev, "setup answer received %d bytes\n",
buf_len);
}
switch (urb->status) {
/* success */
case 0:
mceusb_process_ir_data(ir, buf_len);
break;
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
usb_unlink_urb(urb);
return;
case -EPIPE:
default:
dev_dbg(ir->dev, "Error: urb status = %d\n", urb->status);
break;
}
usb_submit_urb(urb, GFP_ATOMIC);
}
static void mceusb_gen1_init(struct mceusb_dev *ir)
{
int ret;
int maxp = ir->len_in;
struct device *dev = ir->dev;
char *data;
data = kzalloc(USB_CTRL_MSG_SZ, GFP_KERNEL);
if (!data) {
dev_err(dev, "%s: memory allocation failed!\n", __func__);
return;
}
/*
* This is a strange one. Windows issues a set address to the device
* on the receive control pipe and expect a certain value pair back
*/
ret = usb_control_msg(ir->usbdev, usb_rcvctrlpipe(ir->usbdev, 0),
USB_REQ_SET_ADDRESS, USB_TYPE_VENDOR, 0, 0,
data, USB_CTRL_MSG_SZ, HZ * 3);
dev_dbg(dev, "%s - ret = %d\n", __func__, ret);
dev_dbg(dev, "%s - data[0] = %d, data[1] = %d\n",
__func__, data[0], data[1]);
/* set feature: bit rate 38400 bps */
ret = usb_control_msg(ir->usbdev, usb_sndctrlpipe(ir->usbdev, 0),
USB_REQ_SET_FEATURE, USB_TYPE_VENDOR,
0xc04e, 0x0000, NULL, 0, HZ * 3);
dev_dbg(dev, "%s - ret = %d\n", __func__, ret);
/* bRequest 4: set char length to 8 bits */
ret = usb_control_msg(ir->usbdev, usb_sndctrlpipe(ir->usbdev, 0),
4, USB_TYPE_VENDOR,
0x0808, 0x0000, NULL, 0, HZ * 3);
dev_dbg(dev, "%s - retB = %d\n", __func__, ret);
/* bRequest 2: set handshaking to use DTR/DSR */
ret = usb_control_msg(ir->usbdev, usb_sndctrlpipe(ir->usbdev, 0),
2, USB_TYPE_VENDOR,
0x0000, 0x0100, NULL, 0, HZ * 3);
dev_dbg(dev, "%s - retC = %d\n", __func__, ret);
/* device reset */
mce_async_out(ir, DEVICE_RESET, sizeof(DEVICE_RESET));
mce_sync_in(ir, NULL, maxp);
/* get hw/sw revision? */
mce_async_out(ir, GET_REVISION, sizeof(GET_REVISION));
mce_sync_in(ir, NULL, maxp);
kfree(data);
};
static void mceusb_gen2_init(struct mceusb_dev *ir)
{
int maxp = ir->len_in;
/* device reset */
mce_async_out(ir, DEVICE_RESET, sizeof(DEVICE_RESET));
mce_sync_in(ir, NULL, maxp);
/* get hw/sw revision? */
mce_async_out(ir, GET_REVISION, sizeof(GET_REVISION));
mce_sync_in(ir, NULL, maxp);
/* unknown what the next two actually return... */
mce_async_out(ir, GET_UNKNOWN, sizeof(GET_UNKNOWN));
mce_sync_in(ir, NULL, maxp);
mce_async_out(ir, GET_UNKNOWN2, sizeof(GET_UNKNOWN2));
mce_sync_in(ir, NULL, maxp);
}
static void mceusb_get_parameters(struct mceusb_dev *ir)
{
int maxp = ir->len_in;
/* get the carrier and frequency */
mce_async_out(ir, GET_CARRIER_FREQ, sizeof(GET_CARRIER_FREQ));
mce_sync_in(ir, NULL, maxp);
if (!ir->flags.no_tx) {
/* get the transmitter bitmask */
mce_async_out(ir, GET_TX_BITMASK, sizeof(GET_TX_BITMASK));
mce_sync_in(ir, NULL, maxp);
}
/* get receiver timeout value */
mce_async_out(ir, GET_RX_TIMEOUT, sizeof(GET_RX_TIMEOUT));
mce_sync_in(ir, NULL, maxp);
/* get receiver sensor setting */
mce_async_out(ir, GET_RX_SENSOR, sizeof(GET_RX_SENSOR));
mce_sync_in(ir, NULL, maxp);
}
static struct rc_dev *mceusb_init_rc_dev(struct mceusb_dev *ir)
{
struct device *dev = ir->dev;
struct rc_dev *rc;
int ret;
rc = rc_allocate_device();
if (!rc) {
dev_err(dev, "remote dev allocation failed\n");
goto out;
}
snprintf(ir->name, sizeof(ir->name), "%s (%04x:%04x)",
mceusb_model[ir->model].name ?
mceusb_model[ir->model].name :
"Media Center Ed. eHome Infrared Remote Transceiver",
le16_to_cpu(ir->usbdev->descriptor.idVendor),
le16_to_cpu(ir->usbdev->descriptor.idProduct));
usb_make_path(ir->usbdev, ir->phys, sizeof(ir->phys));
rc->input_name = ir->name;
rc->input_phys = ir->phys;
usb_to_input_id(ir->usbdev, &rc->input_id);
rc->dev.parent = dev;
rc->priv = ir;
rc->driver_type = RC_DRIVER_IR_RAW;
rc->allowed_protos = RC_TYPE_ALL;
rc->timeout = US_TO_NS(1000);
if (!ir->flags.no_tx) {
rc->s_tx_mask = mceusb_set_tx_mask;
rc->s_tx_carrier = mceusb_set_tx_carrier;
rc->tx_ir = mceusb_tx_ir;
}
rc->driver_name = DRIVER_NAME;
rc->map_name = mceusb_model[ir->model].rc_map ?
mceusb_model[ir->model].rc_map : RC_MAP_RC6_MCE;
ret = rc_register_device(rc);
if (ret < 0) {
dev_err(dev, "remote dev registration failed\n");
goto out;
}
return rc;
out:
rc_free_device(rc);
return NULL;
}
static int __devinit mceusb_dev_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_device *dev = interface_to_usbdev(intf);
struct usb_host_interface *idesc;
struct usb_endpoint_descriptor *ep = NULL;
struct usb_endpoint_descriptor *ep_in = NULL;
struct usb_endpoint_descriptor *ep_out = NULL;
struct mceusb_dev *ir = NULL;
int pipe, maxp, i;
char buf[63], name[128] = "";
enum mceusb_model_type model = id->driver_info;
bool is_gen3;
bool is_microsoft_gen1;
bool tx_mask_normal;
int ir_intfnum;
dev_dbg(&intf->dev, "%s called\n", __func__);
idesc = intf->cur_altsetting;
is_gen3 = mceusb_model[model].mce_gen3;
is_microsoft_gen1 = mceusb_model[model].mce_gen1;
tx_mask_normal = mceusb_model[model].tx_mask_normal;
ir_intfnum = mceusb_model[model].ir_intfnum;
/* There are multi-function devices with non-IR interfaces */
if (idesc->desc.bInterfaceNumber != ir_intfnum)
return -ENODEV;
/* step through the endpoints to find first bulk in and out endpoint */
for (i = 0; i < idesc->desc.bNumEndpoints; ++i) {
ep = &idesc->endpoint[i].desc;
if ((ep_in == NULL)
&& ((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK)
== USB_DIR_IN)
&& (((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
== USB_ENDPOINT_XFER_BULK)
|| ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
== USB_ENDPOINT_XFER_INT))) {
ep_in = ep;
ep_in->bmAttributes = USB_ENDPOINT_XFER_INT;
ep_in->bInterval = 1;
dev_dbg(&intf->dev, "acceptable inbound endpoint "
"found\n");
}
if ((ep_out == NULL)
&& ((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK)
== USB_DIR_OUT)
&& (((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
== USB_ENDPOINT_XFER_BULK)
|| ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
== USB_ENDPOINT_XFER_INT))) {
ep_out = ep;
ep_out->bmAttributes = USB_ENDPOINT_XFER_INT;
ep_out->bInterval = 1;
dev_dbg(&intf->dev, "acceptable outbound endpoint "
"found\n");
}
}
if (ep_in == NULL) {
dev_dbg(&intf->dev, "inbound and/or endpoint not found\n");
return -ENODEV;
}
pipe = usb_rcvintpipe(dev, ep_in->bEndpointAddress);
maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe));
ir = kzalloc(sizeof(struct mceusb_dev), GFP_KERNEL);
if (!ir)
goto mem_alloc_fail;
ir->buf_in = usb_alloc_coherent(dev, maxp, GFP_ATOMIC, &ir->dma_in);
if (!ir->buf_in)
goto buf_in_alloc_fail;
ir->urb_in = usb_alloc_urb(0, GFP_KERNEL);
if (!ir->urb_in)
goto urb_in_alloc_fail;
ir->usbdev = dev;
ir->dev = &intf->dev;
ir->len_in = maxp;
ir->flags.microsoft_gen1 = is_microsoft_gen1;
ir->flags.tx_mask_normal = tx_mask_normal;
ir->flags.no_tx = mceusb_model[model].no_tx;
ir->model = model;
/* Saving usb interface data for use by the transmitter routine */
ir->usb_ep_in = ep_in;
ir->usb_ep_out = ep_out;
if (dev->descriptor.iManufacturer
&& usb_string(dev, dev->descriptor.iManufacturer,
buf, sizeof(buf)) > 0)
strlcpy(name, buf, sizeof(name));
if (dev->descriptor.iProduct
&& usb_string(dev, dev->descriptor.iProduct,
buf, sizeof(buf)) > 0)
snprintf(name + strlen(name), sizeof(name) - strlen(name),
" %s", buf);
ir->rc = mceusb_init_rc_dev(ir);
if (!ir->rc)
goto rc_dev_fail;
/* flush buffers on the device */
mce_sync_in(ir, NULL, maxp);
mce_sync_in(ir, NULL, maxp);
/* wire up inbound data handler */
usb_fill_int_urb(ir->urb_in, dev, pipe, ir->buf_in,
maxp, (usb_complete_t) mceusb_dev_recv, ir, ep_in->bInterval);
ir->urb_in->transfer_dma = ir->dma_in;
ir->urb_in->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
/* initialize device */
if (ir->flags.microsoft_gen1)
mceusb_gen1_init(ir);
else if (!is_gen3)
mceusb_gen2_init(ir);
mceusb_get_parameters(ir);
if (!ir->flags.no_tx)
mceusb_set_tx_mask(ir->rc, MCE_DEFAULT_TX_MASK);
usb_set_intfdata(intf, ir);
dev_info(&intf->dev, "Registered %s on usb%d:%d\n", name,
dev->bus->busnum, dev->devnum);
return 0;
/* Error-handling path */
rc_dev_fail:
usb_free_urb(ir->urb_in);
urb_in_alloc_fail:
usb_free_coherent(dev, maxp, ir->buf_in, ir->dma_in);
buf_in_alloc_fail:
kfree(ir);
mem_alloc_fail:
dev_err(&intf->dev, "%s: device setup failed!\n", __func__);
return -ENOMEM;
}
static void __devexit mceusb_dev_disconnect(struct usb_interface *intf)
{
struct usb_device *dev = interface_to_usbdev(intf);
struct mceusb_dev *ir = usb_get_intfdata(intf);
usb_set_intfdata(intf, NULL);
if (!ir)
return;
ir->usbdev = NULL;
rc_unregister_device(ir->rc);
usb_kill_urb(ir->urb_in);
usb_free_urb(ir->urb_in);
usb_free_coherent(dev, ir->len_in, ir->buf_in, ir->dma_in);
kfree(ir);
}
static int mceusb_dev_suspend(struct usb_interface *intf, pm_message_t message)
{
struct mceusb_dev *ir = usb_get_intfdata(intf);
dev_info(ir->dev, "suspend\n");
usb_kill_urb(ir->urb_in);
return 0;
}
static int mceusb_dev_resume(struct usb_interface *intf)
{
struct mceusb_dev *ir = usb_get_intfdata(intf);
dev_info(ir->dev, "resume\n");
if (usb_submit_urb(ir->urb_in, GFP_ATOMIC))
return -EIO;
return 0;
}
static struct usb_driver mceusb_dev_driver = {
.name = DRIVER_NAME,
.probe = mceusb_dev_probe,
.disconnect = mceusb_dev_disconnect,
.suspend = mceusb_dev_suspend,
.resume = mceusb_dev_resume,
.reset_resume = mceusb_dev_resume,
.id_table = mceusb_dev_table
};
static int __init mceusb_dev_init(void)
{
int ret;
ret = usb_register(&mceusb_dev_driver);
if (ret < 0)
printk(KERN_ERR DRIVER_NAME
": usb register failed, result = %d\n", ret);
return ret;
}
static void __exit mceusb_dev_exit(void)
{
usb_deregister(&mceusb_dev_driver);
}
module_init(mceusb_dev_init);
module_exit(mceusb_dev_exit);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(usb, mceusb_dev_table);
module_param(debug, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Debug enabled or not");