| /* |
| * Copyright © 2008 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eric Anholt <eric@anholt.net> |
| * |
| */ |
| |
| #include <drm/drmP.h> |
| #include <drm/drm_vma_manager.h> |
| #include <drm/i915_drm.h> |
| #include "i915_drv.h" |
| #include "i915_trace.h" |
| #include "intel_drv.h" |
| #include <linux/oom.h> |
| #include <linux/shmem_fs.h> |
| #include <linux/slab.h> |
| #include <linux/swap.h> |
| #include <linux/pci.h> |
| #include <linux/dma-buf.h> |
| |
| static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); |
| static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj, |
| bool force); |
| static __must_check int |
| i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, |
| bool readonly); |
| static void |
| i915_gem_object_retire(struct drm_i915_gem_object *obj); |
| |
| static void i915_gem_write_fence(struct drm_device *dev, int reg, |
| struct drm_i915_gem_object *obj); |
| static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, |
| struct drm_i915_fence_reg *fence, |
| bool enable); |
| |
| static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker, |
| struct shrink_control *sc); |
| static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker, |
| struct shrink_control *sc); |
| static int i915_gem_shrinker_oom(struct notifier_block *nb, |
| unsigned long event, |
| void *ptr); |
| static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv); |
| |
| static bool cpu_cache_is_coherent(struct drm_device *dev, |
| enum i915_cache_level level) |
| { |
| return HAS_LLC(dev) || level != I915_CACHE_NONE; |
| } |
| |
| static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) |
| { |
| if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) |
| return true; |
| |
| return obj->pin_display; |
| } |
| |
| static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) |
| { |
| if (obj->tiling_mode) |
| i915_gem_release_mmap(obj); |
| |
| /* As we do not have an associated fence register, we will force |
| * a tiling change if we ever need to acquire one. |
| */ |
| obj->fence_dirty = false; |
| obj->fence_reg = I915_FENCE_REG_NONE; |
| } |
| |
| /* some bookkeeping */ |
| static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, |
| size_t size) |
| { |
| spin_lock(&dev_priv->mm.object_stat_lock); |
| dev_priv->mm.object_count++; |
| dev_priv->mm.object_memory += size; |
| spin_unlock(&dev_priv->mm.object_stat_lock); |
| } |
| |
| static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, |
| size_t size) |
| { |
| spin_lock(&dev_priv->mm.object_stat_lock); |
| dev_priv->mm.object_count--; |
| dev_priv->mm.object_memory -= size; |
| spin_unlock(&dev_priv->mm.object_stat_lock); |
| } |
| |
| static int |
| i915_gem_wait_for_error(struct i915_gpu_error *error) |
| { |
| int ret; |
| |
| #define EXIT_COND (!i915_reset_in_progress(error) || \ |
| i915_terminally_wedged(error)) |
| if (EXIT_COND) |
| return 0; |
| |
| /* |
| * Only wait 10 seconds for the gpu reset to complete to avoid hanging |
| * userspace. If it takes that long something really bad is going on and |
| * we should simply try to bail out and fail as gracefully as possible. |
| */ |
| ret = wait_event_interruptible_timeout(error->reset_queue, |
| EXIT_COND, |
| 10*HZ); |
| if (ret == 0) { |
| DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); |
| return -EIO; |
| } else if (ret < 0) { |
| return ret; |
| } |
| #undef EXIT_COND |
| |
| return 0; |
| } |
| |
| int i915_mutex_lock_interruptible(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| ret = i915_gem_wait_for_error(&dev_priv->gpu_error); |
| if (ret) |
| return ret; |
| |
| ret = mutex_lock_interruptible(&dev->struct_mutex); |
| if (ret) |
| return ret; |
| |
| WARN_ON(i915_verify_lists(dev)); |
| return 0; |
| } |
| |
| static inline bool |
| i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) |
| { |
| return i915_gem_obj_bound_any(obj) && !obj->active; |
| } |
| |
| int |
| i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_get_aperture *args = data; |
| struct drm_i915_gem_object *obj; |
| size_t pinned; |
| |
| pinned = 0; |
| mutex_lock(&dev->struct_mutex); |
| list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) |
| if (i915_gem_obj_is_pinned(obj)) |
| pinned += i915_gem_obj_ggtt_size(obj); |
| mutex_unlock(&dev->struct_mutex); |
| |
| args->aper_size = dev_priv->gtt.base.total; |
| args->aper_available_size = args->aper_size - pinned; |
| |
| return 0; |
| } |
| |
| static int |
| i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj) |
| { |
| struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; |
| char *vaddr = obj->phys_handle->vaddr; |
| struct sg_table *st; |
| struct scatterlist *sg; |
| int i; |
| |
| if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj))) |
| return -EINVAL; |
| |
| for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { |
| struct page *page; |
| char *src; |
| |
| page = shmem_read_mapping_page(mapping, i); |
| if (IS_ERR(page)) |
| return PTR_ERR(page); |
| |
| src = kmap_atomic(page); |
| memcpy(vaddr, src, PAGE_SIZE); |
| drm_clflush_virt_range(vaddr, PAGE_SIZE); |
| kunmap_atomic(src); |
| |
| page_cache_release(page); |
| vaddr += PAGE_SIZE; |
| } |
| |
| i915_gem_chipset_flush(obj->base.dev); |
| |
| st = kmalloc(sizeof(*st), GFP_KERNEL); |
| if (st == NULL) |
| return -ENOMEM; |
| |
| if (sg_alloc_table(st, 1, GFP_KERNEL)) { |
| kfree(st); |
| return -ENOMEM; |
| } |
| |
| sg = st->sgl; |
| sg->offset = 0; |
| sg->length = obj->base.size; |
| |
| sg_dma_address(sg) = obj->phys_handle->busaddr; |
| sg_dma_len(sg) = obj->base.size; |
| |
| obj->pages = st; |
| obj->has_dma_mapping = true; |
| return 0; |
| } |
| |
| static void |
| i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj) |
| { |
| int ret; |
| |
| BUG_ON(obj->madv == __I915_MADV_PURGED); |
| |
| ret = i915_gem_object_set_to_cpu_domain(obj, true); |
| if (ret) { |
| /* In the event of a disaster, abandon all caches and |
| * hope for the best. |
| */ |
| WARN_ON(ret != -EIO); |
| obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; |
| } |
| |
| if (obj->madv == I915_MADV_DONTNEED) |
| obj->dirty = 0; |
| |
| if (obj->dirty) { |
| struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; |
| char *vaddr = obj->phys_handle->vaddr; |
| int i; |
| |
| for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { |
| struct page *page; |
| char *dst; |
| |
| page = shmem_read_mapping_page(mapping, i); |
| if (IS_ERR(page)) |
| continue; |
| |
| dst = kmap_atomic(page); |
| drm_clflush_virt_range(vaddr, PAGE_SIZE); |
| memcpy(dst, vaddr, PAGE_SIZE); |
| kunmap_atomic(dst); |
| |
| set_page_dirty(page); |
| if (obj->madv == I915_MADV_WILLNEED) |
| mark_page_accessed(page); |
| page_cache_release(page); |
| vaddr += PAGE_SIZE; |
| } |
| obj->dirty = 0; |
| } |
| |
| sg_free_table(obj->pages); |
| kfree(obj->pages); |
| |
| obj->has_dma_mapping = false; |
| } |
| |
| static void |
| i915_gem_object_release_phys(struct drm_i915_gem_object *obj) |
| { |
| drm_pci_free(obj->base.dev, obj->phys_handle); |
| } |
| |
| static const struct drm_i915_gem_object_ops i915_gem_phys_ops = { |
| .get_pages = i915_gem_object_get_pages_phys, |
| .put_pages = i915_gem_object_put_pages_phys, |
| .release = i915_gem_object_release_phys, |
| }; |
| |
| static int |
| drop_pages(struct drm_i915_gem_object *obj) |
| { |
| struct i915_vma *vma, *next; |
| int ret; |
| |
| drm_gem_object_reference(&obj->base); |
| list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) |
| if (i915_vma_unbind(vma)) |
| break; |
| |
| ret = i915_gem_object_put_pages(obj); |
| drm_gem_object_unreference(&obj->base); |
| |
| return ret; |
| } |
| |
| int |
| i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, |
| int align) |
| { |
| drm_dma_handle_t *phys; |
| int ret; |
| |
| if (obj->phys_handle) { |
| if ((unsigned long)obj->phys_handle->vaddr & (align -1)) |
| return -EBUSY; |
| |
| return 0; |
| } |
| |
| if (obj->madv != I915_MADV_WILLNEED) |
| return -EFAULT; |
| |
| if (obj->base.filp == NULL) |
| return -EINVAL; |
| |
| ret = drop_pages(obj); |
| if (ret) |
| return ret; |
| |
| /* create a new object */ |
| phys = drm_pci_alloc(obj->base.dev, obj->base.size, align); |
| if (!phys) |
| return -ENOMEM; |
| |
| obj->phys_handle = phys; |
| obj->ops = &i915_gem_phys_ops; |
| |
| return i915_gem_object_get_pages(obj); |
| } |
| |
| static int |
| i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_pwrite *args, |
| struct drm_file *file_priv) |
| { |
| struct drm_device *dev = obj->base.dev; |
| void *vaddr = obj->phys_handle->vaddr + args->offset; |
| char __user *user_data = to_user_ptr(args->data_ptr); |
| int ret; |
| |
| /* We manually control the domain here and pretend that it |
| * remains coherent i.e. in the GTT domain, like shmem_pwrite. |
| */ |
| ret = i915_gem_object_wait_rendering(obj, false); |
| if (ret) |
| return ret; |
| |
| if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { |
| unsigned long unwritten; |
| |
| /* The physical object once assigned is fixed for the lifetime |
| * of the obj, so we can safely drop the lock and continue |
| * to access vaddr. |
| */ |
| mutex_unlock(&dev->struct_mutex); |
| unwritten = copy_from_user(vaddr, user_data, args->size); |
| mutex_lock(&dev->struct_mutex); |
| if (unwritten) |
| return -EFAULT; |
| } |
| |
| drm_clflush_virt_range(vaddr, args->size); |
| i915_gem_chipset_flush(dev); |
| return 0; |
| } |
| |
| void *i915_gem_object_alloc(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL); |
| } |
| |
| void i915_gem_object_free(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = obj->base.dev->dev_private; |
| kmem_cache_free(dev_priv->slab, obj); |
| } |
| |
| static int |
| i915_gem_create(struct drm_file *file, |
| struct drm_device *dev, |
| uint64_t size, |
| uint32_t *handle_p) |
| { |
| struct drm_i915_gem_object *obj; |
| int ret; |
| u32 handle; |
| |
| size = roundup(size, PAGE_SIZE); |
| if (size == 0) |
| return -EINVAL; |
| |
| /* Allocate the new object */ |
| obj = i915_gem_alloc_object(dev, size); |
| if (obj == NULL) |
| return -ENOMEM; |
| |
| ret = drm_gem_handle_create(file, &obj->base, &handle); |
| /* drop reference from allocate - handle holds it now */ |
| drm_gem_object_unreference_unlocked(&obj->base); |
| if (ret) |
| return ret; |
| |
| *handle_p = handle; |
| return 0; |
| } |
| |
| int |
| i915_gem_dumb_create(struct drm_file *file, |
| struct drm_device *dev, |
| struct drm_mode_create_dumb *args) |
| { |
| /* have to work out size/pitch and return them */ |
| args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); |
| args->size = args->pitch * args->height; |
| return i915_gem_create(file, dev, |
| args->size, &args->handle); |
| } |
| |
| /** |
| * Creates a new mm object and returns a handle to it. |
| */ |
| int |
| i915_gem_create_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_create *args = data; |
| |
| return i915_gem_create(file, dev, |
| args->size, &args->handle); |
| } |
| |
| static inline int |
| __copy_to_user_swizzled(char __user *cpu_vaddr, |
| const char *gpu_vaddr, int gpu_offset, |
| int length) |
| { |
| int ret, cpu_offset = 0; |
| |
| while (length > 0) { |
| int cacheline_end = ALIGN(gpu_offset + 1, 64); |
| int this_length = min(cacheline_end - gpu_offset, length); |
| int swizzled_gpu_offset = gpu_offset ^ 64; |
| |
| ret = __copy_to_user(cpu_vaddr + cpu_offset, |
| gpu_vaddr + swizzled_gpu_offset, |
| this_length); |
| if (ret) |
| return ret + length; |
| |
| cpu_offset += this_length; |
| gpu_offset += this_length; |
| length -= this_length; |
| } |
| |
| return 0; |
| } |
| |
| static inline int |
| __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, |
| const char __user *cpu_vaddr, |
| int length) |
| { |
| int ret, cpu_offset = 0; |
| |
| while (length > 0) { |
| int cacheline_end = ALIGN(gpu_offset + 1, 64); |
| int this_length = min(cacheline_end - gpu_offset, length); |
| int swizzled_gpu_offset = gpu_offset ^ 64; |
| |
| ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, |
| cpu_vaddr + cpu_offset, |
| this_length); |
| if (ret) |
| return ret + length; |
| |
| cpu_offset += this_length; |
| gpu_offset += this_length; |
| length -= this_length; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Pins the specified object's pages and synchronizes the object with |
| * GPU accesses. Sets needs_clflush to non-zero if the caller should |
| * flush the object from the CPU cache. |
| */ |
| int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, |
| int *needs_clflush) |
| { |
| int ret; |
| |
| *needs_clflush = 0; |
| |
| if (!obj->base.filp) |
| return -EINVAL; |
| |
| if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { |
| /* If we're not in the cpu read domain, set ourself into the gtt |
| * read domain and manually flush cachelines (if required). This |
| * optimizes for the case when the gpu will dirty the data |
| * anyway again before the next pread happens. */ |
| *needs_clflush = !cpu_cache_is_coherent(obj->base.dev, |
| obj->cache_level); |
| ret = i915_gem_object_wait_rendering(obj, true); |
| if (ret) |
| return ret; |
| |
| i915_gem_object_retire(obj); |
| } |
| |
| ret = i915_gem_object_get_pages(obj); |
| if (ret) |
| return ret; |
| |
| i915_gem_object_pin_pages(obj); |
| |
| return ret; |
| } |
| |
| /* Per-page copy function for the shmem pread fastpath. |
| * Flushes invalid cachelines before reading the target if |
| * needs_clflush is set. */ |
| static int |
| shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, |
| char __user *user_data, |
| bool page_do_bit17_swizzling, bool needs_clflush) |
| { |
| char *vaddr; |
| int ret; |
| |
| if (unlikely(page_do_bit17_swizzling)) |
| return -EINVAL; |
| |
| vaddr = kmap_atomic(page); |
| if (needs_clflush) |
| drm_clflush_virt_range(vaddr + shmem_page_offset, |
| page_length); |
| ret = __copy_to_user_inatomic(user_data, |
| vaddr + shmem_page_offset, |
| page_length); |
| kunmap_atomic(vaddr); |
| |
| return ret ? -EFAULT : 0; |
| } |
| |
| static void |
| shmem_clflush_swizzled_range(char *addr, unsigned long length, |
| bool swizzled) |
| { |
| if (unlikely(swizzled)) { |
| unsigned long start = (unsigned long) addr; |
| unsigned long end = (unsigned long) addr + length; |
| |
| /* For swizzling simply ensure that we always flush both |
| * channels. Lame, but simple and it works. Swizzled |
| * pwrite/pread is far from a hotpath - current userspace |
| * doesn't use it at all. */ |
| start = round_down(start, 128); |
| end = round_up(end, 128); |
| |
| drm_clflush_virt_range((void *)start, end - start); |
| } else { |
| drm_clflush_virt_range(addr, length); |
| } |
| |
| } |
| |
| /* Only difference to the fast-path function is that this can handle bit17 |
| * and uses non-atomic copy and kmap functions. */ |
| static int |
| shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, |
| char __user *user_data, |
| bool page_do_bit17_swizzling, bool needs_clflush) |
| { |
| char *vaddr; |
| int ret; |
| |
| vaddr = kmap(page); |
| if (needs_clflush) |
| shmem_clflush_swizzled_range(vaddr + shmem_page_offset, |
| page_length, |
| page_do_bit17_swizzling); |
| |
| if (page_do_bit17_swizzling) |
| ret = __copy_to_user_swizzled(user_data, |
| vaddr, shmem_page_offset, |
| page_length); |
| else |
| ret = __copy_to_user(user_data, |
| vaddr + shmem_page_offset, |
| page_length); |
| kunmap(page); |
| |
| return ret ? - EFAULT : 0; |
| } |
| |
| static int |
| i915_gem_shmem_pread(struct drm_device *dev, |
| struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_pread *args, |
| struct drm_file *file) |
| { |
| char __user *user_data; |
| ssize_t remain; |
| loff_t offset; |
| int shmem_page_offset, page_length, ret = 0; |
| int obj_do_bit17_swizzling, page_do_bit17_swizzling; |
| int prefaulted = 0; |
| int needs_clflush = 0; |
| struct sg_page_iter sg_iter; |
| |
| user_data = to_user_ptr(args->data_ptr); |
| remain = args->size; |
| |
| obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); |
| |
| ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); |
| if (ret) |
| return ret; |
| |
| offset = args->offset; |
| |
| for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, |
| offset >> PAGE_SHIFT) { |
| struct page *page = sg_page_iter_page(&sg_iter); |
| |
| if (remain <= 0) |
| break; |
| |
| /* Operation in this page |
| * |
| * shmem_page_offset = offset within page in shmem file |
| * page_length = bytes to copy for this page |
| */ |
| shmem_page_offset = offset_in_page(offset); |
| page_length = remain; |
| if ((shmem_page_offset + page_length) > PAGE_SIZE) |
| page_length = PAGE_SIZE - shmem_page_offset; |
| |
| page_do_bit17_swizzling = obj_do_bit17_swizzling && |
| (page_to_phys(page) & (1 << 17)) != 0; |
| |
| ret = shmem_pread_fast(page, shmem_page_offset, page_length, |
| user_data, page_do_bit17_swizzling, |
| needs_clflush); |
| if (ret == 0) |
| goto next_page; |
| |
| mutex_unlock(&dev->struct_mutex); |
| |
| if (likely(!i915.prefault_disable) && !prefaulted) { |
| ret = fault_in_multipages_writeable(user_data, remain); |
| /* Userspace is tricking us, but we've already clobbered |
| * its pages with the prefault and promised to write the |
| * data up to the first fault. Hence ignore any errors |
| * and just continue. */ |
| (void)ret; |
| prefaulted = 1; |
| } |
| |
| ret = shmem_pread_slow(page, shmem_page_offset, page_length, |
| user_data, page_do_bit17_swizzling, |
| needs_clflush); |
| |
| mutex_lock(&dev->struct_mutex); |
| |
| if (ret) |
| goto out; |
| |
| next_page: |
| remain -= page_length; |
| user_data += page_length; |
| offset += page_length; |
| } |
| |
| out: |
| i915_gem_object_unpin_pages(obj); |
| |
| return ret; |
| } |
| |
| /** |
| * Reads data from the object referenced by handle. |
| * |
| * On error, the contents of *data are undefined. |
| */ |
| int |
| i915_gem_pread_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_pread *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret = 0; |
| |
| if (args->size == 0) |
| return 0; |
| |
| if (!access_ok(VERIFY_WRITE, |
| to_user_ptr(args->data_ptr), |
| args->size)) |
| return -EFAULT; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| /* Bounds check source. */ |
| if (args->offset > obj->base.size || |
| args->size > obj->base.size - args->offset) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* prime objects have no backing filp to GEM pread/pwrite |
| * pages from. |
| */ |
| if (!obj->base.filp) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| trace_i915_gem_object_pread(obj, args->offset, args->size); |
| |
| ret = i915_gem_shmem_pread(dev, obj, args, file); |
| |
| out: |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| /* This is the fast write path which cannot handle |
| * page faults in the source data |
| */ |
| |
| static inline int |
| fast_user_write(struct io_mapping *mapping, |
| loff_t page_base, int page_offset, |
| char __user *user_data, |
| int length) |
| { |
| void __iomem *vaddr_atomic; |
| void *vaddr; |
| unsigned long unwritten; |
| |
| vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); |
| /* We can use the cpu mem copy function because this is X86. */ |
| vaddr = (void __force*)vaddr_atomic + page_offset; |
| unwritten = __copy_from_user_inatomic_nocache(vaddr, |
| user_data, length); |
| io_mapping_unmap_atomic(vaddr_atomic); |
| return unwritten; |
| } |
| |
| /** |
| * This is the fast pwrite path, where we copy the data directly from the |
| * user into the GTT, uncached. |
| */ |
| static int |
| i915_gem_gtt_pwrite_fast(struct drm_device *dev, |
| struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_pwrite *args, |
| struct drm_file *file) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| ssize_t remain; |
| loff_t offset, page_base; |
| char __user *user_data; |
| int page_offset, page_length, ret; |
| |
| ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK); |
| if (ret) |
| goto out; |
| |
| ret = i915_gem_object_set_to_gtt_domain(obj, true); |
| if (ret) |
| goto out_unpin; |
| |
| ret = i915_gem_object_put_fence(obj); |
| if (ret) |
| goto out_unpin; |
| |
| user_data = to_user_ptr(args->data_ptr); |
| remain = args->size; |
| |
| offset = i915_gem_obj_ggtt_offset(obj) + args->offset; |
| |
| while (remain > 0) { |
| /* Operation in this page |
| * |
| * page_base = page offset within aperture |
| * page_offset = offset within page |
| * page_length = bytes to copy for this page |
| */ |
| page_base = offset & PAGE_MASK; |
| page_offset = offset_in_page(offset); |
| page_length = remain; |
| if ((page_offset + remain) > PAGE_SIZE) |
| page_length = PAGE_SIZE - page_offset; |
| |
| /* If we get a fault while copying data, then (presumably) our |
| * source page isn't available. Return the error and we'll |
| * retry in the slow path. |
| */ |
| if (fast_user_write(dev_priv->gtt.mappable, page_base, |
| page_offset, user_data, page_length)) { |
| ret = -EFAULT; |
| goto out_unpin; |
| } |
| |
| remain -= page_length; |
| user_data += page_length; |
| offset += page_length; |
| } |
| |
| out_unpin: |
| i915_gem_object_ggtt_unpin(obj); |
| out: |
| return ret; |
| } |
| |
| /* Per-page copy function for the shmem pwrite fastpath. |
| * Flushes invalid cachelines before writing to the target if |
| * needs_clflush_before is set and flushes out any written cachelines after |
| * writing if needs_clflush is set. */ |
| static int |
| shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, |
| char __user *user_data, |
| bool page_do_bit17_swizzling, |
| bool needs_clflush_before, |
| bool needs_clflush_after) |
| { |
| char *vaddr; |
| int ret; |
| |
| if (unlikely(page_do_bit17_swizzling)) |
| return -EINVAL; |
| |
| vaddr = kmap_atomic(page); |
| if (needs_clflush_before) |
| drm_clflush_virt_range(vaddr + shmem_page_offset, |
| page_length); |
| ret = __copy_from_user_inatomic(vaddr + shmem_page_offset, |
| user_data, page_length); |
| if (needs_clflush_after) |
| drm_clflush_virt_range(vaddr + shmem_page_offset, |
| page_length); |
| kunmap_atomic(vaddr); |
| |
| return ret ? -EFAULT : 0; |
| } |
| |
| /* Only difference to the fast-path function is that this can handle bit17 |
| * and uses non-atomic copy and kmap functions. */ |
| static int |
| shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, |
| char __user *user_data, |
| bool page_do_bit17_swizzling, |
| bool needs_clflush_before, |
| bool needs_clflush_after) |
| { |
| char *vaddr; |
| int ret; |
| |
| vaddr = kmap(page); |
| if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) |
| shmem_clflush_swizzled_range(vaddr + shmem_page_offset, |
| page_length, |
| page_do_bit17_swizzling); |
| if (page_do_bit17_swizzling) |
| ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, |
| user_data, |
| page_length); |
| else |
| ret = __copy_from_user(vaddr + shmem_page_offset, |
| user_data, |
| page_length); |
| if (needs_clflush_after) |
| shmem_clflush_swizzled_range(vaddr + shmem_page_offset, |
| page_length, |
| page_do_bit17_swizzling); |
| kunmap(page); |
| |
| return ret ? -EFAULT : 0; |
| } |
| |
| static int |
| i915_gem_shmem_pwrite(struct drm_device *dev, |
| struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_pwrite *args, |
| struct drm_file *file) |
| { |
| ssize_t remain; |
| loff_t offset; |
| char __user *user_data; |
| int shmem_page_offset, page_length, ret = 0; |
| int obj_do_bit17_swizzling, page_do_bit17_swizzling; |
| int hit_slowpath = 0; |
| int needs_clflush_after = 0; |
| int needs_clflush_before = 0; |
| struct sg_page_iter sg_iter; |
| |
| user_data = to_user_ptr(args->data_ptr); |
| remain = args->size; |
| |
| obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); |
| |
| if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { |
| /* If we're not in the cpu write domain, set ourself into the gtt |
| * write domain and manually flush cachelines (if required). This |
| * optimizes for the case when the gpu will use the data |
| * right away and we therefore have to clflush anyway. */ |
| needs_clflush_after = cpu_write_needs_clflush(obj); |
| ret = i915_gem_object_wait_rendering(obj, false); |
| if (ret) |
| return ret; |
| |
| i915_gem_object_retire(obj); |
| } |
| /* Same trick applies to invalidate partially written cachelines read |
| * before writing. */ |
| if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) |
| needs_clflush_before = |
| !cpu_cache_is_coherent(dev, obj->cache_level); |
| |
| ret = i915_gem_object_get_pages(obj); |
| if (ret) |
| return ret; |
| |
| i915_gem_object_pin_pages(obj); |
| |
| offset = args->offset; |
| obj->dirty = 1; |
| |
| for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, |
| offset >> PAGE_SHIFT) { |
| struct page *page = sg_page_iter_page(&sg_iter); |
| int partial_cacheline_write; |
| |
| if (remain <= 0) |
| break; |
| |
| /* Operation in this page |
| * |
| * shmem_page_offset = offset within page in shmem file |
| * page_length = bytes to copy for this page |
| */ |
| shmem_page_offset = offset_in_page(offset); |
| |
| page_length = remain; |
| if ((shmem_page_offset + page_length) > PAGE_SIZE) |
| page_length = PAGE_SIZE - shmem_page_offset; |
| |
| /* If we don't overwrite a cacheline completely we need to be |
| * careful to have up-to-date data by first clflushing. Don't |
| * overcomplicate things and flush the entire patch. */ |
| partial_cacheline_write = needs_clflush_before && |
| ((shmem_page_offset | page_length) |
| & (boot_cpu_data.x86_clflush_size - 1)); |
| |
| page_do_bit17_swizzling = obj_do_bit17_swizzling && |
| (page_to_phys(page) & (1 << 17)) != 0; |
| |
| ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, |
| user_data, page_do_bit17_swizzling, |
| partial_cacheline_write, |
| needs_clflush_after); |
| if (ret == 0) |
| goto next_page; |
| |
| hit_slowpath = 1; |
| mutex_unlock(&dev->struct_mutex); |
| ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, |
| user_data, page_do_bit17_swizzling, |
| partial_cacheline_write, |
| needs_clflush_after); |
| |
| mutex_lock(&dev->struct_mutex); |
| |
| if (ret) |
| goto out; |
| |
| next_page: |
| remain -= page_length; |
| user_data += page_length; |
| offset += page_length; |
| } |
| |
| out: |
| i915_gem_object_unpin_pages(obj); |
| |
| if (hit_slowpath) { |
| /* |
| * Fixup: Flush cpu caches in case we didn't flush the dirty |
| * cachelines in-line while writing and the object moved |
| * out of the cpu write domain while we've dropped the lock. |
| */ |
| if (!needs_clflush_after && |
| obj->base.write_domain != I915_GEM_DOMAIN_CPU) { |
| if (i915_gem_clflush_object(obj, obj->pin_display)) |
| i915_gem_chipset_flush(dev); |
| } |
| } |
| |
| if (needs_clflush_after) |
| i915_gem_chipset_flush(dev); |
| |
| return ret; |
| } |
| |
| /** |
| * Writes data to the object referenced by handle. |
| * |
| * On error, the contents of the buffer that were to be modified are undefined. |
| */ |
| int |
| i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_pwrite *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| if (args->size == 0) |
| return 0; |
| |
| if (!access_ok(VERIFY_READ, |
| to_user_ptr(args->data_ptr), |
| args->size)) |
| return -EFAULT; |
| |
| if (likely(!i915.prefault_disable)) { |
| ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr), |
| args->size); |
| if (ret) |
| return -EFAULT; |
| } |
| |
| intel_runtime_pm_get(dev_priv); |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| goto put_rpm; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| /* Bounds check destination. */ |
| if (args->offset > obj->base.size || |
| args->size > obj->base.size - args->offset) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* prime objects have no backing filp to GEM pread/pwrite |
| * pages from. |
| */ |
| if (!obj->base.filp) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| trace_i915_gem_object_pwrite(obj, args->offset, args->size); |
| |
| ret = -EFAULT; |
| /* We can only do the GTT pwrite on untiled buffers, as otherwise |
| * it would end up going through the fenced access, and we'll get |
| * different detiling behavior between reading and writing. |
| * pread/pwrite currently are reading and writing from the CPU |
| * perspective, requiring manual detiling by the client. |
| */ |
| if (obj->tiling_mode == I915_TILING_NONE && |
| obj->base.write_domain != I915_GEM_DOMAIN_CPU && |
| cpu_write_needs_clflush(obj)) { |
| ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); |
| /* Note that the gtt paths might fail with non-page-backed user |
| * pointers (e.g. gtt mappings when moving data between |
| * textures). Fallback to the shmem path in that case. */ |
| } |
| |
| if (ret == -EFAULT || ret == -ENOSPC) { |
| if (obj->phys_handle) |
| ret = i915_gem_phys_pwrite(obj, args, file); |
| else |
| ret = i915_gem_shmem_pwrite(dev, obj, args, file); |
| } |
| |
| out: |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| put_rpm: |
| intel_runtime_pm_put(dev_priv); |
| |
| return ret; |
| } |
| |
| int |
| i915_gem_check_wedge(struct i915_gpu_error *error, |
| bool interruptible) |
| { |
| if (i915_reset_in_progress(error)) { |
| /* Non-interruptible callers can't handle -EAGAIN, hence return |
| * -EIO unconditionally for these. */ |
| if (!interruptible) |
| return -EIO; |
| |
| /* Recovery complete, but the reset failed ... */ |
| if (i915_terminally_wedged(error)) |
| return -EIO; |
| |
| /* |
| * Check if GPU Reset is in progress - we need intel_ring_begin |
| * to work properly to reinit the hw state while the gpu is |
| * still marked as reset-in-progress. Handle this with a flag. |
| */ |
| if (!error->reload_in_reset) |
| return -EAGAIN; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Compare seqno against outstanding lazy request. Emit a request if they are |
| * equal. |
| */ |
| int |
| i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno) |
| { |
| int ret; |
| |
| BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex)); |
| |
| ret = 0; |
| if (seqno == ring->outstanding_lazy_seqno) |
| ret = i915_add_request(ring, NULL); |
| |
| return ret; |
| } |
| |
| static void fake_irq(unsigned long data) |
| { |
| wake_up_process((struct task_struct *)data); |
| } |
| |
| static bool missed_irq(struct drm_i915_private *dev_priv, |
| struct intel_engine_cs *ring) |
| { |
| return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings); |
| } |
| |
| static bool can_wait_boost(struct drm_i915_file_private *file_priv) |
| { |
| if (file_priv == NULL) |
| return true; |
| |
| return !atomic_xchg(&file_priv->rps_wait_boost, true); |
| } |
| |
| /** |
| * __i915_wait_seqno - wait until execution of seqno has finished |
| * @ring: the ring expected to report seqno |
| * @seqno: duh! |
| * @reset_counter: reset sequence associated with the given seqno |
| * @interruptible: do an interruptible wait (normally yes) |
| * @timeout: in - how long to wait (NULL forever); out - how much time remaining |
| * |
| * Note: It is of utmost importance that the passed in seqno and reset_counter |
| * values have been read by the caller in an smp safe manner. Where read-side |
| * locks are involved, it is sufficient to read the reset_counter before |
| * unlocking the lock that protects the seqno. For lockless tricks, the |
| * reset_counter _must_ be read before, and an appropriate smp_rmb must be |
| * inserted. |
| * |
| * Returns 0 if the seqno was found within the alloted time. Else returns the |
| * errno with remaining time filled in timeout argument. |
| */ |
| int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno, |
| unsigned reset_counter, |
| bool interruptible, |
| s64 *timeout, |
| struct drm_i915_file_private *file_priv) |
| { |
| struct drm_device *dev = ring->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| const bool irq_test_in_progress = |
| ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring); |
| DEFINE_WAIT(wait); |
| unsigned long timeout_expire; |
| s64 before, now; |
| int ret; |
| |
| WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled"); |
| |
| if (i915_seqno_passed(ring->get_seqno(ring, true), seqno)) |
| return 0; |
| |
| timeout_expire = timeout ? |
| jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0; |
| |
| if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) { |
| gen6_rps_boost(dev_priv); |
| if (file_priv) |
| mod_delayed_work(dev_priv->wq, |
| &file_priv->mm.idle_work, |
| msecs_to_jiffies(100)); |
| } |
| |
| if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) |
| return -ENODEV; |
| |
| /* Record current time in case interrupted by signal, or wedged */ |
| trace_i915_gem_request_wait_begin(ring, seqno); |
| before = ktime_get_raw_ns(); |
| for (;;) { |
| struct timer_list timer; |
| |
| prepare_to_wait(&ring->irq_queue, &wait, |
| interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); |
| |
| /* We need to check whether any gpu reset happened in between |
| * the caller grabbing the seqno and now ... */ |
| if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) { |
| /* ... but upgrade the -EAGAIN to an -EIO if the gpu |
| * is truely gone. */ |
| ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); |
| if (ret == 0) |
| ret = -EAGAIN; |
| break; |
| } |
| |
| if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) { |
| ret = 0; |
| break; |
| } |
| |
| if (interruptible && signal_pending(current)) { |
| ret = -ERESTARTSYS; |
| break; |
| } |
| |
| if (timeout && time_after_eq(jiffies, timeout_expire)) { |
| ret = -ETIME; |
| break; |
| } |
| |
| timer.function = NULL; |
| if (timeout || missed_irq(dev_priv, ring)) { |
| unsigned long expire; |
| |
| setup_timer_on_stack(&timer, fake_irq, (unsigned long)current); |
| expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire; |
| mod_timer(&timer, expire); |
| } |
| |
| io_schedule(); |
| |
| if (timer.function) { |
| del_singleshot_timer_sync(&timer); |
| destroy_timer_on_stack(&timer); |
| } |
| } |
| now = ktime_get_raw_ns(); |
| trace_i915_gem_request_wait_end(ring, seqno); |
| |
| if (!irq_test_in_progress) |
| ring->irq_put(ring); |
| |
| finish_wait(&ring->irq_queue, &wait); |
| |
| if (timeout) { |
| s64 tres = *timeout - (now - before); |
| |
| *timeout = tres < 0 ? 0 : tres; |
| |
| /* |
| * Apparently ktime isn't accurate enough and occasionally has a |
| * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch |
| * things up to make the test happy. We allow up to 1 jiffy. |
| * |
| * This is a regrssion from the timespec->ktime conversion. |
| */ |
| if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000) |
| *timeout = 0; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * Waits for a sequence number to be signaled, and cleans up the |
| * request and object lists appropriately for that event. |
| */ |
| int |
| i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno) |
| { |
| struct drm_device *dev = ring->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| bool interruptible = dev_priv->mm.interruptible; |
| unsigned reset_counter; |
| int ret; |
| |
| BUG_ON(!mutex_is_locked(&dev->struct_mutex)); |
| BUG_ON(seqno == 0); |
| |
| ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); |
| if (ret) |
| return ret; |
| |
| ret = i915_gem_check_olr(ring, seqno); |
| if (ret) |
| return ret; |
| |
| reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); |
| return __i915_wait_seqno(ring, seqno, reset_counter, interruptible, |
| NULL, NULL); |
| } |
| |
| static int |
| i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj) |
| { |
| if (!obj->active) |
| return 0; |
| |
| /* Manually manage the write flush as we may have not yet |
| * retired the buffer. |
| * |
| * Note that the last_write_seqno is always the earlier of |
| * the two (read/write) seqno, so if we haved successfully waited, |
| * we know we have passed the last write. |
| */ |
| obj->last_write_seqno = 0; |
| |
| return 0; |
| } |
| |
| /** |
| * Ensures that all rendering to the object has completed and the object is |
| * safe to unbind from the GTT or access from the CPU. |
| */ |
| static __must_check int |
| i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, |
| bool readonly) |
| { |
| struct intel_engine_cs *ring = obj->ring; |
| u32 seqno; |
| int ret; |
| |
| seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; |
| if (seqno == 0) |
| return 0; |
| |
| ret = i915_wait_seqno(ring, seqno); |
| if (ret) |
| return ret; |
| |
| return i915_gem_object_wait_rendering__tail(obj); |
| } |
| |
| /* A nonblocking variant of the above wait. This is a highly dangerous routine |
| * as the object state may change during this call. |
| */ |
| static __must_check int |
| i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, |
| struct drm_i915_file_private *file_priv, |
| bool readonly) |
| { |
| struct drm_device *dev = obj->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring = obj->ring; |
| unsigned reset_counter; |
| u32 seqno; |
| int ret; |
| |
| BUG_ON(!mutex_is_locked(&dev->struct_mutex)); |
| BUG_ON(!dev_priv->mm.interruptible); |
| |
| seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; |
| if (seqno == 0) |
| return 0; |
| |
| ret = i915_gem_check_wedge(&dev_priv->gpu_error, true); |
| if (ret) |
| return ret; |
| |
| ret = i915_gem_check_olr(ring, seqno); |
| if (ret) |
| return ret; |
| |
| reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); |
| mutex_unlock(&dev->struct_mutex); |
| ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, |
| file_priv); |
| mutex_lock(&dev->struct_mutex); |
| if (ret) |
| return ret; |
| |
| return i915_gem_object_wait_rendering__tail(obj); |
| } |
| |
| /** |
| * Called when user space prepares to use an object with the CPU, either |
| * through the mmap ioctl's mapping or a GTT mapping. |
| */ |
| int |
| i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_set_domain *args = data; |
| struct drm_i915_gem_object *obj; |
| uint32_t read_domains = args->read_domains; |
| uint32_t write_domain = args->write_domain; |
| int ret; |
| |
| /* Only handle setting domains to types used by the CPU. */ |
| if (write_domain & I915_GEM_GPU_DOMAINS) |
| return -EINVAL; |
| |
| if (read_domains & I915_GEM_GPU_DOMAINS) |
| return -EINVAL; |
| |
| /* Having something in the write domain implies it's in the read |
| * domain, and only that read domain. Enforce that in the request. |
| */ |
| if (write_domain != 0 && read_domains != write_domain) |
| return -EINVAL; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| /* Try to flush the object off the GPU without holding the lock. |
| * We will repeat the flush holding the lock in the normal manner |
| * to catch cases where we are gazumped. |
| */ |
| ret = i915_gem_object_wait_rendering__nonblocking(obj, |
| file->driver_priv, |
| !write_domain); |
| if (ret) |
| goto unref; |
| |
| if (read_domains & I915_GEM_DOMAIN_GTT) { |
| ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); |
| |
| /* Silently promote "you're not bound, there was nothing to do" |
| * to success, since the client was just asking us to |
| * make sure everything was done. |
| */ |
| if (ret == -EINVAL) |
| ret = 0; |
| } else { |
| ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); |
| } |
| |
| unref: |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| /** |
| * Called when user space has done writes to this buffer |
| */ |
| int |
| i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_sw_finish *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret = 0; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| /* Pinned buffers may be scanout, so flush the cache */ |
| if (obj->pin_display) |
| i915_gem_object_flush_cpu_write_domain(obj, true); |
| |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| /** |
| * Maps the contents of an object, returning the address it is mapped |
| * into. |
| * |
| * While the mapping holds a reference on the contents of the object, it doesn't |
| * imply a ref on the object itself. |
| * |
| * IMPORTANT: |
| * |
| * DRM driver writers who look a this function as an example for how to do GEM |
| * mmap support, please don't implement mmap support like here. The modern way |
| * to implement DRM mmap support is with an mmap offset ioctl (like |
| * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. |
| * That way debug tooling like valgrind will understand what's going on, hiding |
| * the mmap call in a driver private ioctl will break that. The i915 driver only |
| * does cpu mmaps this way because we didn't know better. |
| */ |
| int |
| i915_gem_mmap_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_mmap *args = data; |
| struct drm_gem_object *obj; |
| unsigned long addr; |
| |
| obj = drm_gem_object_lookup(dev, file, args->handle); |
| if (obj == NULL) |
| return -ENOENT; |
| |
| /* prime objects have no backing filp to GEM mmap |
| * pages from. |
| */ |
| if (!obj->filp) { |
| drm_gem_object_unreference_unlocked(obj); |
| return -EINVAL; |
| } |
| |
| addr = vm_mmap(obj->filp, 0, args->size, |
| PROT_READ | PROT_WRITE, MAP_SHARED, |
| args->offset); |
| drm_gem_object_unreference_unlocked(obj); |
| if (IS_ERR((void *)addr)) |
| return addr; |
| |
| args->addr_ptr = (uint64_t) addr; |
| |
| return 0; |
| } |
| |
| /** |
| * i915_gem_fault - fault a page into the GTT |
| * vma: VMA in question |
| * vmf: fault info |
| * |
| * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped |
| * from userspace. The fault handler takes care of binding the object to |
| * the GTT (if needed), allocating and programming a fence register (again, |
| * only if needed based on whether the old reg is still valid or the object |
| * is tiled) and inserting a new PTE into the faulting process. |
| * |
| * Note that the faulting process may involve evicting existing objects |
| * from the GTT and/or fence registers to make room. So performance may |
| * suffer if the GTT working set is large or there are few fence registers |
| * left. |
| */ |
| int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
| { |
| struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); |
| struct drm_device *dev = obj->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| pgoff_t page_offset; |
| unsigned long pfn; |
| int ret = 0; |
| bool write = !!(vmf->flags & FAULT_FLAG_WRITE); |
| |
| intel_runtime_pm_get(dev_priv); |
| |
| /* We don't use vmf->pgoff since that has the fake offset */ |
| page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> |
| PAGE_SHIFT; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| goto out; |
| |
| trace_i915_gem_object_fault(obj, page_offset, true, write); |
| |
| /* Try to flush the object off the GPU first without holding the lock. |
| * Upon reacquiring the lock, we will perform our sanity checks and then |
| * repeat the flush holding the lock in the normal manner to catch cases |
| * where we are gazumped. |
| */ |
| ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write); |
| if (ret) |
| goto unlock; |
| |
| /* Access to snoopable pages through the GTT is incoherent. */ |
| if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { |
| ret = -EFAULT; |
| goto unlock; |
| } |
| |
| /* Now bind it into the GTT if needed */ |
| ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE); |
| if (ret) |
| goto unlock; |
| |
| ret = i915_gem_object_set_to_gtt_domain(obj, write); |
| if (ret) |
| goto unpin; |
| |
| ret = i915_gem_object_get_fence(obj); |
| if (ret) |
| goto unpin; |
| |
| /* Finally, remap it using the new GTT offset */ |
| pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj); |
| pfn >>= PAGE_SHIFT; |
| |
| if (!obj->fault_mappable) { |
| unsigned long size = min_t(unsigned long, |
| vma->vm_end - vma->vm_start, |
| obj->base.size); |
| int i; |
| |
| for (i = 0; i < size >> PAGE_SHIFT; i++) { |
| ret = vm_insert_pfn(vma, |
| (unsigned long)vma->vm_start + i * PAGE_SIZE, |
| pfn + i); |
| if (ret) |
| break; |
| } |
| |
| obj->fault_mappable = true; |
| } else |
| ret = vm_insert_pfn(vma, |
| (unsigned long)vmf->virtual_address, |
| pfn + page_offset); |
| unpin: |
| i915_gem_object_ggtt_unpin(obj); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| out: |
| switch (ret) { |
| case -EIO: |
| /* |
| * We eat errors when the gpu is terminally wedged to avoid |
| * userspace unduly crashing (gl has no provisions for mmaps to |
| * fail). But any other -EIO isn't ours (e.g. swap in failure) |
| * and so needs to be reported. |
| */ |
| if (!i915_terminally_wedged(&dev_priv->gpu_error)) { |
| ret = VM_FAULT_SIGBUS; |
| break; |
| } |
| case -EAGAIN: |
| /* |
| * EAGAIN means the gpu is hung and we'll wait for the error |
| * handler to reset everything when re-faulting in |
| * i915_mutex_lock_interruptible. |
| */ |
| case 0: |
| case -ERESTARTSYS: |
| case -EINTR: |
| case -EBUSY: |
| /* |
| * EBUSY is ok: this just means that another thread |
| * already did the job. |
| */ |
| ret = VM_FAULT_NOPAGE; |
| break; |
| case -ENOMEM: |
| ret = VM_FAULT_OOM; |
| break; |
| case -ENOSPC: |
| case -EFAULT: |
| ret = VM_FAULT_SIGBUS; |
| break; |
| default: |
| WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); |
| ret = VM_FAULT_SIGBUS; |
| break; |
| } |
| |
| intel_runtime_pm_put(dev_priv); |
| return ret; |
| } |
| |
| /** |
| * i915_gem_release_mmap - remove physical page mappings |
| * @obj: obj in question |
| * |
| * Preserve the reservation of the mmapping with the DRM core code, but |
| * relinquish ownership of the pages back to the system. |
| * |
| * It is vital that we remove the page mapping if we have mapped a tiled |
| * object through the GTT and then lose the fence register due to |
| * resource pressure. Similarly if the object has been moved out of the |
| * aperture, than pages mapped into userspace must be revoked. Removing the |
| * mapping will then trigger a page fault on the next user access, allowing |
| * fixup by i915_gem_fault(). |
| */ |
| void |
| i915_gem_release_mmap(struct drm_i915_gem_object *obj) |
| { |
| if (!obj->fault_mappable) |
| return; |
| |
| drm_vma_node_unmap(&obj->base.vma_node, |
| obj->base.dev->anon_inode->i_mapping); |
| obj->fault_mappable = false; |
| } |
| |
| void |
| i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv) |
| { |
| struct drm_i915_gem_object *obj; |
| |
| list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) |
| i915_gem_release_mmap(obj); |
| } |
| |
| uint32_t |
| i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) |
| { |
| uint32_t gtt_size; |
| |
| if (INTEL_INFO(dev)->gen >= 4 || |
| tiling_mode == I915_TILING_NONE) |
| return size; |
| |
| /* Previous chips need a power-of-two fence region when tiling */ |
| if (INTEL_INFO(dev)->gen == 3) |
| gtt_size = 1024*1024; |
| else |
| gtt_size = 512*1024; |
| |
| while (gtt_size < size) |
| gtt_size <<= 1; |
| |
| return gtt_size; |
| } |
| |
| /** |
| * i915_gem_get_gtt_alignment - return required GTT alignment for an object |
| * @obj: object to check |
| * |
| * Return the required GTT alignment for an object, taking into account |
| * potential fence register mapping. |
| */ |
| uint32_t |
| i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, |
| int tiling_mode, bool fenced) |
| { |
| /* |
| * Minimum alignment is 4k (GTT page size), but might be greater |
| * if a fence register is needed for the object. |
| */ |
| if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) || |
| tiling_mode == I915_TILING_NONE) |
| return 4096; |
| |
| /* |
| * Previous chips need to be aligned to the size of the smallest |
| * fence register that can contain the object. |
| */ |
| return i915_gem_get_gtt_size(dev, size, tiling_mode); |
| } |
| |
| static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = obj->base.dev->dev_private; |
| int ret; |
| |
| if (drm_vma_node_has_offset(&obj->base.vma_node)) |
| return 0; |
| |
| dev_priv->mm.shrinker_no_lock_stealing = true; |
| |
| ret = drm_gem_create_mmap_offset(&obj->base); |
| if (ret != -ENOSPC) |
| goto out; |
| |
| /* Badly fragmented mmap space? The only way we can recover |
| * space is by destroying unwanted objects. We can't randomly release |
| * mmap_offsets as userspace expects them to be persistent for the |
| * lifetime of the objects. The closest we can is to release the |
| * offsets on purgeable objects by truncating it and marking it purged, |
| * which prevents userspace from ever using that object again. |
| */ |
| i915_gem_shrink(dev_priv, |
| obj->base.size >> PAGE_SHIFT, |
| I915_SHRINK_BOUND | |
| I915_SHRINK_UNBOUND | |
| I915_SHRINK_PURGEABLE); |
| ret = drm_gem_create_mmap_offset(&obj->base); |
| if (ret != -ENOSPC) |
| goto out; |
| |
| i915_gem_shrink_all(dev_priv); |
| ret = drm_gem_create_mmap_offset(&obj->base); |
| out: |
| dev_priv->mm.shrinker_no_lock_stealing = false; |
| |
| return ret; |
| } |
| |
| static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) |
| { |
| drm_gem_free_mmap_offset(&obj->base); |
| } |
| |
| int |
| i915_gem_mmap_gtt(struct drm_file *file, |
| struct drm_device *dev, |
| uint32_t handle, |
| uint64_t *offset) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| if (obj->base.size > dev_priv->gtt.mappable_end) { |
| ret = -E2BIG; |
| goto out; |
| } |
| |
| if (obj->madv != I915_MADV_WILLNEED) { |
| DRM_DEBUG("Attempting to mmap a purgeable buffer\n"); |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| ret = i915_gem_object_create_mmap_offset(obj); |
| if (ret) |
| goto out; |
| |
| *offset = drm_vma_node_offset_addr(&obj->base.vma_node); |
| |
| out: |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| /** |
| * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing |
| * @dev: DRM device |
| * @data: GTT mapping ioctl data |
| * @file: GEM object info |
| * |
| * Simply returns the fake offset to userspace so it can mmap it. |
| * The mmap call will end up in drm_gem_mmap(), which will set things |
| * up so we can get faults in the handler above. |
| * |
| * The fault handler will take care of binding the object into the GTT |
| * (since it may have been evicted to make room for something), allocating |
| * a fence register, and mapping the appropriate aperture address into |
| * userspace. |
| */ |
| int |
| i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_mmap_gtt *args = data; |
| |
| return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); |
| } |
| |
| static inline int |
| i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) |
| { |
| return obj->madv == I915_MADV_DONTNEED; |
| } |
| |
| /* Immediately discard the backing storage */ |
| static void |
| i915_gem_object_truncate(struct drm_i915_gem_object *obj) |
| { |
| i915_gem_object_free_mmap_offset(obj); |
| |
| if (obj->base.filp == NULL) |
| return; |
| |
| /* Our goal here is to return as much of the memory as |
| * is possible back to the system as we are called from OOM. |
| * To do this we must instruct the shmfs to drop all of its |
| * backing pages, *now*. |
| */ |
| shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); |
| obj->madv = __I915_MADV_PURGED; |
| } |
| |
| /* Try to discard unwanted pages */ |
| static void |
| i915_gem_object_invalidate(struct drm_i915_gem_object *obj) |
| { |
| struct address_space *mapping; |
| |
| switch (obj->madv) { |
| case I915_MADV_DONTNEED: |
| i915_gem_object_truncate(obj); |
| case __I915_MADV_PURGED: |
| return; |
| } |
| |
| if (obj->base.filp == NULL) |
| return; |
| |
| mapping = file_inode(obj->base.filp)->i_mapping, |
| invalidate_mapping_pages(mapping, 0, (loff_t)-1); |
| } |
| |
| static void |
| i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) |
| { |
| struct sg_page_iter sg_iter; |
| int ret; |
| |
| BUG_ON(obj->madv == __I915_MADV_PURGED); |
| |
| ret = i915_gem_object_set_to_cpu_domain(obj, true); |
| if (ret) { |
| /* In the event of a disaster, abandon all caches and |
| * hope for the best. |
| */ |
| WARN_ON(ret != -EIO); |
| i915_gem_clflush_object(obj, true); |
| obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; |
| } |
| |
| if (i915_gem_object_needs_bit17_swizzle(obj)) |
| i915_gem_object_save_bit_17_swizzle(obj); |
| |
| if (obj->madv == I915_MADV_DONTNEED) |
| obj->dirty = 0; |
| |
| for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) { |
| struct page *page = sg_page_iter_page(&sg_iter); |
| |
| if (obj->dirty) |
| set_page_dirty(page); |
| |
| if (obj->madv == I915_MADV_WILLNEED) |
| mark_page_accessed(page); |
| |
| page_cache_release(page); |
| } |
| obj->dirty = 0; |
| |
| sg_free_table(obj->pages); |
| kfree(obj->pages); |
| } |
| |
| int |
| i915_gem_object_put_pages(struct drm_i915_gem_object *obj) |
| { |
| const struct drm_i915_gem_object_ops *ops = obj->ops; |
| |
| if (obj->pages == NULL) |
| return 0; |
| |
| if (obj->pages_pin_count) |
| return -EBUSY; |
| |
| BUG_ON(i915_gem_obj_bound_any(obj)); |
| |
| /* ->put_pages might need to allocate memory for the bit17 swizzle |
| * array, hence protect them from being reaped by removing them from gtt |
| * lists early. */ |
| list_del(&obj->global_list); |
| |
| ops->put_pages(obj); |
| obj->pages = NULL; |
| |
| i915_gem_object_invalidate(obj); |
| |
| return 0; |
| } |
| |
| unsigned long |
| i915_gem_shrink(struct drm_i915_private *dev_priv, |
| long target, unsigned flags) |
| { |
| const struct { |
| struct list_head *list; |
| unsigned int bit; |
| } phases[] = { |
| { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND }, |
| { &dev_priv->mm.bound_list, I915_SHRINK_BOUND }, |
| { NULL, 0 }, |
| }, *phase; |
| unsigned long count = 0; |
| |
| /* |
| * As we may completely rewrite the (un)bound list whilst unbinding |
| * (due to retiring requests) we have to strictly process only |
| * one element of the list at the time, and recheck the list |
| * on every iteration. |
| * |
| * In particular, we must hold a reference whilst removing the |
| * object as we may end up waiting for and/or retiring the objects. |
| * This might release the final reference (held by the active list) |
| * and result in the object being freed from under us. This is |
| * similar to the precautions the eviction code must take whilst |
| * removing objects. |
| * |
| * Also note that although these lists do not hold a reference to |
| * the object we can safely grab one here: The final object |
| * unreferencing and the bound_list are both protected by the |
| * dev->struct_mutex and so we won't ever be able to observe an |
| * object on the bound_list with a reference count equals 0. |
| */ |
| for (phase = phases; phase->list; phase++) { |
| struct list_head still_in_list; |
| |
| if ((flags & phase->bit) == 0) |
| continue; |
| |
| INIT_LIST_HEAD(&still_in_list); |
| while (count < target && !list_empty(phase->list)) { |
| struct drm_i915_gem_object *obj; |
| struct i915_vma *vma, *v; |
| |
| obj = list_first_entry(phase->list, |
| typeof(*obj), global_list); |
| list_move_tail(&obj->global_list, &still_in_list); |
| |
| if (flags & I915_SHRINK_PURGEABLE && |
| !i915_gem_object_is_purgeable(obj)) |
| continue; |
| |
| drm_gem_object_reference(&obj->base); |
| |
| /* For the unbound phase, this should be a no-op! */ |
| list_for_each_entry_safe(vma, v, |
| &obj->vma_list, vma_link) |
| if (i915_vma_unbind(vma)) |
| break; |
| |
| if (i915_gem_object_put_pages(obj) == 0) |
| count += obj->base.size >> PAGE_SHIFT; |
| |
| drm_gem_object_unreference(&obj->base); |
| } |
| list_splice(&still_in_list, phase->list); |
| } |
| |
| return count; |
| } |
| |
| static unsigned long |
| i915_gem_shrink_all(struct drm_i915_private *dev_priv) |
| { |
| i915_gem_evict_everything(dev_priv->dev); |
| return i915_gem_shrink(dev_priv, LONG_MAX, |
| I915_SHRINK_BOUND | I915_SHRINK_UNBOUND); |
| } |
| |
| static int |
| i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = obj->base.dev->dev_private; |
| int page_count, i; |
| struct address_space *mapping; |
| struct sg_table *st; |
| struct scatterlist *sg; |
| struct sg_page_iter sg_iter; |
| struct page *page; |
| unsigned long last_pfn = 0; /* suppress gcc warning */ |
| gfp_t gfp; |
| |
| /* Assert that the object is not currently in any GPU domain. As it |
| * wasn't in the GTT, there shouldn't be any way it could have been in |
| * a GPU cache |
| */ |
| BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); |
| BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); |
| |
| st = kmalloc(sizeof(*st), GFP_KERNEL); |
| if (st == NULL) |
| return -ENOMEM; |
| |
| page_count = obj->base.size / PAGE_SIZE; |
| if (sg_alloc_table(st, page_count, GFP_KERNEL)) { |
| kfree(st); |
| return -ENOMEM; |
| } |
| |
| /* Get the list of pages out of our struct file. They'll be pinned |
| * at this point until we release them. |
| * |
| * Fail silently without starting the shrinker |
| */ |
| mapping = file_inode(obj->base.filp)->i_mapping; |
| gfp = mapping_gfp_mask(mapping); |
| gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; |
| gfp &= ~(__GFP_IO | __GFP_WAIT); |
| sg = st->sgl; |
| st->nents = 0; |
| for (i = 0; i < page_count; i++) { |
| page = shmem_read_mapping_page_gfp(mapping, i, gfp); |
| if (IS_ERR(page)) { |
| i915_gem_shrink(dev_priv, |
| page_count, |
| I915_SHRINK_BOUND | |
| I915_SHRINK_UNBOUND | |
| I915_SHRINK_PURGEABLE); |
| page = shmem_read_mapping_page_gfp(mapping, i, gfp); |
| } |
| if (IS_ERR(page)) { |
| /* We've tried hard to allocate the memory by reaping |
| * our own buffer, now let the real VM do its job and |
| * go down in flames if truly OOM. |
| */ |
| i915_gem_shrink_all(dev_priv); |
| page = shmem_read_mapping_page(mapping, i); |
| if (IS_ERR(page)) |
| goto err_pages; |
| } |
| #ifdef CONFIG_SWIOTLB |
| if (swiotlb_nr_tbl()) { |
| st->nents++; |
| sg_set_page(sg, page, PAGE_SIZE, 0); |
| sg = sg_next(sg); |
| continue; |
| } |
| #endif |
| if (!i || page_to_pfn(page) != last_pfn + 1) { |
| if (i) |
| sg = sg_next(sg); |
| st->nents++; |
| sg_set_page(sg, page, PAGE_SIZE, 0); |
| } else { |
| sg->length += PAGE_SIZE; |
| } |
| last_pfn = page_to_pfn(page); |
| |
| /* Check that the i965g/gm workaround works. */ |
| WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); |
| } |
| #ifdef CONFIG_SWIOTLB |
| if (!swiotlb_nr_tbl()) |
| #endif |
| sg_mark_end(sg); |
| obj->pages = st; |
| |
| if (i915_gem_object_needs_bit17_swizzle(obj)) |
| i915_gem_object_do_bit_17_swizzle(obj); |
| |
| if (obj->tiling_mode != I915_TILING_NONE && |
| dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) |
| i915_gem_object_pin_pages(obj); |
| |
| return 0; |
| |
| err_pages: |
| sg_mark_end(sg); |
| for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) |
| page_cache_release(sg_page_iter_page(&sg_iter)); |
| sg_free_table(st); |
| kfree(st); |
| |
| /* shmemfs first checks if there is enough memory to allocate the page |
| * and reports ENOSPC should there be insufficient, along with the usual |
| * ENOMEM for a genuine allocation failure. |
| * |
| * We use ENOSPC in our driver to mean that we have run out of aperture |
| * space and so want to translate the error from shmemfs back to our |
| * usual understanding of ENOMEM. |
| */ |
| if (PTR_ERR(page) == -ENOSPC) |
| return -ENOMEM; |
| else |
| return PTR_ERR(page); |
| } |
| |
| /* Ensure that the associated pages are gathered from the backing storage |
| * and pinned into our object. i915_gem_object_get_pages() may be called |
| * multiple times before they are released by a single call to |
| * i915_gem_object_put_pages() - once the pages are no longer referenced |
| * either as a result of memory pressure (reaping pages under the shrinker) |
| * or as the object is itself released. |
| */ |
| int |
| i915_gem_object_get_pages(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = obj->base.dev->dev_private; |
| const struct drm_i915_gem_object_ops *ops = obj->ops; |
| int ret; |
| |
| if (obj->pages) |
| return 0; |
| |
| if (obj->madv != I915_MADV_WILLNEED) { |
| DRM_DEBUG("Attempting to obtain a purgeable object\n"); |
| return -EFAULT; |
| } |
| |
| BUG_ON(obj->pages_pin_count); |
| |
| ret = ops->get_pages(obj); |
| if (ret) |
| return ret; |
| |
| list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list); |
| return 0; |
| } |
| |
| static void |
| i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, |
| struct intel_engine_cs *ring) |
| { |
| u32 seqno = intel_ring_get_seqno(ring); |
| |
| BUG_ON(ring == NULL); |
| if (obj->ring != ring && obj->last_write_seqno) { |
| /* Keep the seqno relative to the current ring */ |
| obj->last_write_seqno = seqno; |
| } |
| obj->ring = ring; |
| |
| /* Add a reference if we're newly entering the active list. */ |
| if (!obj->active) { |
| drm_gem_object_reference(&obj->base); |
| obj->active = 1; |
| } |
| |
| list_move_tail(&obj->ring_list, &ring->active_list); |
| |
| obj->last_read_seqno = seqno; |
| } |
| |
| void i915_vma_move_to_active(struct i915_vma *vma, |
| struct intel_engine_cs *ring) |
| { |
| list_move_tail(&vma->mm_list, &vma->vm->active_list); |
| return i915_gem_object_move_to_active(vma->obj, ring); |
| } |
| |
| static void |
| i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = obj->base.dev->dev_private; |
| struct i915_address_space *vm; |
| struct i915_vma *vma; |
| |
| BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS); |
| BUG_ON(!obj->active); |
| |
| list_for_each_entry(vm, &dev_priv->vm_list, global_link) { |
| vma = i915_gem_obj_to_vma(obj, vm); |
| if (vma && !list_empty(&vma->mm_list)) |
| list_move_tail(&vma->mm_list, &vm->inactive_list); |
| } |
| |
| intel_fb_obj_flush(obj, true); |
| |
| list_del_init(&obj->ring_list); |
| obj->ring = NULL; |
| |
| obj->last_read_seqno = 0; |
| obj->last_write_seqno = 0; |
| obj->base.write_domain = 0; |
| |
| obj->last_fenced_seqno = 0; |
| |
| obj->active = 0; |
| drm_gem_object_unreference(&obj->base); |
| |
| WARN_ON(i915_verify_lists(dev)); |
| } |
| |
| static void |
| i915_gem_object_retire(struct drm_i915_gem_object *obj) |
| { |
| struct intel_engine_cs *ring = obj->ring; |
| |
| if (ring == NULL) |
| return; |
| |
| if (i915_seqno_passed(ring->get_seqno(ring, true), |
| obj->last_read_seqno)) |
| i915_gem_object_move_to_inactive(obj); |
| } |
| |
| static int |
| i915_gem_init_seqno(struct drm_device *dev, u32 seqno) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring; |
| int ret, i, j; |
| |
| /* Carefully retire all requests without writing to the rings */ |
| for_each_ring(ring, dev_priv, i) { |
| ret = intel_ring_idle(ring); |
| if (ret) |
| return ret; |
| } |
| i915_gem_retire_requests(dev); |
| |
| /* Finally reset hw state */ |
| for_each_ring(ring, dev_priv, i) { |
| intel_ring_init_seqno(ring, seqno); |
| |
| for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++) |
| ring->semaphore.sync_seqno[j] = 0; |
| } |
| |
| return 0; |
| } |
| |
| int i915_gem_set_seqno(struct drm_device *dev, u32 seqno) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| if (seqno == 0) |
| return -EINVAL; |
| |
| /* HWS page needs to be set less than what we |
| * will inject to ring |
| */ |
| ret = i915_gem_init_seqno(dev, seqno - 1); |
| if (ret) |
| return ret; |
| |
| /* Carefully set the last_seqno value so that wrap |
| * detection still works |
| */ |
| dev_priv->next_seqno = seqno; |
| dev_priv->last_seqno = seqno - 1; |
| if (dev_priv->last_seqno == 0) |
| dev_priv->last_seqno--; |
| |
| return 0; |
| } |
| |
| int |
| i915_gem_get_seqno(struct drm_device *dev, u32 *seqno) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| /* reserve 0 for non-seqno */ |
| if (dev_priv->next_seqno == 0) { |
| int ret = i915_gem_init_seqno(dev, 0); |
| if (ret) |
| return ret; |
| |
| dev_priv->next_seqno = 1; |
| } |
| |
| *seqno = dev_priv->last_seqno = dev_priv->next_seqno++; |
| return 0; |
| } |
| |
| int __i915_add_request(struct intel_engine_cs *ring, |
| struct drm_file *file, |
| struct drm_i915_gem_object *obj, |
| u32 *out_seqno) |
| { |
| struct drm_i915_private *dev_priv = ring->dev->dev_private; |
| struct drm_i915_gem_request *request; |
| struct intel_ringbuffer *ringbuf; |
| u32 request_ring_position, request_start; |
| int ret; |
| |
| request = ring->preallocated_lazy_request; |
| if (WARN_ON(request == NULL)) |
| return -ENOMEM; |
| |
| if (i915.enable_execlists) { |
| struct intel_context *ctx = request->ctx; |
| ringbuf = ctx->engine[ring->id].ringbuf; |
| } else |
| ringbuf = ring->buffer; |
| |
| request_start = intel_ring_get_tail(ringbuf); |
| /* |
| * Emit any outstanding flushes - execbuf can fail to emit the flush |
| * after having emitted the batchbuffer command. Hence we need to fix |
| * things up similar to emitting the lazy request. The difference here |
| * is that the flush _must_ happen before the next request, no matter |
| * what. |
| */ |
| if (i915.enable_execlists) { |
| ret = logical_ring_flush_all_caches(ringbuf); |
| if (ret) |
| return ret; |
| } else { |
| ret = intel_ring_flush_all_caches(ring); |
| if (ret) |
| return ret; |
| } |
| |
| /* Record the position of the start of the request so that |
| * should we detect the updated seqno part-way through the |
| * GPU processing the request, we never over-estimate the |
| * position of the head. |
| */ |
| request_ring_position = intel_ring_get_tail(ringbuf); |
| |
| if (i915.enable_execlists) { |
| ret = ring->emit_request(ringbuf); |
| if (ret) |
| return ret; |
| } else { |
| ret = ring->add_request(ring); |
| if (ret) |
| return ret; |
| } |
| |
| request->seqno = intel_ring_get_seqno(ring); |
| request->ring = ring; |
| request->head = request_start; |
| request->tail = request_ring_position; |
| |
| /* Whilst this request exists, batch_obj will be on the |
| * active_list, and so will hold the active reference. Only when this |
| * request is retired will the the batch_obj be moved onto the |
| * inactive_list and lose its active reference. Hence we do not need |
| * to explicitly hold another reference here. |
| */ |
| request->batch_obj = obj; |
| |
| if (!i915.enable_execlists) { |
| /* Hold a reference to the current context so that we can inspect |
| * it later in case a hangcheck error event fires. |
| */ |
| request->ctx = ring->last_context; |
| if (request->ctx) |
| i915_gem_context_reference(request->ctx); |
| } |
| |
| request->emitted_jiffies = jiffies; |
| list_add_tail(&request->list, &ring->request_list); |
| request->file_priv = NULL; |
| |
| if (file) { |
| struct drm_i915_file_private *file_priv = file->driver_priv; |
| |
| spin_lock(&file_priv->mm.lock); |
| request->file_priv = file_priv; |
| list_add_tail(&request->client_list, |
| &file_priv->mm.request_list); |
| spin_unlock(&file_priv->mm.lock); |
| } |
| |
| trace_i915_gem_request_add(ring, request->seqno); |
| ring->outstanding_lazy_seqno = 0; |
| ring->preallocated_lazy_request = NULL; |
| |
| i915_queue_hangcheck(ring->dev); |
| |
| cancel_delayed_work_sync(&dev_priv->mm.idle_work); |
| queue_delayed_work(dev_priv->wq, |
| &dev_priv->mm.retire_work, |
| round_jiffies_up_relative(HZ)); |
| intel_mark_busy(dev_priv->dev); |
| |
| if (out_seqno) |
| *out_seqno = request->seqno; |
| return 0; |
| } |
| |
| static inline void |
| i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) |
| { |
| struct drm_i915_file_private *file_priv = request->file_priv; |
| |
| if (!file_priv) |
| return; |
| |
| spin_lock(&file_priv->mm.lock); |
| list_del(&request->client_list); |
| request->file_priv = NULL; |
| spin_unlock(&file_priv->mm.lock); |
| } |
| |
| static bool i915_context_is_banned(struct drm_i915_private *dev_priv, |
| const struct intel_context *ctx) |
| { |
| unsigned long elapsed; |
| |
| elapsed = get_seconds() - ctx->hang_stats.guilty_ts; |
| |
| if (ctx->hang_stats.banned) |
| return true; |
| |
| if (elapsed <= DRM_I915_CTX_BAN_PERIOD) { |
| if (!i915_gem_context_is_default(ctx)) { |
| DRM_DEBUG("context hanging too fast, banning!\n"); |
| return true; |
| } else if (i915_stop_ring_allow_ban(dev_priv)) { |
| if (i915_stop_ring_allow_warn(dev_priv)) |
| DRM_ERROR("gpu hanging too fast, banning!\n"); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static void i915_set_reset_status(struct drm_i915_private *dev_priv, |
| struct intel_context *ctx, |
| const bool guilty) |
| { |
| struct i915_ctx_hang_stats *hs; |
| |
| if (WARN_ON(!ctx)) |
| return; |
| |
| hs = &ctx->hang_stats; |
| |
| if (guilty) { |
| hs->banned = i915_context_is_banned(dev_priv, ctx); |
| hs->batch_active++; |
| hs->guilty_ts = get_seconds(); |
| } else { |
| hs->batch_pending++; |
| } |
| } |
| |
| static void i915_gem_free_request(struct drm_i915_gem_request *request) |
| { |
| struct intel_context *ctx = request->ctx; |
| |
| list_del(&request->list); |
| i915_gem_request_remove_from_client(request); |
| |
| if (ctx) { |
| if (i915.enable_execlists) { |
| struct intel_engine_cs *ring = request->ring; |
| |
| if (ctx != ring->default_context) |
| intel_lr_context_unpin(ring, ctx); |
| } |
| i915_gem_context_unreference(ctx); |
| } |
| kfree(request); |
| } |
| |
| struct drm_i915_gem_request * |
| i915_gem_find_active_request(struct intel_engine_cs *ring) |
| { |
| struct drm_i915_gem_request *request; |
| u32 completed_seqno; |
| |
| completed_seqno = ring->get_seqno(ring, false); |
| |
| list_for_each_entry(request, &ring->request_list, list) { |
| if (i915_seqno_passed(completed_seqno, request->seqno)) |
| continue; |
| |
| return request; |
| } |
| |
| return NULL; |
| } |
| |
| static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv, |
| struct intel_engine_cs *ring) |
| { |
| struct drm_i915_gem_request *request; |
| bool ring_hung; |
| |
| request = i915_gem_find_active_request(ring); |
| |
| if (request == NULL) |
| return; |
| |
| ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG; |
| |
| i915_set_reset_status(dev_priv, request->ctx, ring_hung); |
| |
| list_for_each_entry_continue(request, &ring->request_list, list) |
| i915_set_reset_status(dev_priv, request->ctx, false); |
| } |
| |
| static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv, |
| struct intel_engine_cs *ring) |
| { |
| while (!list_empty(&ring->active_list)) { |
| struct drm_i915_gem_object *obj; |
| |
| obj = list_first_entry(&ring->active_list, |
| struct drm_i915_gem_object, |
| ring_list); |
| |
| i915_gem_object_move_to_inactive(obj); |
| } |
| |
| /* |
| * Clear the execlists queue up before freeing the requests, as those |
| * are the ones that keep the context and ringbuffer backing objects |
| * pinned in place. |
| */ |
| while (!list_empty(&ring->execlist_queue)) { |
| struct intel_ctx_submit_request *submit_req; |
| |
| submit_req = list_first_entry(&ring->execlist_queue, |
| struct intel_ctx_submit_request, |
| execlist_link); |
| list_del(&submit_req->execlist_link); |
| intel_runtime_pm_put(dev_priv); |
| i915_gem_context_unreference(submit_req->ctx); |
| kfree(submit_req); |
| } |
| |
| /* |
| * We must free the requests after all the corresponding objects have |
| * been moved off active lists. Which is the same order as the normal |
| * retire_requests function does. This is important if object hold |
| * implicit references on things like e.g. ppgtt address spaces through |
| * the request. |
| */ |
| while (!list_empty(&ring->request_list)) { |
| struct drm_i915_gem_request *request; |
| |
| request = list_first_entry(&ring->request_list, |
| struct drm_i915_gem_request, |
| list); |
| |
| i915_gem_free_request(request); |
| } |
| |
| /* These may not have been flush before the reset, do so now */ |
| kfree(ring->preallocated_lazy_request); |
| ring->preallocated_lazy_request = NULL; |
| ring->outstanding_lazy_seqno = 0; |
| } |
| |
| void i915_gem_restore_fences(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int i; |
| |
| for (i = 0; i < dev_priv->num_fence_regs; i++) { |
| struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; |
| |
| /* |
| * Commit delayed tiling changes if we have an object still |
| * attached to the fence, otherwise just clear the fence. |
| */ |
| if (reg->obj) { |
| i915_gem_object_update_fence(reg->obj, reg, |
| reg->obj->tiling_mode); |
| } else { |
| i915_gem_write_fence(dev, i, NULL); |
| } |
| } |
| } |
| |
| void i915_gem_reset(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring; |
| int i; |
| |
| /* |
| * Before we free the objects from the requests, we need to inspect |
| * them for finding the guilty party. As the requests only borrow |
| * their reference to the objects, the inspection must be done first. |
| */ |
| for_each_ring(ring, dev_priv, i) |
| i915_gem_reset_ring_status(dev_priv, ring); |
| |
| for_each_ring(ring, dev_priv, i) |
| i915_gem_reset_ring_cleanup(dev_priv, ring); |
| |
| i915_gem_context_reset(dev); |
| |
| i915_gem_restore_fences(dev); |
| } |
| |
| /** |
| * This function clears the request list as sequence numbers are passed. |
| */ |
| void |
| i915_gem_retire_requests_ring(struct intel_engine_cs *ring) |
| { |
| uint32_t seqno; |
| |
| if (list_empty(&ring->request_list)) |
| return; |
| |
| WARN_ON(i915_verify_lists(ring->dev)); |
| |
| seqno = ring->get_seqno(ring, true); |
| |
| /* Move any buffers on the active list that are no longer referenced |
| * by the ringbuffer to the flushing/inactive lists as appropriate, |
| * before we free the context associated with the requests. |
| */ |
| while (!list_empty(&ring->active_list)) { |
| struct drm_i915_gem_object *obj; |
| |
| obj = list_first_entry(&ring->active_list, |
| struct drm_i915_gem_object, |
| ring_list); |
| |
| if (!i915_seqno_passed(seqno, obj->last_read_seqno)) |
| break; |
| |
| i915_gem_object_move_to_inactive(obj); |
| } |
| |
| |
| while (!list_empty(&ring->request_list)) { |
| struct drm_i915_gem_request *request; |
| struct intel_ringbuffer *ringbuf; |
| |
| request = list_first_entry(&ring->request_list, |
| struct drm_i915_gem_request, |
| list); |
| |
| if (!i915_seqno_passed(seqno, request->seqno)) |
| break; |
| |
| trace_i915_gem_request_retire(ring, request->seqno); |
| |
| /* This is one of the few common intersection points |
| * between legacy ringbuffer submission and execlists: |
| * we need to tell them apart in order to find the correct |
| * ringbuffer to which the request belongs to. |
| */ |
| if (i915.enable_execlists) { |
| struct intel_context *ctx = request->ctx; |
| ringbuf = ctx->engine[ring->id].ringbuf; |
| } else |
| ringbuf = ring->buffer; |
| |
| /* We know the GPU must have read the request to have |
| * sent us the seqno + interrupt, so use the position |
| * of tail of the request to update the last known position |
| * of the GPU head. |
| */ |
| ringbuf->last_retired_head = request->tail; |
| |
| i915_gem_free_request(request); |
| } |
| |
| if (unlikely(ring->trace_irq_seqno && |
| i915_seqno_passed(seqno, ring->trace_irq_seqno))) { |
| ring->irq_put(ring); |
| ring->trace_irq_seqno = 0; |
| } |
| |
| WARN_ON(i915_verify_lists(ring->dev)); |
| } |
| |
| bool |
| i915_gem_retire_requests(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring; |
| bool idle = true; |
| int i; |
| |
| for_each_ring(ring, dev_priv, i) { |
| i915_gem_retire_requests_ring(ring); |
| idle &= list_empty(&ring->request_list); |
| if (i915.enable_execlists) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ring->execlist_lock, flags); |
| idle &= list_empty(&ring->execlist_queue); |
| spin_unlock_irqrestore(&ring->execlist_lock, flags); |
| |
| intel_execlists_retire_requests(ring); |
| } |
| } |
| |
| if (idle) |
| mod_delayed_work(dev_priv->wq, |
| &dev_priv->mm.idle_work, |
| msecs_to_jiffies(100)); |
| |
| return idle; |
| } |
| |
| static void |
| i915_gem_retire_work_handler(struct work_struct *work) |
| { |
| struct drm_i915_private *dev_priv = |
| container_of(work, typeof(*dev_priv), mm.retire_work.work); |
| struct drm_device *dev = dev_priv->dev; |
| bool idle; |
| |
| /* Come back later if the device is busy... */ |
| idle = false; |
| if (mutex_trylock(&dev->struct_mutex)) { |
| idle = i915_gem_retire_requests(dev); |
| mutex_unlock(&dev->struct_mutex); |
| } |
| if (!idle) |
| queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, |
| round_jiffies_up_relative(HZ)); |
| } |
| |
| static void |
| i915_gem_idle_work_handler(struct work_struct *work) |
| { |
| struct drm_i915_private *dev_priv = |
| container_of(work, typeof(*dev_priv), mm.idle_work.work); |
| |
| intel_mark_idle(dev_priv->dev); |
| } |
| |
| /** |
| * Ensures that an object will eventually get non-busy by flushing any required |
| * write domains, emitting any outstanding lazy request and retiring and |
| * completed requests. |
| */ |
| static int |
| i915_gem_object_flush_active(struct drm_i915_gem_object *obj) |
| { |
| int ret; |
| |
| if (obj->active) { |
| ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno); |
| if (ret) |
| return ret; |
| |
| i915_gem_retire_requests_ring(obj->ring); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT |
| * @DRM_IOCTL_ARGS: standard ioctl arguments |
| * |
| * Returns 0 if successful, else an error is returned with the remaining time in |
| * the timeout parameter. |
| * -ETIME: object is still busy after timeout |
| * -ERESTARTSYS: signal interrupted the wait |
| * -ENONENT: object doesn't exist |
| * Also possible, but rare: |
| * -EAGAIN: GPU wedged |
| * -ENOMEM: damn |
| * -ENODEV: Internal IRQ fail |
| * -E?: The add request failed |
| * |
| * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any |
| * non-zero timeout parameter the wait ioctl will wait for the given number of |
| * nanoseconds on an object becoming unbusy. Since the wait itself does so |
| * without holding struct_mutex the object may become re-busied before this |
| * function completes. A similar but shorter * race condition exists in the busy |
| * ioctl |
| */ |
| int |
| i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_wait *args = data; |
| struct drm_i915_gem_object *obj; |
| struct intel_engine_cs *ring = NULL; |
| unsigned reset_counter; |
| u32 seqno = 0; |
| int ret = 0; |
| |
| if (args->flags != 0) |
| return -EINVAL; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); |
| if (&obj->base == NULL) { |
| mutex_unlock(&dev->struct_mutex); |
| return -ENOENT; |
| } |
| |
| /* Need to make sure the object gets inactive eventually. */ |
| ret = i915_gem_object_flush_active(obj); |
| if (ret) |
| goto out; |
| |
| if (obj->active) { |
| seqno = obj->last_read_seqno; |
| ring = obj->ring; |
| } |
| |
| if (seqno == 0) |
| goto out; |
| |
| /* Do this after OLR check to make sure we make forward progress polling |
| * on this IOCTL with a timeout <=0 (like busy ioctl) |
| */ |
| if (args->timeout_ns <= 0) { |
| ret = -ETIME; |
| goto out; |
| } |
| |
| drm_gem_object_unreference(&obj->base); |
| reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); |
| mutex_unlock(&dev->struct_mutex); |
| |
| return __i915_wait_seqno(ring, seqno, reset_counter, true, |
| &args->timeout_ns, file->driver_priv); |
| |
| out: |
| drm_gem_object_unreference(&obj->base); |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| /** |
| * i915_gem_object_sync - sync an object to a ring. |
| * |
| * @obj: object which may be in use on another ring. |
| * @to: ring we wish to use the object on. May be NULL. |
| * |
| * This code is meant to abstract object synchronization with the GPU. |
| * Calling with NULL implies synchronizing the object with the CPU |
| * rather than a particular GPU ring. |
| * |
| * Returns 0 if successful, else propagates up the lower layer error. |
| */ |
| int |
| i915_gem_object_sync(struct drm_i915_gem_object *obj, |
| struct intel_engine_cs *to) |
| { |
| struct intel_engine_cs *from = obj->ring; |
| u32 seqno; |
| int ret, idx; |
| |
| if (from == NULL || to == from) |
| return 0; |
| |
| if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) |
| return i915_gem_object_wait_rendering(obj, false); |
| |
| idx = intel_ring_sync_index(from, to); |
| |
| seqno = obj->last_read_seqno; |
| /* Optimization: Avoid semaphore sync when we are sure we already |
| * waited for an object with higher seqno */ |
| if (seqno <= from->semaphore.sync_seqno[idx]) |
| return 0; |
| |
| ret = i915_gem_check_olr(obj->ring, seqno); |
| if (ret) |
| return ret; |
| |
| trace_i915_gem_ring_sync_to(from, to, seqno); |
| ret = to->semaphore.sync_to(to, from, seqno); |
| if (!ret) |
| /* We use last_read_seqno because sync_to() |
| * might have just caused seqno wrap under |
| * the radar. |
| */ |
| from->semaphore.sync_seqno[idx] = obj->last_read_seqno; |
| |
| return ret; |
| } |
| |
| static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) |
| { |
| u32 old_write_domain, old_read_domains; |
| |
| /* Force a pagefault for domain tracking on next user access */ |
| i915_gem_release_mmap(obj); |
| |
| if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) |
| return; |
| |
| /* Wait for any direct GTT access to complete */ |
| mb(); |
| |
| old_read_domains = obj->base.read_domains; |
| old_write_domain = obj->base.write_domain; |
| |
| obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; |
| obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; |
| |
| trace_i915_gem_object_change_domain(obj, |
| old_read_domains, |
| old_write_domain); |
| } |
| |
| int i915_vma_unbind(struct i915_vma *vma) |
| { |
| struct drm_i915_gem_object *obj = vma->obj; |
| struct drm_i915_private *dev_priv = obj->base.dev->dev_private; |
| int ret; |
| |
| if (list_empty(&vma->vma_link)) |
| return 0; |
| |
| if (!drm_mm_node_allocated(&vma->node)) { |
| i915_gem_vma_destroy(vma); |
| return 0; |
| } |
| |
| if (vma->pin_count) |
| return -EBUSY; |
| |
| BUG_ON(obj->pages == NULL); |
| |
| ret = i915_gem_object_finish_gpu(obj); |
| if (ret) |
| return ret; |
| /* Continue on if we fail due to EIO, the GPU is hung so we |
| * should be safe and we need to cleanup or else we might |
| * cause memory corruption through use-after-free. |
| */ |
| |
| /* Throw away the active reference before moving to the unbound list */ |
| i915_gem_object_retire(obj); |
| |
| if (i915_is_ggtt(vma->vm)) { |
| i915_gem_object_finish_gtt(obj); |
| |
| /* release the fence reg _after_ flushing */ |
| ret = i915_gem_object_put_fence(obj); |
| if (ret) |
| return ret; |
| } |
| |
| trace_i915_vma_unbind(vma); |
| |
| vma->unbind_vma(vma); |
| |
| list_del_init(&vma->mm_list); |
| if (i915_is_ggtt(vma->vm)) |
| obj->map_and_fenceable = false; |
| |
| drm_mm_remove_node(&vma->node); |
| i915_gem_vma_destroy(vma); |
| |
| /* Since the unbound list is global, only move to that list if |
| * no more VMAs exist. */ |
| if (list_empty(&obj->vma_list)) { |
| i915_gem_gtt_finish_object(obj); |
| list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list); |
| } |
| |
| /* And finally now the object is completely decoupled from this vma, |
| * we can drop its hold on the backing storage and allow it to be |
| * reaped by the shrinker. |
| */ |
| i915_gem_object_unpin_pages(obj); |
| |
| return 0; |
| } |
| |
| int i915_gpu_idle(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring; |
| int ret, i; |
| |
| /* Flush everything onto the inactive list. */ |
| for_each_ring(ring, dev_priv, i) { |
| if (!i915.enable_execlists) { |
| ret = i915_switch_context(ring, ring->default_context); |
| if (ret) |
| return ret; |
| } |
| |
| ret = intel_ring_idle(ring); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void i965_write_fence_reg(struct drm_device *dev, int reg, |
| struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int fence_reg; |
| int fence_pitch_shift; |
| |
| if (INTEL_INFO(dev)->gen >= 6) { |
| fence_reg = FENCE_REG_SANDYBRIDGE_0; |
| fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT; |
| } else { |
| fence_reg = FENCE_REG_965_0; |
| fence_pitch_shift = I965_FENCE_PITCH_SHIFT; |
| } |
| |
| fence_reg += reg * 8; |
| |
| /* To w/a incoherency with non-atomic 64-bit register updates, |
| * we split the 64-bit update into two 32-bit writes. In order |
| * for a partial fence not to be evaluated between writes, we |
| * precede the update with write to turn off the fence register, |
| * and only enable the fence as the last step. |
| * |
| * For extra levels of paranoia, we make sure each step lands |
| * before applying the next step. |
| */ |
| I915_WRITE(fence_reg, 0); |
| POSTING_READ(fence_reg); |
| |
| if (obj) { |
| u32 size = i915_gem_obj_ggtt_size(obj); |
| uint64_t val; |
| |
| /* Adjust fence size to match tiled area */ |
| if (obj->tiling_mode != I915_TILING_NONE) { |
| uint32_t row_size = obj->stride * |
| (obj->tiling_mode == I915_TILING_Y ? 32 : 8); |
| size = (size / row_size) * row_size; |
| } |
| |
| val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) & |
| 0xfffff000) << 32; |
| val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000; |
| val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift; |
| if (obj->tiling_mode == I915_TILING_Y) |
| val |= 1 << I965_FENCE_TILING_Y_SHIFT; |
| val |= I965_FENCE_REG_VALID; |
| |
| I915_WRITE(fence_reg + 4, val >> 32); |
| POSTING_READ(fence_reg + 4); |
| |
| I915_WRITE(fence_reg + 0, val); |
| POSTING_READ(fence_reg); |
| } else { |
| I915_WRITE(fence_reg + 4, 0); |
| POSTING_READ(fence_reg + 4); |
| } |
| } |
| |
| static void i915_write_fence_reg(struct drm_device *dev, int reg, |
| struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 val; |
| |
| if (obj) { |
| u32 size = i915_gem_obj_ggtt_size(obj); |
| int pitch_val; |
| int tile_width; |
| |
| WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) || |
| (size & -size) != size || |
| (i915_gem_obj_ggtt_offset(obj) & (size - 1)), |
| "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", |
| i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size); |
| |
| if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) |
| tile_width = 128; |
| else |
| tile_width = 512; |
| |
| /* Note: pitch better be a power of two tile widths */ |
| pitch_val = obj->stride / tile_width; |
| pitch_val = ffs(pitch_val) - 1; |
| |
| val = i915_gem_obj_ggtt_offset(obj); |
| if (obj->tiling_mode == I915_TILING_Y) |
| val |= 1 << I830_FENCE_TILING_Y_SHIFT; |
| val |= I915_FENCE_SIZE_BITS(size); |
| val |= pitch_val << I830_FENCE_PITCH_SHIFT; |
| val |= I830_FENCE_REG_VALID; |
| } else |
| val = 0; |
| |
| if (reg < 8) |
| reg = FENCE_REG_830_0 + reg * 4; |
| else |
| reg = FENCE_REG_945_8 + (reg - 8) * 4; |
| |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| } |
| |
| static void i830_write_fence_reg(struct drm_device *dev, int reg, |
| struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t val; |
| |
| if (obj) { |
| u32 size = i915_gem_obj_ggtt_size(obj); |
| uint32_t pitch_val; |
| |
| WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) || |
| (size & -size) != size || |
| (i915_gem_obj_ggtt_offset(obj) & (size - 1)), |
| "object 0x%08lx not 512K or pot-size 0x%08x aligned\n", |
| i915_gem_obj_ggtt_offset(obj), size); |
| |
| pitch_val = obj->stride / 128; |
| pitch_val = ffs(pitch_val) - 1; |
| |
| val = i915_gem_obj_ggtt_offset(obj); |
| if (obj->tiling_mode == I915_TILING_Y) |
| val |= 1 << I830_FENCE_TILING_Y_SHIFT; |
| val |= I830_FENCE_SIZE_BITS(size); |
| val |= pitch_val << I830_FENCE_PITCH_SHIFT; |
| val |= I830_FENCE_REG_VALID; |
| } else |
| val = 0; |
| |
| I915_WRITE(FENCE_REG_830_0 + reg * 4, val); |
| POSTING_READ(FENCE_REG_830_0 + reg * 4); |
| } |
| |
| inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj) |
| { |
| return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT; |
| } |
| |
| static void i915_gem_write_fence(struct drm_device *dev, int reg, |
| struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| /* Ensure that all CPU reads are completed before installing a fence |
| * and all writes before removing the fence. |
| */ |
| if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj)) |
| mb(); |
| |
| WARN(obj && (!obj->stride || !obj->tiling_mode), |
| "bogus fence setup with stride: 0x%x, tiling mode: %i\n", |
| obj->stride, obj->tiling_mode); |
| |
| switch (INTEL_INFO(dev)->gen) { |
| case 9: |
| case 8: |
| case 7: |
| case 6: |
| case 5: |
| case 4: i965_write_fence_reg(dev, reg, obj); break; |
| case 3: i915_write_fence_reg(dev, reg, obj); break; |
| case 2: i830_write_fence_reg(dev, reg, obj); break; |
| default: BUG(); |
| } |
| |
| /* And similarly be paranoid that no direct access to this region |
| * is reordered to before the fence is installed. |
| */ |
| if (i915_gem_object_needs_mb(obj)) |
| mb(); |
| } |
| |
| static inline int fence_number(struct drm_i915_private *dev_priv, |
| struct drm_i915_fence_reg *fence) |
| { |
| return fence - dev_priv->fence_regs; |
| } |
| |
| static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, |
| struct drm_i915_fence_reg *fence, |
| bool enable) |
| { |
| struct drm_i915_private *dev_priv = obj->base.dev->dev_private; |
| int reg = fence_number(dev_priv, fence); |
| |
| i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL); |
| |
| if (enable) { |
| obj->fence_reg = reg; |
| fence->obj = obj; |
| list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); |
| } else { |
| obj->fence_reg = I915_FENCE_REG_NONE; |
| fence->obj = NULL; |
| list_del_init(&fence->lru_list); |
| } |
| obj->fence_dirty = false; |
| } |
| |
| static int |
| i915_gem_object_wait_fence(struct drm_i915_gem_object *obj) |
| { |
| if (obj->last_fenced_seqno) { |
| int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno); |
| if (ret) |
| return ret; |
| |
| obj->last_fenced_seqno = 0; |
| } |
| |
| return 0; |
| } |
| |
| int |
| i915_gem_object_put_fence(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = obj->base.dev->dev_private; |
| struct drm_i915_fence_reg *fence; |
| int ret; |
| |
| ret = i915_gem_object_wait_fence(obj); |
| if (ret) |
| return ret; |
| |
| if (obj->fence_reg == I915_FENCE_REG_NONE) |
| return 0; |
| |
| fence = &dev_priv->fence_regs[obj->fence_reg]; |
| |
| if (WARN_ON(fence->pin_count)) |
| return -EBUSY; |
| |
| i915_gem_object_fence_lost(obj); |
| i915_gem_object_update_fence(obj, fence, false); |
| |
| return 0; |
| } |
| |
| static struct drm_i915_fence_reg * |
| i915_find_fence_reg(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_fence_reg *reg, *avail; |
| int i; |
| |
| /* First try to find a free reg */ |
| avail = NULL; |
| for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { |
| reg = &dev_priv->fence_regs[i]; |
| if (!reg->obj) |
| return reg; |
| |
| if (!reg->pin_count) |
| avail = reg; |
| } |
| |
| if (avail == NULL) |
| goto deadlock; |
| |
| /* None available, try to steal one or wait for a user to finish */ |
| list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { |
| if (reg->pin_count) |
| continue; |
| |
| return reg; |
| } |
| |
| deadlock: |
| /* Wait for completion of pending flips which consume fences */ |
| if (intel_has_pending_fb_unpin(dev)) |
| return ERR_PTR(-EAGAIN); |
| |
| return ERR_PTR(-EDEADLK); |
| } |
| |
| /** |
| * i915_gem_object_get_fence - set up fencing for an object |
| * @obj: object to map through a fence reg |
| * |
| * When mapping objects through the GTT, userspace wants to be able to write |
| * to them without having to worry about swizzling if the object is tiled. |
| * This function walks the fence regs looking for a free one for @obj, |
| * stealing one if it can't find any. |
| * |
| * It then sets up the reg based on the object's properties: address, pitch |
| * and tiling format. |
| * |
| * For an untiled surface, this removes any existing fence. |
| */ |
| int |
| i915_gem_object_get_fence(struct drm_i915_gem_object *obj) |
| { |
| struct drm_device *dev = obj->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| bool enable = obj->tiling_mode != I915_TILING_NONE; |
| struct drm_i915_fence_reg *reg; |
| int ret; |
| |
| /* Have we updated the tiling parameters upon the object and so |
| * will need to serialise the write to the associated fence register? |
| */ |
| if (obj->fence_dirty) { |
| ret = i915_gem_object_wait_fence(obj); |
| if (ret) |
| return ret; |
| } |
| |
| /* Just update our place in the LRU if our fence is getting reused. */ |
| if (obj->fence_reg != I915_FENCE_REG_NONE) { |
| reg = &dev_priv->fence_regs[obj->fence_reg]; |
| if (!obj->fence_dirty) { |
| list_move_tail(®->lru_list, |
| &dev_priv->mm.fence_list); |
| return 0; |
| } |
| } else if (enable) { |
| if (WARN_ON(!obj->map_and_fenceable)) |
| return -EINVAL; |
| |
| reg = i915_find_fence_reg(dev); |
| if (IS_ERR(reg)) |
| return PTR_ERR(reg); |
| |
| if (reg->obj) { |
| struct drm_i915_gem_object *old = reg->obj; |
| |
| ret = i915_gem_object_wait_fence(old); |
| if (ret) |
| return ret; |
| |
| i915_gem_object_fence_lost(old); |
| } |
| } else |
| return 0; |
| |
| i915_gem_object_update_fence(obj, reg, enable); |
| |
| return 0; |
| } |
| |
| static bool i915_gem_valid_gtt_space(struct i915_vma *vma, |
| unsigned long cache_level) |
| { |
| struct drm_mm_node *gtt_space = &vma->node; |
| struct drm_mm_node *other; |
| |
| /* |
| * On some machines we have to be careful when putting differing types |
| * of snoopable memory together to avoid the prefetcher crossing memory |
| * domains and dying. During vm initialisation, we decide whether or not |
| * these constraints apply and set the drm_mm.color_adjust |
| * appropriately. |
| */ |
| if (vma->vm->mm.color_adjust == NULL) |
| return true; |
| |
| if (!drm_mm_node_allocated(gtt_space)) |
| return true; |
| |
| if (list_empty(>t_space->node_list)) |
| return true; |
| |
| other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); |
| if (other->allocated && !other->hole_follows && other->color != cache_level) |
| return false; |
| |
| other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); |
| if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * Finds free space in the GTT aperture and binds the object there. |
| */ |
| static struct i915_vma * |
| i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj, |
| struct i915_address_space *vm, |
| unsigned alignment, |
| uint64_t flags) |
| { |
| struct drm_device *dev = obj->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 size, fence_size, fence_alignment, unfenced_alignment; |
| unsigned long start = |
| flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; |
| unsigned long end = |
| flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total; |
| struct i915_vma *vma; |
| int ret; |
| |
| fence_size = i915_gem_get_gtt_size(dev, |
| obj->base.size, |
| obj->tiling_mode); |
| fence_alignment = i915_gem_get_gtt_alignment(dev, |
| obj->base.size, |
| obj->tiling_mode, true); |
| unfenced_alignment = |
| i915_gem_get_gtt_alignment(dev, |
| obj->base.size, |
| obj->tiling_mode, false); |
| |
| if (alignment == 0) |
| alignment = flags & PIN_MAPPABLE ? fence_alignment : |
| unfenced_alignment; |
| if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) { |
| DRM_DEBUG("Invalid object alignment requested %u\n", alignment); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| size = flags & PIN_MAPPABLE ? fence_size : obj->base.size; |
| |
| /* If the object is bigger than the entire aperture, reject it early |
| * before evicting everything in a vain attempt to find space. |
| */ |
| if (obj->base.size > end) { |
| DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n", |
| obj->base.size, |
| flags & PIN_MAPPABLE ? "mappable" : "total", |
| end); |
| return ERR_PTR(-E2BIG); |
| } |
| |
| ret = i915_gem_object_get_pages(obj); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| i915_gem_object_pin_pages(obj); |
| |
| vma = i915_gem_obj_lookup_or_create_vma(obj, vm); |
| if (IS_ERR(vma)) |
| goto err_unpin; |
| |
| search_free: |
| ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node, |
| size, alignment, |
| obj->cache_level, |
| start, end, |
| DRM_MM_SEARCH_DEFAULT, |
| DRM_MM_CREATE_DEFAULT); |
| if (ret) { |
| ret = i915_gem_evict_something(dev, vm, size, alignment, |
| obj->cache_level, |
| start, end, |
| flags); |
| if (ret == 0) |
| goto search_free; |
| |
| goto err_free_vma; |
| } |
| if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) { |
| ret = -EINVAL; |
| goto err_remove_node; |
| } |
| |
| ret = i915_gem_gtt_prepare_object(obj); |
| if (ret) |
| goto err_remove_node; |
| |
| list_move_tail(&obj->global_list, &dev_priv->mm.bound_list); |
| list_add_tail(&vma->mm_list, &vm->inactive_list); |
| |
| trace_i915_vma_bind(vma, flags); |
| vma->bind_vma(vma, obj->cache_level, |
| flags & PIN_GLOBAL ? GLOBAL_BIND : 0); |
| |
| return vma; |
| |
| err_remove_node: |
| drm_mm_remove_node(&vma->node); |
| err_free_vma: |
| i915_gem_vma_destroy(vma); |
| vma = ERR_PTR(ret); |
| err_unpin: |
| i915_gem_object_unpin_pages(obj); |
| return vma; |
| } |
| |
| bool |
| i915_gem_clflush_object(struct drm_i915_gem_object *obj, |
| bool force) |
| { |
| /* If we don't have a page list set up, then we're not pinned |
| * to GPU, and we can ignore the cache flush because it'll happen |
| * again at bind time. |
| */ |
| if (obj->pages == NULL) |
| return false; |
| |
| /* |
| * Stolen memory is always coherent with the GPU as it is explicitly |
| * marked as wc by the system, or the system is cache-coherent. |
| */ |
| if (obj->stolen || obj->phys_handle) |
| return false; |
| |
| /* If the GPU is snooping the contents of the CPU cache, |
| * we do not need to manually clear the CPU cache lines. However, |
| * the caches are only snooped when the render cache is |
| * flushed/invalidated. As we always have to emit invalidations |
| * and flushes when moving into and out of the RENDER domain, correct |
| * snooping behaviour occurs naturally as the result of our domain |
| * tracking. |
| */ |
| if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) |
| return false; |
| |
| trace_i915_gem_object_clflush(obj); |
| drm_clflush_sg(obj->pages); |
| |
| return true; |
| } |
| |
| /** Flushes the GTT write domain for the object if it's dirty. */ |
| static void |
| i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) |
| { |
| uint32_t old_write_domain; |
| |
| if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) |
| return; |
| |
| /* No actual flushing is required for the GTT write domain. Writes |
| * to it immediately go to main memory as far as we know, so there's |
| * no chipset flush. It also doesn't land in render cache. |
| * |
| * However, we do have to enforce the order so that all writes through |
| * the GTT land before any writes to the device, such as updates to |
| * the GATT itself. |
| */ |
| wmb(); |
| |
| old_write_domain = obj->base.write_domain; |
| obj->base.write_domain = 0; |
| |
| intel_fb_obj_flush(obj, false); |
| |
| trace_i915_gem_object_change_domain(obj, |
| obj->base.read_domains, |
| old_write_domain); |
| } |
| |
| /** Flushes the CPU write domain for the object if it's dirty. */ |
| static void |
| i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj, |
| bool force) |
| { |
| uint32_t old_write_domain; |
| |
| if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) |
| return; |
| |
| if (i915_gem_clflush_object(obj, force)) |
| i915_gem_chipset_flush(obj->base.dev); |
| |
| old_write_domain = obj->base.write_domain; |
| obj->base.write_domain = 0; |
| |
| intel_fb_obj_flush(obj, false); |
| |
| trace_i915_gem_object_change_domain(obj, |
| obj->base.read_domains, |
| old_write_domain); |
| } |
| |
| /** |
| * Moves a single object to the GTT read, and possibly write domain. |
| * |
| * This function returns when the move is complete, including waiting on |
| * flushes to occur. |
| */ |
| int |
| i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) |
| { |
| struct drm_i915_private *dev_priv = obj->base.dev->dev_private; |
| struct i915_vma *vma = i915_gem_obj_to_ggtt(obj); |
| uint32_t old_write_domain, old_read_domains; |
| int ret; |
| |
| /* Not valid to be called on unbound objects. */ |
| if (vma == NULL) |
| return -EINVAL; |
| |
| if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) |
| return 0; |
| |
| ret = i915_gem_object_wait_rendering(obj, !write); |
| if (ret) |
| return ret; |
| |
| i915_gem_object_retire(obj); |
| i915_gem_object_flush_cpu_write_domain(obj, false); |
| |
| /* Serialise direct access to this object with the barriers for |
| * coherent writes from the GPU, by effectively invalidating the |
| * GTT domain upon first access. |
| */ |
| if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) |
| mb(); |
| |
| old_write_domain = obj->base.write_domain; |
| old_read_domains = obj->base.read_domains; |
| |
| /* It should now be out of any other write domains, and we can update |
| * the domain values for our changes. |
| */ |
| BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); |
| obj->base.read_domains |= I915_GEM_DOMAIN_GTT; |
| if (write) { |
| obj->base.read_domains = I915_GEM_DOMAIN_GTT; |
| obj->base.write_domain = I915_GEM_DOMAIN_GTT; |
| obj->dirty = 1; |
| } |
| |
| if (write) |
| intel_fb_obj_invalidate(obj, NULL); |
| |
| trace_i915_gem_object_change_domain(obj, |
| old_read_domains, |
| old_write_domain); |
| |
| /* And bump the LRU for this access */ |
| if (i915_gem_object_is_inactive(obj)) |
| list_move_tail(&vma->mm_list, |
| &dev_priv->gtt.base.inactive_list); |
| |
| return 0; |
| } |
| |
| int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, |
| enum i915_cache_level cache_level) |
| { |
| struct drm_device *dev = obj->base.dev; |
| struct i915_vma *vma, *next; |
| int ret; |
| |
| if (obj->cache_level == cache_level) |
| return 0; |
| |
| if (i915_gem_obj_is_pinned(obj)) { |
| DRM_DEBUG("can not change the cache level of pinned objects\n"); |
| return -EBUSY; |
| } |
| |
| list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { |
| if (!i915_gem_valid_gtt_space(vma, cache_level)) { |
| ret = i915_vma_unbind(vma); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| if (i915_gem_obj_bound_any(obj)) { |
| ret = i915_gem_object_finish_gpu(obj); |
| if (ret) |
| return ret; |
| |
| i915_gem_object_finish_gtt(obj); |
| |
| /* Before SandyBridge, you could not use tiling or fence |
| * registers with snooped memory, so relinquish any fences |
| * currently pointing to our region in the aperture. |
| */ |
| if (INTEL_INFO(dev)->gen < 6) { |
| ret = i915_gem_object_put_fence(obj); |
| if (ret) |
| return ret; |
| } |
| |
| list_for_each_entry(vma, &obj->vma_list, vma_link) |
| if (drm_mm_node_allocated(&vma->node)) |
| vma->bind_vma(vma, cache_level, |
| vma->bound & GLOBAL_BIND); |
| } |
| |
| list_for_each_entry(vma, &obj->vma_list, vma_link) |
| vma->node.color = cache_level; |
| obj->cache_level = cache_level; |
| |
| if (cpu_write_needs_clflush(obj)) { |
| u32 old_read_domains, old_write_domain; |
| |
| /* If we're coming from LLC cached, then we haven't |
| * actually been tracking whether the data is in the |
| * CPU cache or not, since we only allow one bit set |
| * in obj->write_domain and have been skipping the clflushes. |
| * Just set it to the CPU cache for now. |
| */ |
| i915_gem_object_retire(obj); |
| WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); |
| |
| old_read_domains = obj->base.read_domains; |
| old_write_domain = obj->base.write_domain; |
| |
| obj->base.read_domains = I915_GEM_DOMAIN_CPU; |
| obj->base.write_domain = I915_GEM_DOMAIN_CPU; |
| |
| trace_i915_gem_object_change_domain(obj, |
| old_read_domains, |
| old_write_domain); |
| } |
| |
| return 0; |
| } |
| |
| int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_caching *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| switch (obj->cache_level) { |
| case I915_CACHE_LLC: |
| case I915_CACHE_L3_LLC: |
| args->caching = I915_CACHING_CACHED; |
| break; |
| |
| case I915_CACHE_WT: |
| args->caching = I915_CACHING_DISPLAY; |
| break; |
| |
| default: |
| args->caching = I915_CACHING_NONE; |
| break; |
| } |
| |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_caching *args = data; |
| struct drm_i915_gem_object *obj; |
| enum i915_cache_level level; |
| int ret; |
| |
| switch (args->caching) { |
| case I915_CACHING_NONE: |
| level = I915_CACHE_NONE; |
| break; |
| case I915_CACHING_CACHED: |
| level = I915_CACHE_LLC; |
| break; |
| case I915_CACHING_DISPLAY: |
| level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| ret = i915_gem_object_set_cache_level(obj, level); |
| |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| static bool is_pin_display(struct drm_i915_gem_object *obj) |
| { |
| struct i915_vma *vma; |
| |
| vma = i915_gem_obj_to_ggtt(obj); |
| if (!vma) |
| return false; |
| |
| /* There are 3 sources that pin objects: |
| * 1. The display engine (scanouts, sprites, cursors); |
| * 2. Reservations for execbuffer; |
| * 3. The user. |
| * |
| * We can ignore reservations as we hold the struct_mutex and |
| * are only called outside of the reservation path. The user |
| * can only increment pin_count once, and so if after |
| * subtracting the potential reference by the user, any pin_count |
| * remains, it must be due to another use by the display engine. |
| */ |
| return vma->pin_count - !!obj->user_pin_count; |
| } |
| |
| /* |
| * Prepare buffer for display plane (scanout, cursors, etc). |
| * Can be called from an uninterruptible phase (modesetting) and allows |
| * any flushes to be pipelined (for pageflips). |
| */ |
| int |
| i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, |
| u32 alignment, |
| struct intel_engine_cs *pipelined) |
| { |
| u32 old_read_domains, old_write_domain; |
| bool was_pin_display; |
| int ret; |
| |
| if (pipelined != obj->ring) { |
| ret = i915_gem_object_sync(obj, pipelined); |
| if (ret) |
| return ret; |
| } |
| |
| /* Mark the pin_display early so that we account for the |
| * display coherency whilst setting up the cache domains. |
| */ |
| was_pin_display = obj->pin_display; |
| obj->pin_display = true; |
| |
| /* The display engine is not coherent with the LLC cache on gen6. As |
| * a result, we make sure that the pinning that is about to occur is |
| * done with uncached PTEs. This is lowest common denominator for all |
| * chipsets. |
| * |
| * However for gen6+, we could do better by using the GFDT bit instead |
| * of uncaching, which would allow us to flush all the LLC-cached data |
| * with that bit in the PTE to main memory with just one PIPE_CONTROL. |
| */ |
| ret = i915_gem_object_set_cache_level(obj, |
| HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE); |
| if (ret) |
| goto err_unpin_display; |
| |
| /* As the user may map the buffer once pinned in the display plane |
| * (e.g. libkms for the bootup splash), we have to ensure that we |
| * always use map_and_fenceable for all scanout buffers. |
| */ |
| ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE); |
| if (ret) |
| goto err_unpin_display; |
| |
| i915_gem_object_flush_cpu_write_domain(obj, true); |
| |
| old_write_domain = obj->base.write_domain; |
| old_read_domains = obj->base.read_domains; |
| |
| /* It should now be out of any other write domains, and we can update |
| * the domain values for our changes. |
| */ |
| obj->base.write_domain = 0; |
| obj->base.read_domains |= I915_GEM_DOMAIN_GTT; |
| |
| trace_i915_gem_object_change_domain(obj, |
| old_read_domains, |
| old_write_domain); |
| |
| return 0; |
| |
| err_unpin_display: |
| WARN_ON(was_pin_display != is_pin_display(obj)); |
| obj->pin_display = was_pin_display; |
| return ret; |
| } |
| |
| void |
| i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj) |
| { |
| i915_gem_object_ggtt_unpin(obj); |
| obj->pin_display = is_pin_display(obj); |
| } |
| |
| int |
| i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) |
| { |
| int ret; |
| |
| if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) |
| return 0; |
| |
| ret = i915_gem_object_wait_rendering(obj, false); |
| if (ret) |
| return ret; |
| |
| /* Ensure that we invalidate the GPU's caches and TLBs. */ |
| obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; |
| return 0; |
| } |
| |
| /** |
| * Moves a single object to the CPU read, and possibly write domain. |
| * |
| * This function returns when the move is complete, including waiting on |
| * flushes to occur. |
| */ |
| int |
| i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) |
| { |
| uint32_t old_write_domain, old_read_domains; |
| int ret; |
| |
| if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) |
| return 0; |
| |
| ret = i915_gem_object_wait_rendering(obj, !write); |
| if (ret) |
| return ret; |
| |
| i915_gem_object_retire(obj); |
| i915_gem_object_flush_gtt_write_domain(obj); |
| |
| old_write_domain = obj->base.write_domain; |
| old_read_domains = obj->base.read_domains; |
| |
| /* Flush the CPU cache if it's still invalid. */ |
| if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { |
| i915_gem_clflush_object(obj, false); |
| |
| obj->base.read_domains |= I915_GEM_DOMAIN_CPU; |
| } |
| |
| /* It should now be out of any other write domains, and we can update |
| * the domain values for our changes. |
| */ |
| BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); |
| |
| /* If we're writing through the CPU, then the GPU read domains will |
| * need to be invalidated at next use. |
| */ |
| if (write) { |
| obj->base.read_domains = I915_GEM_DOMAIN_CPU; |
| obj->base.write_domain = I915_GEM_DOMAIN_CPU; |
| } |
| |
| if (write) |
| intel_fb_obj_invalidate(obj, NULL); |
| |
| trace_i915_gem_object_change_domain(obj, |
| old_read_domains, |
| old_write_domain); |
| |
| return 0; |
| } |
| |
| /* Throttle our rendering by waiting until the ring has completed our requests |
| * emitted over 20 msec ago. |
| * |
| * Note that if we were to use the current jiffies each time around the loop, |
| * we wouldn't escape the function with any frames outstanding if the time to |
| * render a frame was over 20ms. |
| * |
| * This should get us reasonable parallelism between CPU and GPU but also |
| * relatively low latency when blocking on a particular request to finish. |
| */ |
| static int |
| i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_file_private *file_priv = file->driver_priv; |
| unsigned long recent_enough = jiffies - msecs_to_jiffies(20); |
| struct drm_i915_gem_request *request; |
| struct intel_engine_cs *ring = NULL; |
| unsigned reset_counter; |
| u32 seqno = 0; |
| int ret; |
| |
| ret = i915_gem_wait_for_error(&dev_priv->gpu_error); |
| if (ret) |
| return ret; |
| |
| ret = i915_gem_check_wedge(&dev_priv->gpu_error, false); |
| if (ret) |
| return ret; |
| |
| spin_lock(&file_priv->mm.lock); |
| list_for_each_entry(request, &file_priv->mm.request_list, client_list) { |
| if (time_after_eq(request->emitted_jiffies, recent_enough)) |
| break; |
| |
| ring = request->ring; |
| seqno = request->seqno; |
| } |
| reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); |
| spin_unlock(&file_priv->mm.lock); |
| |
| if (seqno == 0) |
| return 0; |
| |
| ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, NULL); |
| if (ret == 0) |
| queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); |
| |
| return ret; |
| } |
| |
| static bool |
| i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags) |
| { |
| struct drm_i915_gem_object *obj = vma->obj; |
| |
| if (alignment && |
| vma->node.start & (alignment - 1)) |
| return true; |
| |
| if (flags & PIN_MAPPABLE && !obj->map_and_fenceable) |
| return true; |
| |
| if (flags & PIN_OFFSET_BIAS && |
| vma->node.start < (flags & PIN_OFFSET_MASK)) |
| return true; |
| |
| return false; |
| } |
| |
| int |
| i915_gem_object_pin(struct drm_i915_gem_object *obj, |
| struct i915_address_space *vm, |
| uint32_t alignment, |
| uint64_t flags) |
| { |
| struct drm_i915_private *dev_priv = obj->base.dev->dev_private; |
| struct i915_vma *vma; |
| unsigned bound; |
| int ret; |
| |
| if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base)) |
| return -ENODEV; |
| |
| if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm))) |
| return -EINVAL; |
| |
| if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE)) |
| return -EINVAL; |
| |
| vma = i915_gem_obj_to_vma(obj, vm); |
| if (vma) { |
| if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) |
| return -EBUSY; |
| |
| if (i915_vma_misplaced(vma, alignment, flags)) { |
| WARN(vma->pin_count, |
| "bo is already pinned with incorrect alignment:" |
| " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d," |
| " obj->map_and_fenceable=%d\n", |
| i915_gem_obj_offset(obj, vm), alignment, |
| !!(flags & PIN_MAPPABLE), |
| obj->map_and_fenceable); |
| ret = i915_vma_unbind(vma); |
| if (ret) |
| return ret; |
| |
| vma = NULL; |
| } |
| } |
| |
| bound = vma ? vma->bound : 0; |
| if (vma == NULL || !drm_mm_node_allocated(&vma->node)) { |
| vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags); |
| if (IS_ERR(vma)) |
| return PTR_ERR(vma); |
| } |
| |
| if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) |
| vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND); |
| |
| if ((bound ^ vma->bound) & GLOBAL_BIND) { |
| bool mappable, fenceable; |
| u32 fence_size, fence_alignment; |
| |
| fence_size = i915_gem_get_gtt_size(obj->base.dev, |
| obj->base.size, |
| obj->tiling_mode); |
| fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev, |
| obj->base.size, |
| obj->tiling_mode, |
| true); |
| |
| fenceable = (vma->node.size == fence_size && |
| (vma->node.start & (fence_alignment - 1)) == 0); |
| |
| mappable = (vma->node.start + obj->base.size <= |
| dev_priv->gtt.mappable_end); |
| |
| obj->map_and_fenceable = mappable && fenceable; |
| } |
| |
| WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable); |
| |
| vma->pin_count++; |
| if (flags & PIN_MAPPABLE) |
| obj->pin_mappable |= true; |
| |
| return 0; |
| } |
| |
| void |
| i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj) |
| { |
| struct i915_vma *vma = i915_gem_obj_to_ggtt(obj); |
| |
| BUG_ON(!vma); |
| BUG_ON(vma->pin_count == 0); |
| BUG_ON(!i915_gem_obj_ggtt_bound(obj)); |
| |
| if (--vma->pin_count == 0) |
| obj->pin_mappable = false; |
| } |
| |
| bool |
| i915_gem_object_pin_fence(struct drm_i915_gem_object *obj) |
| { |
| if (obj->fence_reg != I915_FENCE_REG_NONE) { |
| struct drm_i915_private *dev_priv = obj->base.dev->dev_private; |
| struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj); |
| |
| WARN_ON(!ggtt_vma || |
| dev_priv->fence_regs[obj->fence_reg].pin_count > |
| ggtt_vma->pin_count); |
| dev_priv->fence_regs[obj->fence_reg].pin_count++; |
| return true; |
| } else |
| return false; |
| } |
| |
| void |
| i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj) |
| { |
| if (obj->fence_reg != I915_FENCE_REG_NONE) { |
| struct drm_i915_private *dev_priv = obj->base.dev->dev_private; |
| WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0); |
| dev_priv->fence_regs[obj->fence_reg].pin_count--; |
| } |
| } |
| |
| int |
| i915_gem_pin_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_pin *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| if (drm_core_check_feature(dev, DRIVER_MODESET)) |
| return -ENODEV; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| if (obj->madv != I915_MADV_WILLNEED) { |
| DRM_DEBUG("Attempting to pin a purgeable buffer\n"); |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| if (obj->pin_filp != NULL && obj->pin_filp != file) { |
| DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n", |
| args->handle); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (obj->user_pin_count == ULONG_MAX) { |
| ret = -EBUSY; |
| goto out; |
| } |
| |
| if (obj->user_pin_count == 0) { |
| ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE); |
| if (ret) |
| goto out; |
| } |
| |
| obj->user_pin_count++; |
| obj->pin_filp = file; |
| |
| args->offset = i915_gem_obj_ggtt_offset(obj); |
| out: |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| int |
| i915_gem_unpin_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_pin *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| if (drm_core_check_feature(dev, DRIVER_MODESET)) |
| return -ENODEV; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| if (obj->pin_filp != file) { |
| DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", |
| args->handle); |
| ret = -EINVAL; |
| goto out; |
| } |
| obj->user_pin_count--; |
| if (obj->user_pin_count == 0) { |
| obj->pin_filp = NULL; |
| i915_gem_object_ggtt_unpin(obj); |
| } |
| |
| out: |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| int |
| i915_gem_busy_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_busy *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| /* Count all active objects as busy, even if they are currently not used |
| * by the gpu. Users of this interface expect objects to eventually |
| * become non-busy without any further actions, therefore emit any |
| * necessary flushes here. |
| */ |
| ret = i915_gem_object_flush_active(obj); |
| |
| args->busy = obj->active; |
| if (obj->ring) { |
| BUILD_BUG_ON(I915_NUM_RINGS > 16); |
| args->busy |= intel_ring_flag(obj->ring) << 16; |
| } |
| |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| int |
| i915_gem_throttle_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file_priv) |
| { |
| return i915_gem_ring_throttle(dev, file_priv); |
| } |
| |
| int |
| i915_gem_madvise_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file_priv) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_madvise *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| switch (args->madv) { |
| case I915_MADV_DONTNEED: |
| case I915_MADV_WILLNEED: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); |
| if (&obj->base == NULL) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| if (i915_gem_obj_is_pinned(obj)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (obj->pages && |
| obj->tiling_mode != I915_TILING_NONE && |
| dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { |
| if (obj->madv == I915_MADV_WILLNEED) |
| i915_gem_object_unpin_pages(obj); |
| if (args->madv == I915_MADV_WILLNEED) |
| i915_gem_object_pin_pages(obj); |
| } |
| |
| if (obj->madv != __I915_MADV_PURGED) |
| obj->madv = args->madv; |
| |
| /* if the object is no longer attached, discard its backing storage */ |
| if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL) |
| i915_gem_object_truncate(obj); |
| |
| args->retained = obj->madv != __I915_MADV_PURGED; |
| |
| out: |
| drm_gem_object_unreference(&obj->base); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| void i915_gem_object_init(struct drm_i915_gem_object *obj, |
| const struct drm_i915_gem_object_ops *ops) |
| { |
| INIT_LIST_HEAD(&obj->global_list); |
| INIT_LIST_HEAD(&obj->ring_list); |
| INIT_LIST_HEAD(&obj->obj_exec_link); |
| INIT_LIST_HEAD(&obj->vma_list); |
| |
| obj->ops = ops; |
| |
| obj->fence_reg = I915_FENCE_REG_NONE; |
| obj->madv = I915_MADV_WILLNEED; |
| |
| i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); |
| } |
| |
| static const struct drm_i915_gem_object_ops i915_gem_object_ops = { |
| .get_pages = i915_gem_object_get_pages_gtt, |
| .put_pages = i915_gem_object_put_pages_gtt, |
| }; |
| |
| struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, |
| size_t size) |
| { |
| struct drm_i915_gem_object *obj; |
| struct address_space *mapping; |
| gfp_t mask; |
| |
| obj = i915_gem_object_alloc(dev); |
| if (obj == NULL) |
| return NULL; |
| |
| if (drm_gem_object_init(dev, &obj->base, size) != 0) { |
| i915_gem_object_free(obj); |
| return NULL; |
| } |
| |
| mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; |
| if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { |
| /* 965gm cannot relocate objects above 4GiB. */ |
| mask &= ~__GFP_HIGHMEM; |
| mask |= __GFP_DMA32; |
| } |
| |
| mapping = file_inode(obj->base.filp)->i_mapping; |
| mapping_set_gfp_mask(mapping, mask); |
| |
| i915_gem_object_init(obj, &i915_gem_object_ops); |
| |
| obj->base.write_domain = I915_GEM_DOMAIN_CPU; |
| obj->base.read_domains = I915_GEM_DOMAIN_CPU; |
| |
| if (HAS_LLC(dev)) { |
| /* On some devices, we can have the GPU use the LLC (the CPU |
| * cache) for about a 10% performance improvement |
| * compared to uncached. Graphics requests other than |
| * display scanout are coherent with the CPU in |
| * accessing this cache. This means in this mode we |
| * don't need to clflush on the CPU side, and on the |
| * GPU side we only need to flush internal caches to |
| * get data visible to the CPU. |
| * |
| * However, we maintain the display planes as UC, and so |
| * need to rebind when first used as such. |
| */ |
| obj->cache_level = I915_CACHE_LLC; |
| } else |
| obj->cache_level = I915_CACHE_NONE; |
| |
| trace_i915_gem_object_create(obj); |
| |
| return obj; |
| } |
| |
| static bool discard_backing_storage(struct drm_i915_gem_object *obj) |
| { |
| /* If we are the last user of the backing storage (be it shmemfs |
| * pages or stolen etc), we know that the pages are going to be |
| * immediately released. In this case, we can then skip copying |
| * back the contents from the GPU. |
| */ |
| |
| if (obj->madv != I915_MADV_WILLNEED) |
| return false; |
| |
| if (obj->base.filp == NULL) |
| return true; |
| |
| /* At first glance, this looks racy, but then again so would be |
| * userspace racing mmap against close. However, the first external |
| * reference to the filp can only be obtained through the |
| * i915_gem_mmap_ioctl() which safeguards us against the user |
| * acquiring such a reference whilst we are in the middle of |
| * freeing the object. |
| */ |
| return atomic_long_read(&obj->base.filp->f_count) == 1; |
| } |
| |
| void i915_gem_free_object(struct drm_gem_object *gem_obj) |
| { |
| struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); |
| struct drm_device *dev = obj->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct i915_vma *vma, *next; |
| |
| intel_runtime_pm_get(dev_priv); |
| |
| trace_i915_gem_object_destroy(obj); |
| |
| list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { |
| int ret; |
| |
| vma->pin_count = 0; |
| ret = i915_vma_unbind(vma); |
| if (WARN_ON(ret == -ERESTARTSYS)) { |
| bool was_interruptible; |
| |
| was_interruptible = dev_priv->mm.interruptible; |
| dev_priv->mm.interruptible = false; |
| |
| WARN_ON(i915_vma_unbind(vma)); |
| |
| dev_priv->mm.interruptible = was_interruptible; |
| } |
| } |
| |
| /* Stolen objects don't hold a ref, but do hold pin count. Fix that up |
| * before progressing. */ |
| if (obj->stolen) |
| i915_gem_object_unpin_pages(obj); |
| |
| WARN_ON(obj->frontbuffer_bits); |
| |
| if (obj->pages && obj->madv == I915_MADV_WILLNEED && |
| dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES && |
| obj->tiling_mode != I915_TILING_NONE) |
| i915_gem_object_unpin_pages(obj); |
| |
| if (WARN_ON(obj->pages_pin_count)) |
| obj->pages_pin_count = 0; |
| if (discard_backing_storage(obj)) |
| obj->madv = I915_MADV_DONTNEED; |
| i915_gem_object_put_pages(obj); |
| i915_gem_object_free_mmap_offset(obj); |
| |
| BUG_ON(obj->pages); |
| |
| if (obj->base.import_attach) |
| drm_prime_gem_destroy(&obj->base, NULL); |
| |
| if (obj->ops->release) |
| obj->ops->release(obj); |
| |
| drm_gem_object_release(&obj->base); |
| i915_gem_info_remove_obj(dev_priv, obj->base.size); |
| |
| kfree(obj->bit_17); |
| i915_gem_object_free(obj); |
| |
| intel_runtime_pm_put(dev_priv); |
| } |
| |
| struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj, |
| struct i915_address_space *vm) |
| { |
| struct i915_vma *vma; |
| list_for_each_entry(vma, &obj->vma_list, vma_link) |
| if (vma->vm == vm) |
| return vma; |
| |
| return NULL; |
| } |
| |
| void i915_gem_vma_destroy(struct i915_vma *vma) |
| { |
| struct i915_address_space *vm = NULL; |
| WARN_ON(vma->node.allocated); |
| |
| /* Keep the vma as a placeholder in the execbuffer reservation lists */ |
| if (!list_empty(&vma->exec_list)) |
| return; |
| |
| vm = vma->vm; |
| |
| if (!i915_is_ggtt(vm)) |
| i915_ppgtt_put(i915_vm_to_ppgtt(vm)); |
| |
| list_del(&vma->vma_link); |
| |
| kfree(vma); |
| } |
| |
| static void |
| i915_gem_stop_ringbuffers(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring; |
| int i; |
| |
| for_each_ring(ring, dev_priv, i) |
| dev_priv->gt.stop_ring(ring); |
| } |
| |
| int |
| i915_gem_suspend(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret = 0; |
| |
| mutex_lock(&dev->struct_mutex); |
| ret = i915_gpu_idle(dev); |
| if (ret) |
| goto err; |
| |
| i915_gem_retire_requests(dev); |
| |
| /* Under UMS, be paranoid and evict. */ |
| if (!drm_core_check_feature(dev, DRIVER_MODESET)) |
| i915_gem_evict_everything(dev); |
| |
| i915_gem_stop_ringbuffers(dev); |
| mutex_unlock(&dev->struct_mutex); |
| |
| del_timer_sync(&dev_priv->gpu_error.hangcheck_timer); |
| cancel_delayed_work_sync(&dev_priv->mm.retire_work); |
| flush_delayed_work(&dev_priv->mm.idle_work); |
| |
| return 0; |
| |
| err: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice) |
| { |
| struct drm_device *dev = ring->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200); |
| u32 *remap_info = dev_priv->l3_parity.remap_info[slice]; |
| int i, ret; |
| |
| if (!HAS_L3_DPF(dev) || !remap_info) |
| return 0; |
| |
| ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3); |
| if (ret) |
| return ret; |
| |
| /* |
| * Note: We do not worry about the concurrent register cacheline hang |
| * here because no other code should access these registers other than |
| * at initialization time. |
| */ |
| for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); |
| intel_ring_emit(ring, reg_base + i); |
| intel_ring_emit(ring, remap_info[i/4]); |
| } |
| |
| intel_ring_advance(ring); |
| |
| return ret; |
| } |
| |
| void i915_gem_init_swizzling(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (INTEL_INFO(dev)->gen < 5 || |
| dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) |
| return; |
| |
| I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | |
| DISP_TILE_SURFACE_SWIZZLING); |
| |
| if (IS_GEN5(dev)) |
| return; |
| |
| I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); |
| if (IS_GEN6(dev)) |
| I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); |
| else if (IS_GEN7(dev)) |
| I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); |
| else if (IS_GEN8(dev)) |
| I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); |
| else |
| BUG(); |
| } |
| |
| static bool |
| intel_enable_blt(struct drm_device *dev) |
| { |
| if (!HAS_BLT(dev)) |
| return false; |
| |
| /* The blitter was dysfunctional on early prototypes */ |
| if (IS_GEN6(dev) && dev->pdev->revision < 8) { |
| DRM_INFO("BLT not supported on this pre-production hardware;" |
| " graphics performance will be degraded.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void init_unused_ring(struct drm_device *dev, u32 base) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| I915_WRITE(RING_CTL(base), 0); |
| I915_WRITE(RING_HEAD(base), 0); |
| I915_WRITE(RING_TAIL(base), 0); |
| I915_WRITE(RING_START(base), 0); |
| } |
| |
| static void init_unused_rings(struct drm_device *dev) |
| { |
| if (IS_I830(dev)) { |
| init_unused_ring(dev, PRB1_BASE); |
| init_unused_ring(dev, SRB0_BASE); |
| init_unused_ring(dev, SRB1_BASE); |
| init_unused_ring(dev, SRB2_BASE); |
| init_unused_ring(dev, SRB3_BASE); |
| } else if (IS_GEN2(dev)) { |
| init_unused_ring(dev, SRB0_BASE); |
| init_unused_ring(dev, SRB1_BASE); |
| } else if (IS_GEN3(dev)) { |
| init_unused_ring(dev, PRB1_BASE); |
| init_unused_ring(dev, PRB2_BASE); |
| } |
| } |
| |
| int i915_gem_init_rings(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| /* |
| * At least 830 can leave some of the unused rings |
| * "active" (ie. head != tail) after resume which |
| * will prevent c3 entry. Makes sure all unused rings |
| * are totally idle. |
| */ |
| init_unused_rings(dev); |
| |
| ret = intel_init_render_ring_buffer(dev); |
| if (ret) |
| return ret; |
| |
| if (HAS_BSD(dev)) { |
| ret = intel_init_bsd_ring_buffer(dev); |
| if (ret) |
| goto cleanup_render_ring; |
| } |
| |
| if (intel_enable_blt(dev)) { |
| ret = intel_init_blt_ring_buffer(dev); |
| if (ret) |
| goto cleanup_bsd_ring; |
| } |
| |
| if (HAS_VEBOX(dev)) { |
| ret = intel_init_vebox_ring_buffer(dev); |
| if (ret) |
| goto cleanup_blt_ring; |
| } |
| |
| if (HAS_BSD2(dev)) { |
| ret = intel_init_bsd2_ring_buffer(dev); |
| if (ret) |
| goto cleanup_vebox_ring; |
| } |
| |
| ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000)); |
| if (ret) |
| goto cleanup_bsd2_ring; |
| |
| return 0; |
| |
| cleanup_bsd2_ring: |
| intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]); |
| cleanup_vebox_ring: |
| intel_cleanup_ring_buffer(&dev_priv->ring[VECS]); |
| cleanup_blt_ring: |
| intel_cleanup_ring_buffer(&dev_priv->ring[BCS]); |
| cleanup_bsd_ring: |
| intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); |
| cleanup_render_ring: |
| intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); |
| |
| return ret; |
| } |
| |
| int |
| i915_gem_init_hw(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret, i; |
| |
| if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt()) |
| return -EIO; |
| |
| if (dev_priv->ellc_size) |
| I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); |
| |
| if (IS_HASWELL(dev)) |
| I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ? |
| LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); |
| |
| if (HAS_PCH_NOP(dev)) { |
| if (IS_IVYBRIDGE(dev)) { |
| u32 temp = I915_READ(GEN7_MSG_CTL); |
| temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); |
| I915_WRITE(GEN7_MSG_CTL, temp); |
| } else if (INTEL_INFO(dev)->gen >= 7) { |
| u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); |
| temp &= ~RESET_PCH_HANDSHAKE_ENABLE; |
| I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); |
| } |
| } |
| |
| i915_gem_init_swizzling(dev); |
| |
| ret = dev_priv->gt.init_rings(dev); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < NUM_L3_SLICES(dev); i++) |
| i915_gem_l3_remap(&dev_priv->ring[RCS], i); |
| |
| ret = i915_ppgtt_init_hw(dev); |
| if (ret && ret != -EIO) { |
| DRM_ERROR("PPGTT enable failed %d\n", ret); |
| i915_gem_cleanup_ringbuffer(dev); |
| } |
| |
| ret = i915_gem_context_enable(dev_priv); |
| if (ret && ret != -EIO) { |
| DRM_ERROR("Context enable failed %d\n", ret); |
| i915_gem_cleanup_ringbuffer(dev); |
| |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| int i915_gem_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| i915.enable_execlists = intel_sanitize_enable_execlists(dev, |
| i915.enable_execlists); |
| |
| mutex_lock(&dev->struct_mutex); |
| |
| if (IS_VALLEYVIEW(dev)) { |
| /* VLVA0 (potential hack), BIOS isn't actually waking us */ |
| I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ); |
| if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & |
| VLV_GTLC_ALLOWWAKEACK), 10)) |
| DRM_DEBUG_DRIVER("allow wake ack timed out\n"); |
| } |
| |
| if (!i915.enable_execlists) { |
| dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission; |
| dev_priv->gt.init_rings = i915_gem_init_rings; |
| dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer; |
| dev_priv->gt.stop_ring = intel_stop_ring_buffer; |
| } else { |
| dev_priv->gt.do_execbuf = intel_execlists_submission; |
| dev_priv->gt.init_rings = intel_logical_rings_init; |
| dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup; |
| dev_priv->gt.stop_ring = intel_logical_ring_stop; |
| } |
| |
| ret = i915_gem_init_userptr(dev); |
| if (ret) { |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| i915_gem_init_global_gtt(dev); |
| |
| ret = i915_gem_context_init(dev); |
| if (ret) { |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| ret = i915_gem_init_hw(dev); |
| if (ret == -EIO) { |
| /* Allow ring initialisation to fail by marking the GPU as |
| * wedged. But we only want to do this where the GPU is angry, |
| * for all other failure, such as an allocation failure, bail. |
| */ |
| DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); |
| atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter); |
| ret = 0; |
| } |
| mutex_unlock(&dev->struct_mutex); |
| |
| return ret; |
| } |
| |
| void |
| i915_gem_cleanup_ringbuffer(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring; |
| int i; |
| |
| for_each_ring(ring, dev_priv, i) |
| dev_priv->gt.cleanup_ring(ring); |
| } |
| |
| static void |
| init_ring_lists(struct intel_engine_cs *ring) |
| { |
| INIT_LIST_HEAD(&ring->active_list); |
| INIT_LIST_HEAD(&ring->request_list); |
| } |
| |
| void i915_init_vm(struct drm_i915_private *dev_priv, |
| struct i915_address_space *vm) |
| { |
| if (!i915_is_ggtt(vm)) |
| drm_mm_init(&vm->mm, vm->start, vm->total); |
| vm->dev = dev_priv->dev; |
| INIT_LIST_HEAD(&vm->active_list); |
| INIT_LIST_HEAD(&vm->inactive_list); |
| INIT_LIST_HEAD(&vm->global_link); |
| list_add_tail(&vm->global_link, &dev_priv->vm_list); |
| } |
| |
| void |
| i915_gem_load(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int i; |
| |
| dev_priv->slab = |
| kmem_cache_create("i915_gem_object", |
| sizeof(struct drm_i915_gem_object), 0, |
| SLAB_HWCACHE_ALIGN, |
| NULL); |
| |
| INIT_LIST_HEAD(&dev_priv->vm_list); |
| i915_init_vm(dev_priv, &dev_priv->gtt.base); |
| |
| INIT_LIST_HEAD(&dev_priv->context_list); |
| INIT_LIST_HEAD(&dev_priv->mm.unbound_list); |
| INIT_LIST_HEAD(&dev_priv->mm.bound_list); |
| INIT_LIST_HEAD(&dev_priv->mm.fence_list); |
| for (i = 0; i < I915_NUM_RINGS; i++) |
| init_ring_lists(&dev_priv->ring[i]); |
| for (i = 0; i < I915_MAX_NUM_FENCES; i++) |
| INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); |
| INIT_DELAYED_WORK(&dev_priv->mm.retire_work, |
| i915_gem_retire_work_handler); |
| INIT_DELAYED_WORK(&dev_priv->mm.idle_work, |
| i915_gem_idle_work_handler); |
| init_waitqueue_head(&dev_priv->gpu_error.reset_queue); |
| |
| /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ |
| if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) { |
| I915_WRITE(MI_ARB_STATE, |
| _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); |
| } |
| |
| dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; |
| |
| /* Old X drivers will take 0-2 for front, back, depth buffers */ |
| if (!drm_core_check_feature(dev, DRIVER_MODESET)) |
| dev_priv->fence_reg_start = 3; |
| |
| if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev)) |
| dev_priv->num_fence_regs = 32; |
| else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) |
| dev_priv->num_fence_regs = 16; |
| else |
| dev_priv->num_fence_regs = 8; |
| |
| /* Initialize fence registers to zero */ |
| INIT_LIST_HEAD(&dev_priv->mm.fence_list); |
| i915_gem_restore_fences(dev); |
| |
| i915_gem_detect_bit_6_swizzle(dev); |
| init_waitqueue_head(&dev_priv->pending_flip_queue); |
| |
| dev_priv->mm.interruptible = true; |
| |
| dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan; |
| dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count; |
| dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS; |
| register_shrinker(&dev_priv->mm.shrinker); |
| |
| dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; |
| register_oom_notifier(&dev_priv->mm.oom_notifier); |
| |
| mutex_init(&dev_priv->fb_tracking.lock); |
| } |
| |
| void i915_gem_release(struct drm_device *dev, struct drm_file *file) |
| { |
| struct drm_i915_file_private *file_priv = file->driver_priv; |
| |
| cancel_delayed_work_sync(&file_priv->mm.idle_work); |
| |
| /* Clean up our request list when the client is going away, so that |
| * later retire_requests won't dereference our soon-to-be-gone |
| * file_priv. |
| */ |
| spin_lock(&file_priv->mm.lock); |
| while (!list_empty(&file_priv->mm.request_list)) { |
| struct drm_i915_gem_request *request; |
| |
| request = list_first_entry(&file_priv->mm.request_list, |
| struct drm_i915_gem_request, |
| client_list); |
| list_del(&request->client_list); |
| request->file_priv = NULL; |
| } |
| spin_unlock(&file_priv->mm.lock); |
| } |
| |
| static void |
| i915_gem_file_idle_work_handler(struct work_struct *work) |
| { |
| struct drm_i915_file_private *file_priv = |
| container_of(work, typeof(*file_priv), mm.idle_work.work); |
| |
| atomic_set(&file_priv->rps_wait_boost, false); |
| } |
| |
| int i915_gem_open(struct drm_device *dev, struct drm_file *file) |
| { |
| struct drm_i915_file_private *file_priv; |
| int ret; |
| |
| DRM_DEBUG_DRIVER("\n"); |
| |
| file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); |
| if (!file_priv) |
| return -ENOMEM; |
| |
| file->driver_priv = file_priv; |
| file_priv->dev_priv = dev->dev_private; |
| file_priv->file = file; |
| |
| spin_lock_init(&file_priv->mm.lock); |
| INIT_LIST_HEAD(&file_priv->mm.request_list); |
| INIT_DELAYED_WORK(&file_priv->mm.idle_work, |
| i915_gem_file_idle_work_handler); |
| |
| ret = i915_gem_context_open(dev, file); |
| if (ret) |
| kfree(file_priv); |
| |
| return ret; |
| } |
| |
| /** |
| * i915_gem_track_fb - update frontbuffer tracking |
| * old: current GEM buffer for the frontbuffer slots |
| * new: new GEM buffer for the frontbuffer slots |
| * frontbuffer_bits: bitmask of frontbuffer slots |
| * |
| * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them |
| * from @old and setting them in @new. Both @old and @new can be NULL. |
| */ |
| void i915_gem_track_fb(struct drm_i915_gem_object *old, |
| struct drm_i915_gem_object *new, |
| unsigned frontbuffer_bits) |
| { |
| if (old) { |
| WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex)); |
| WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits)); |
| old->frontbuffer_bits &= ~frontbuffer_bits; |
| } |
| |
| if (new) { |
| WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex)); |
| WARN_ON(new->frontbuffer_bits & frontbuffer_bits); |
| new->frontbuffer_bits |= frontbuffer_bits; |
| } |
| } |
| |
| static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task) |
| { |
| if (!mutex_is_locked(mutex)) |
| return false; |
| |
| #if defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES) |
| return mutex->owner == task; |
| #else |
| /* Since UP may be pre-empted, we cannot assume that we own the lock */ |
| return false; |
| #endif |
| } |
| |
| static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock) |
| { |
| if (!mutex_trylock(&dev->struct_mutex)) { |
| if (!mutex_is_locked_by(&dev->struct_mutex, current)) |
| return false; |
| |
| if (to_i915(dev)->mm.shrinker_no_lock_stealing) |
| return false; |
| |
| *unlock = false; |
| } else |
| *unlock = true; |
| |
| return true; |
| } |
| |
| static int num_vma_bound(struct drm_i915_gem_object *obj) |
| { |
| struct i915_vma *vma; |
| int count = 0; |
| |
| list_for_each_entry(vma, &obj->vma_list, vma_link) |
| if (drm_mm_node_allocated(&vma->node)) |
| count++; |
| |
| return count; |
| } |
| |
| static unsigned long |
| i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) |
| { |
| struct drm_i915_private *dev_priv = |
| container_of(shrinker, struct drm_i915_private, mm.shrinker); |
| struct drm_device *dev = dev_priv->dev; |
| struct drm_i915_gem_object *obj; |
| unsigned long count; |
| bool unlock; |
| |
| if (!i915_gem_shrinker_lock(dev, &unlock)) |
| return 0; |
| |
| count = 0; |
| list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) |
| if (obj->pages_pin_count == 0) |
| count += obj->base.size >> PAGE_SHIFT; |
| |
| list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { |
| if (!i915_gem_obj_is_pinned(obj) && |
| obj->pages_pin_count == num_vma_bound(obj)) |
| count += obj->base.size >> PAGE_SHIFT; |
| } |
| |
| if (unlock) |
| mutex_unlock(&dev->struct_mutex); |
| |
| return count; |
| } |
| |
| /* All the new VM stuff */ |
| unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o, |
| struct i915_address_space *vm) |
| { |
| struct drm_i915_private *dev_priv = o->base.dev->dev_private; |
| struct i915_vma *vma; |
| |
| WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base); |
| |
| list_for_each_entry(vma, &o->vma_list, vma_link) { |
| if (vma->vm == vm) |
| return vma->node.start; |
| |
| } |
| WARN(1, "%s vma for this object not found.\n", |
| i915_is_ggtt(vm) ? "global" : "ppgtt"); |
| return -1; |
| } |
| |
| bool i915_gem_obj_bound(struct drm_i915_gem_object *o, |
| struct i915_address_space *vm) |
| { |
| struct i915_vma *vma; |
| |
| list_for_each_entry(vma, &o->vma_list, vma_link) |
| if (vma->vm == vm && drm_mm_node_allocated(&vma->node)) |
| return true; |
| |
| return false; |
| } |
| |
| bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o) |
| { |
| struct i915_vma *vma; |
| |
| list_for_each_entry(vma, &o->vma_list, vma_link) |
| if (drm_mm_node_allocated(&vma->node)) |
| return true; |
| |
| return false; |
| } |
| |
| unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o, |
| struct i915_address_space *vm) |
| { |
| struct drm_i915_private *dev_priv = o->base.dev->dev_private; |
| struct i915_vma *vma; |
| |
| WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base); |
| |
| BUG_ON(list_empty(&o->vma_list)); |
| |
| list_for_each_entry(vma, &o->vma_list, vma_link) |
| if (vma->vm == vm) |
| return vma->node.size; |
| |
| return 0; |
| } |
| |
| static unsigned long |
| i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) |
| { |
| struct drm_i915_private *dev_priv = |
| container_of(shrinker, struct drm_i915_private, mm.shrinker); |
| struct drm_device *dev = dev_priv->dev; |
| unsigned long freed; |
| bool unlock; |
| |
| if (!i915_gem_shrinker_lock(dev, &unlock)) |
| return SHRINK_STOP; |
| |
| freed = i915_gem_shrink(dev_priv, |
| sc->nr_to_scan, |
| I915_SHRINK_BOUND | |
| I915_SHRINK_UNBOUND | |
| I915_SHRINK_PURGEABLE); |
| if (freed < sc->nr_to_scan) |
| freed += i915_gem_shrink(dev_priv, |
| sc->nr_to_scan - freed, |
| I915_SHRINK_BOUND | |
| I915_SHRINK_UNBOUND); |
| if (unlock) |
| mutex_unlock(&dev->struct_mutex); |
| |
| return freed; |
| } |
| |
| static int |
| i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) |
| { |
| struct drm_i915_private *dev_priv = |
| container_of(nb, struct drm_i915_private, mm.oom_notifier); |
| struct drm_device *dev = dev_priv->dev; |
| struct drm_i915_gem_object *obj; |
| unsigned long timeout = msecs_to_jiffies(5000) + 1; |
| unsigned long pinned, bound, unbound, freed_pages; |
| bool was_interruptible; |
| bool unlock; |
| |
| while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) { |
| schedule_timeout_killable(1); |
| if (fatal_signal_pending(current)) |
| return NOTIFY_DONE; |
| } |
| if (timeout == 0) { |
| pr_err("Unable to purge GPU memory due lock contention.\n"); |
| return NOTIFY_DONE; |
| } |
| |
| was_interruptible = dev_priv->mm.interruptible; |
| dev_priv->mm.interruptible = false; |
| |
| freed_pages = i915_gem_shrink_all(dev_priv); |
| |
| dev_priv->mm.interruptible = was_interruptible; |
| |
| /* Because we may be allocating inside our own driver, we cannot |
| * assert that there are no objects with pinned pages that are not |
| * being pointed to by hardware. |
| */ |
| unbound = bound = pinned = 0; |
| list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) { |
| if (!obj->base.filp) /* not backed by a freeable object */ |
| continue; |
| |
| if (obj->pages_pin_count) |
| pinned += obj->base.size; |
| else |
| unbound += obj->base.size; |
| } |
| list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { |
| if (!obj->base.filp) |
| continue; |
| |
| if (obj->pages_pin_count) |
| pinned += obj->base.size; |
| else |
| bound += obj->base.size; |
| } |
| |
| if (unlock) |
| mutex_unlock(&dev->struct_mutex); |
| |
| if (freed_pages || unbound || bound) |
| pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n", |
| freed_pages << PAGE_SHIFT, pinned); |
| if (unbound || bound) |
| pr_err("%lu and %lu bytes still available in the " |
| "bound and unbound GPU page lists.\n", |
| bound, unbound); |
| |
| *(unsigned long *)ptr += freed_pages; |
| return NOTIFY_DONE; |
| } |
| |
| struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj) |
| { |
| struct i915_vma *vma; |
| |
| vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link); |
| if (vma->vm != i915_obj_to_ggtt(obj)) |
| return NULL; |
| |
| return vma; |
| } |