blob: 7951c23a4dff2ab1804a8a601f167c46a42b08ae [file] [log] [blame]
/* Copyright (c) 2010-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "[sde-hdcp1x] %s: " fmt, __func__
#include <linux/io.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/iopoll.h>
#include <linux/hdcp_qseecom.h>
#include <drm/drm_dp_helper.h>
#include "sde_hdcp.h"
#include "hdmi.xml.h"
#include "video/msm_hdmi_hdcp_mgr.h"
#include "dp/dp_reg.h"
#define SDE_HDCP_STATE_NAME (sde_hdcp_state_name(hdcp->hdcp_state))
/* QFPROM Registers for HDMI/HDCP */
#define QFPROM_RAW_FEAT_CONFIG_ROW0_LSB (0x000000F8)
#define QFPROM_RAW_FEAT_CONFIG_ROW0_MSB (0x000000FC)
#define QFPROM_RAW_VERSION_4 (0x000000A8)
#define SEC_CTRL_HW_VERSION (0x00006000)
#define HDCP_KSV_LSB (0x000060D8)
#define HDCP_KSV_MSB (0x000060DC)
#define HDCP_KSV_VERSION_4_OFFSET (0x00000014)
/* SEC_CTRL version that supports HDCP SEL */
#define HDCP_SEL_MIN_SEC_VERSION (0x50010000)
/* HDCP Keys state based on HDMI_HDCP_LINK0_STATUS:KEYS_STATE */
#define HDCP_KEYS_STATE_NO_KEYS 0
#define HDCP_KEYS_STATE_NOT_CHECKED 1
#define HDCP_KEYS_STATE_CHECKING 2
#define HDCP_KEYS_STATE_VALID 3
#define HDCP_KEYS_STATE_AKSV_NOT_VALID 4
#define HDCP_KEYS_STATE_CHKSUM_MISMATCH 5
#define HDCP_KEYS_STATE_PROD_AKSV 6
#define HDCP_KEYS_STATE_RESERVED 7
#define TZ_HDCP_CMD_ID 0x00004401
#define HDCP_INT_CLR (isr->auth_success_ack | isr->auth_fail_ack | \
isr->auth_fail_info_ack | isr->tx_req_ack | \
isr->encryption_ready_ack | \
isr->encryption_not_ready_ack | isr->tx_req_done_ack)
#define HDCP_INT_EN (isr->auth_success_mask | isr->auth_fail_mask | \
isr->encryption_ready_mask | \
isr->encryption_not_ready_mask)
#define HDCP_POLL_SLEEP_US (20 * 1000)
#define HDCP_POLL_TIMEOUT_US (HDCP_POLL_SLEEP_US * 100)
#define sde_hdcp_1x_state(x) (hdcp->hdcp_state == x)
struct sde_hdcp_sink_addr {
char *name;
u32 addr;
u32 len;
};
struct sde_hdcp_1x_reg_data {
u32 reg_id;
struct sde_hdcp_sink_addr *sink;
};
struct sde_hdcp_sink_addr_map {
/* addresses to read from sink */
struct sde_hdcp_sink_addr bcaps;
struct sde_hdcp_sink_addr bksv;
struct sde_hdcp_sink_addr r0;
struct sde_hdcp_sink_addr bstatus;
struct sde_hdcp_sink_addr cp_irq_status;
struct sde_hdcp_sink_addr ksv_fifo;
struct sde_hdcp_sink_addr v_h0;
struct sde_hdcp_sink_addr v_h1;
struct sde_hdcp_sink_addr v_h2;
struct sde_hdcp_sink_addr v_h3;
struct sde_hdcp_sink_addr v_h4;
/* addresses to write to sink */
struct sde_hdcp_sink_addr an;
struct sde_hdcp_sink_addr aksv;
struct sde_hdcp_sink_addr ainfo;
};
struct sde_hdcp_int_set {
/* interrupt register */
u32 int_reg;
/* interrupt enable/disable masks */
u32 auth_success_mask;
u32 auth_fail_mask;
u32 encryption_ready_mask;
u32 encryption_not_ready_mask;
u32 tx_req_mask;
u32 tx_req_done_mask;
/* interrupt acknowledgment */
u32 auth_success_ack;
u32 auth_fail_ack;
u32 auth_fail_info_ack;
u32 encryption_ready_ack;
u32 encryption_not_ready_ack;
u32 tx_req_ack;
u32 tx_req_done_ack;
/* interrupt status */
u32 auth_success_int;
u32 auth_fail_int;
u32 encryption_ready;
u32 encryption_not_ready;
u32 tx_req_int;
u32 tx_req_done_int;
};
struct sde_hdcp_reg_set {
u32 status;
u32 keys_offset;
u32 r0_offset;
u32 v_offset;
u32 ctrl;
u32 aksv_lsb;
u32 aksv_msb;
u32 entropy_ctrl0;
u32 entropy_ctrl1;
u32 sec_sha_ctrl;
u32 sec_sha_data;
u32 sha_status;
u32 data2_0;
u32 data3;
u32 data4;
u32 data5;
u32 data6;
u32 sec_data0;
u32 sec_data1;
u32 sec_data7;
u32 sec_data8;
u32 sec_data9;
u32 sec_data10;
u32 sec_data11;
u32 sec_data12;
u32 reset;
u32 reset_bit;
u32 repeater;
};
#define HDCP_REG_SET_CLIENT_HDMI \
{0}
#define HDCP_REG_SET_CLIENT_DP \
{DP_HDCP_STATUS, 16, 14, 13, DP_HDCP_CTRL, \
DP_HDCP_SW_LOWER_AKSV, DP_HDCP_SW_UPPER_AKSV, \
DP_HDCP_ENTROPY_CTRL0, DP_HDCP_ENTROPY_CTRL1, \
HDCP_SEC_DP_TZ_HV_HLOS_HDCP_SHA_CTRL, \
HDCP_SEC_DP_TZ_HV_HLOS_HDCP_SHA_DATA, \
DP_HDCP_SHA_STATUS, DP_HDCP_RCVPORT_DATA2_0, \
DP_HDCP_RCVPORT_DATA3, DP_HDCP_RCVPORT_DATA4, \
DP_HDCP_RCVPORT_DATA5, DP_HDCP_RCVPORT_DATA6, \
HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA0, \
HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA1, \
HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA7, \
HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA8, \
HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA9, \
HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA10, \
HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA11, \
HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA12, \
DP_SW_RESET, BIT(1), BIT(1)}
#define HDCP_HDMI_SINK_ADDR_MAP \
{{"bcaps", 0x40, 1}, {"bksv", 0x00, 5}, {"r0'", 0x08, 2}, \
{"bstatus", 0x41, 2}, {"??", 0x0, 0}, {"ksv-fifo", 0x43, 0}, \
{"v_h0", 0x20, 4}, {"v_h1", 0x24, 4}, {"v_h2", 0x28, 4}, \
{"v_h3", 0x2c, 4}, {"v_h4", 0x30, 4}, {"an", 0x18, 8}, \
{"aksv", 0x10, 5}, {"ainfo", 0x00, 0},}
#define HDCP_DP_SINK_ADDR_MAP \
{{"bcaps", 0x68028, 1}, {"bksv", 0x68000, 5}, {"r0'", 0x68005, 2}, \
{"binfo", 0x6802A, 2}, {"cp_irq_status", 0x68029, 1}, \
{"ksv-fifo", 0x6802C, 0}, {"v_h0", 0x68014, 4}, {"v_h1", 0x68018, 4}, \
{"v_h2", 0x6801C, 4}, {"v_h3", 0x68020, 4}, {"v_h4", 0x68024, 4}, \
{"an", 0x6800C, 8}, {"aksv", 0x68007, 5}, {"ainfo", 0x6803B, 1} }
#define HDCP_HDMI_INT_SET \
{0}
#define HDCP_DP_INT_SET \
{DP_INTR_STATUS2, \
BIT(17), BIT(20), BIT(24), BIT(27), 0, 0, \
BIT(16), BIT(19), BIT(21), BIT(23), BIT(26), 0, 0, \
BIT(15), BIT(18), BIT(22), BIT(25), 0, 0}
struct sde_hdcp_1x {
u8 bcaps;
u32 tp_msgid;
u32 an_0, an_1, aksv_0, aksv_1;
bool sink_r0_ready;
bool reauth;
bool ksv_ready;
enum sde_hdcp_states hdcp_state;
struct HDCP_V2V1_MSG_TOPOLOGY cached_tp;
struct HDCP_V2V1_MSG_TOPOLOGY current_tp;
struct delayed_work hdcp_auth_work;
struct completion r0_checked;
struct completion sink_r0_available;
struct sde_hdcp_init_data init_data;
struct sde_hdcp_ops *ops;
struct sde_hdcp_reg_set reg_set;
struct sde_hdcp_int_set int_set;
struct sde_hdcp_sink_addr_map sink_addr;
struct workqueue_struct *workq;
};
const char *sde_hdcp_state_name(enum sde_hdcp_states hdcp_state)
{
switch (hdcp_state) {
case HDCP_STATE_INACTIVE: return "HDCP_STATE_INACTIVE";
case HDCP_STATE_AUTHENTICATING: return "HDCP_STATE_AUTHENTICATING";
case HDCP_STATE_AUTHENTICATED: return "HDCP_STATE_AUTHENTICATED";
case HDCP_STATE_AUTH_FAIL: return "HDCP_STATE_AUTH_FAIL";
default: return "???";
}
}
static int sde_hdcp_1x_count_one(u8 *array, u8 len)
{
int i, j, count = 0;
for (i = 0; i < len; i++)
for (j = 0; j < 8; j++)
count += (((array[i] >> j) & 0x1) ? 1 : 0);
return count;
}
static int sde_hdcp_1x_load_keys(void *input)
{
int rc = 0;
bool use_sw_keys = false;
u32 reg_val;
u32 ksv_lsb_addr, ksv_msb_addr;
u32 aksv_lsb, aksv_msb;
u8 aksv[5];
struct dss_io_data *io;
struct dss_io_data *qfprom_io;
struct sde_hdcp_1x *hdcp = input;
struct sde_hdcp_reg_set *reg_set;
if (!hdcp || !hdcp->init_data.core_io ||
!hdcp->init_data.qfprom_io) {
pr_err("invalid input\n");
rc = -EINVAL;
goto end;
}
if (!sde_hdcp_1x_state(HDCP_STATE_INACTIVE) &&
!sde_hdcp_1x_state(HDCP_STATE_AUTH_FAIL)) {
pr_err("%s: invalid state. returning\n",
SDE_HDCP_STATE_NAME);
rc = -EINVAL;
goto end;
}
io = hdcp->init_data.core_io;
qfprom_io = hdcp->init_data.qfprom_io;
reg_set = &hdcp->reg_set;
/* On compatible hardware, use SW keys */
reg_val = DSS_REG_R(qfprom_io, SEC_CTRL_HW_VERSION);
if (reg_val >= HDCP_SEL_MIN_SEC_VERSION) {
reg_val = DSS_REG_R(qfprom_io,
QFPROM_RAW_FEAT_CONFIG_ROW0_MSB +
QFPROM_RAW_VERSION_4);
if (!(reg_val & BIT(23)))
use_sw_keys = true;
}
if (use_sw_keys) {
if (hdcp1_set_keys(&aksv_msb, &aksv_lsb)) {
pr_err("setting hdcp SW keys failed\n");
rc = -EINVAL;
goto end;
}
} else {
/* Fetch aksv from QFPROM, this info should be public. */
ksv_lsb_addr = HDCP_KSV_LSB;
ksv_msb_addr = HDCP_KSV_MSB;
if (hdcp->init_data.sec_access) {
ksv_lsb_addr += HDCP_KSV_VERSION_4_OFFSET;
ksv_msb_addr += HDCP_KSV_VERSION_4_OFFSET;
}
aksv_lsb = DSS_REG_R(qfprom_io, ksv_lsb_addr);
aksv_msb = DSS_REG_R(qfprom_io, ksv_msb_addr);
}
pr_debug("%s: AKSV=%02x%08x\n", SDE_HDCP_STATE_NAME,
aksv_msb, aksv_lsb);
aksv[0] = aksv_lsb & 0xFF;
aksv[1] = (aksv_lsb >> 8) & 0xFF;
aksv[2] = (aksv_lsb >> 16) & 0xFF;
aksv[3] = (aksv_lsb >> 24) & 0xFF;
aksv[4] = aksv_msb & 0xFF;
/* check there are 20 ones in AKSV */
if (sde_hdcp_1x_count_one(aksv, 5) != 20) {
pr_err("AKSV bit count failed\n");
rc = -EINVAL;
goto end;
}
DSS_REG_W(io, reg_set->aksv_lsb, aksv_lsb);
DSS_REG_W(io, reg_set->aksv_msb, aksv_msb);
/* Setup seed values for random number An */
DSS_REG_W(io, reg_set->entropy_ctrl0, 0xB1FFB0FF);
DSS_REG_W(io, reg_set->entropy_ctrl1, 0xF00DFACE);
/* make sure hw is programmed */
wmb();
/* enable hdcp engine */
DSS_REG_W(io, reg_set->ctrl, 0x1);
hdcp->hdcp_state = HDCP_STATE_AUTHENTICATING;
end:
return rc;
}
static int sde_hdcp_1x_read(struct sde_hdcp_1x *hdcp,
struct sde_hdcp_sink_addr *sink,
u8 *buf, bool realign)
{
int const max_size = 15;
int rc = 0, read_size = 0, bytes_read = 0;
if (hdcp->init_data.client_id == HDCP_CLIENT_DP) {
int size = sink->len, offset = sink->addr;
do {
read_size = min(size, max_size);
bytes_read = drm_dp_dpcd_read(hdcp->init_data.drm_aux,
offset, buf, read_size);
if (bytes_read != read_size) {
pr_err("fail: offset(0x%x), size(0x%x), rc(0x%x)\n",
offset, read_size, bytes_read);
break;
}
buf += read_size;
offset += read_size;
size -= read_size;
} while (size > 0);
}
return rc;
}
static int sde_hdcp_1x_write(struct sde_hdcp_1x *hdcp,
struct sde_hdcp_sink_addr *sink, u8 *buf)
{
int const max_size = 16;
int rc = 0, write_size = 0, bytes_written = 0;
if (hdcp->init_data.client_id == HDCP_CLIENT_DP) {
int size = sink->len, offset = sink->addr;
do {
write_size = min(size, max_size);
bytes_written =
drm_dp_dpcd_write(hdcp->init_data.drm_aux,
offset, buf, write_size);
if (bytes_written != write_size) {
pr_err("fail: offset(0x%x), size(0x%x), rc(0x%x)\n",
offset, write_size, bytes_written);
break;
}
buf += write_size;
offset += write_size;
size -= write_size;
} while (size > 0);
}
return rc;
}
static void sde_hdcp_1x_enable_interrupts(struct sde_hdcp_1x *hdcp)
{
u32 intr_reg;
struct dss_io_data *io;
struct sde_hdcp_int_set *isr;
io = hdcp->init_data.core_io;
isr = &hdcp->int_set;
intr_reg = DSS_REG_R(io, isr->int_reg);
intr_reg |= HDCP_INT_CLR | HDCP_INT_EN;
DSS_REG_W(io, isr->int_reg, intr_reg);
}
static int sde_hdcp_1x_read_bcaps(struct sde_hdcp_1x *hdcp)
{
int rc;
struct sde_hdcp_reg_set *reg_set = &hdcp->reg_set;
struct dss_io_data *hdcp_io = hdcp->init_data.hdcp_io;
if (!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING)) {
pr_err("invalid state\n");
return -EINVAL;
}
rc = sde_hdcp_1x_read(hdcp, &hdcp->sink_addr.bcaps,
&hdcp->bcaps, false);
if (rc) {
pr_err("error reading bcaps\n");
goto error;
}
pr_debug("bcaps read: 0x%x\n", hdcp->bcaps);
hdcp->current_tp.ds_type = hdcp->bcaps & reg_set->repeater ?
DS_REPEATER : DS_RECEIVER;
pr_debug("ds: %s\n", hdcp->current_tp.ds_type == DS_REPEATER ?
"repeater" : "receiver");
/* Write BCAPS to the hardware */
DSS_REG_W(hdcp_io, reg_set->sec_data12, hdcp->bcaps);
error:
return rc;
}
static int sde_hdcp_1x_wait_for_hw_ready(struct sde_hdcp_1x *hdcp)
{
int rc;
u32 link0_status;
struct sde_hdcp_reg_set *reg_set = &hdcp->reg_set;
struct dss_io_data *io = hdcp->init_data.core_io;
if (!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING)) {
pr_err("invalid state\n");
return -EINVAL;
}
/* Wait for HDCP keys to be checked and validated */
rc = readl_poll_timeout(io->base + reg_set->status, link0_status,
((link0_status >> reg_set->keys_offset) & 0x7)
== HDCP_KEYS_STATE_VALID ||
!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING),
HDCP_POLL_SLEEP_US, HDCP_POLL_TIMEOUT_US);
if (rc) {
pr_err("key not ready\n");
goto error;
}
/*
* 1.1_Features turned off by default.
* No need to write AInfo since 1.1_Features is disabled.
*/
DSS_REG_W(io, reg_set->data4, 0);
/* Wait for An0 and An1 bit to be ready */
rc = readl_poll_timeout(io->base + reg_set->status, link0_status,
(link0_status & (BIT(8) | BIT(9))) ||
!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING),
HDCP_POLL_SLEEP_US, HDCP_POLL_TIMEOUT_US);
if (rc) {
pr_err("An not ready\n");
goto error;
}
/* As per hardware recommendations, wait before reading An */
msleep(20);
error:
if (!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING))
rc = -EINVAL;
return rc;
}
static int sde_hdcp_1x_send_an_aksv_to_sink(struct sde_hdcp_1x *hdcp)
{
int rc;
u8 an[8], aksv[5];
if (!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING)) {
pr_err("invalid state\n");
return -EINVAL;
}
an[0] = hdcp->an_0 & 0xFF;
an[1] = (hdcp->an_0 >> 8) & 0xFF;
an[2] = (hdcp->an_0 >> 16) & 0xFF;
an[3] = (hdcp->an_0 >> 24) & 0xFF;
an[4] = hdcp->an_1 & 0xFF;
an[5] = (hdcp->an_1 >> 8) & 0xFF;
an[6] = (hdcp->an_1 >> 16) & 0xFF;
an[7] = (hdcp->an_1 >> 24) & 0xFF;
pr_debug("an read: 0x%2x%2x%2x%2x%2x%2x%2x%2x\n",
an[7], an[6], an[5], an[4], an[3], an[2], an[1], an[0]);
rc = sde_hdcp_1x_write(hdcp, &hdcp->sink_addr.an, an);
if (rc) {
pr_err("error writing an to sink\n");
goto error;
}
/* Copy An and AKSV to byte arrays for transmission */
aksv[0] = hdcp->aksv_0 & 0xFF;
aksv[1] = (hdcp->aksv_0 >> 8) & 0xFF;
aksv[2] = (hdcp->aksv_0 >> 16) & 0xFF;
aksv[3] = (hdcp->aksv_0 >> 24) & 0xFF;
aksv[4] = hdcp->aksv_1 & 0xFF;
pr_debug("aksv read: 0x%2x%2x%2x%2x%2x\n",
aksv[4], aksv[3], aksv[2], aksv[1], aksv[0]);
rc = sde_hdcp_1x_write(hdcp, &hdcp->sink_addr.aksv, aksv);
if (rc) {
pr_err("error writing aksv to sink\n");
goto error;
}
error:
return rc;
}
static int sde_hdcp_1x_read_an_aksv_from_hw(struct sde_hdcp_1x *hdcp)
{
struct dss_io_data *io = hdcp->init_data.core_io;
struct sde_hdcp_reg_set *reg_set = &hdcp->reg_set;
if (!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING)) {
pr_err("invalid state\n");
return -EINVAL;
}
hdcp->an_0 = DSS_REG_R(io, reg_set->data5);
if (hdcp->init_data.client_id == HDCP_CLIENT_DP) {
udelay(1);
hdcp->an_0 = DSS_REG_R(io, reg_set->data5);
}
hdcp->an_1 = DSS_REG_R(io, reg_set->data6);
if (hdcp->init_data.client_id == HDCP_CLIENT_DP) {
udelay(1);
hdcp->an_1 = DSS_REG_R(io, reg_set->data6);
}
/* Read AKSV */
hdcp->aksv_0 = DSS_REG_R(io, reg_set->data3);
hdcp->aksv_1 = DSS_REG_R(io, reg_set->data4);
return 0;
}
static int sde_hdcp_1x_get_bksv_from_sink(struct sde_hdcp_1x *hdcp)
{
int rc;
u8 *bksv = hdcp->current_tp.bksv;
u32 link0_bksv_0, link0_bksv_1;
struct sde_hdcp_reg_set *reg_set = &hdcp->reg_set;
struct dss_io_data *hdcp_io = hdcp->init_data.hdcp_io;
rc = sde_hdcp_1x_read(hdcp, &hdcp->sink_addr.bksv, bksv, false);
if (rc) {
pr_err("error reading bksv from sink\n");
goto error;
}
pr_debug("bksv read: 0x%2x%2x%2x%2x%2x\n",
bksv[4], bksv[3], bksv[2], bksv[1], bksv[0]);
/* check there are 20 ones in BKSV */
if (sde_hdcp_1x_count_one(bksv, 5) != 20) {
pr_err("%s: BKSV doesn't have 20 1's and 20 0's\n",
SDE_HDCP_STATE_NAME);
rc = -EINVAL;
goto error;
}
link0_bksv_0 = bksv[3];
link0_bksv_0 = (link0_bksv_0 << 8) | bksv[2];
link0_bksv_0 = (link0_bksv_0 << 8) | bksv[1];
link0_bksv_0 = (link0_bksv_0 << 8) | bksv[0];
link0_bksv_1 = bksv[4];
DSS_REG_W(hdcp_io, reg_set->sec_data0, link0_bksv_0);
DSS_REG_W(hdcp_io, reg_set->sec_data1, link0_bksv_1);
error:
return rc;
}
static void sde_hdcp_1x_enable_sink_irq_hpd(struct sde_hdcp_1x *hdcp)
{
u8 const required_major = 1, required_minor = 2;
u8 sink_major = 0, sink_minor = 0;
u8 enable_hpd_irq = 0x1;
int rc;
unsigned char revision = *hdcp->init_data.revision;
sink_major = (revision >> 4) & 0x0f;
sink_minor = revision & 0x0f;
pr_debug("revision: %d.%d\n", sink_major, sink_minor);
if ((sink_minor < required_minor) || (sink_major < required_major) ||
(hdcp->current_tp.ds_type != DS_REPEATER)) {
pr_debug("sink irq hpd not enabled\n");
return;
}
rc = sde_hdcp_1x_write(hdcp, &hdcp->sink_addr.ainfo, &enable_hpd_irq);
if (rc)
pr_debug("error writing ainfo to sink\n");
}
static int sde_hdcp_1x_verify_r0(struct sde_hdcp_1x *hdcp)
{
int rc, r0_retry = 3;
u8 buf[2];
u32 link0_status, timeout_count;
u32 const r0_read_delay_us = 1;
u32 const r0_read_timeout_us = r0_read_delay_us * 10;
struct sde_hdcp_reg_set *reg_set = &hdcp->reg_set;
struct dss_io_data *io = hdcp->init_data.core_io;
if (!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING)) {
pr_err("invalid state\n");
return -EINVAL;
}
/* Wait for HDCP R0 computation to be completed */
rc = readl_poll_timeout(io->base + reg_set->status, link0_status,
(link0_status & BIT(reg_set->r0_offset)) ||
!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING),
HDCP_POLL_SLEEP_US, HDCP_POLL_TIMEOUT_US);
if (rc) {
pr_err("R0 not ready\n");
goto error;
}
/*
* HDCP Compliace Test case 1A-01:
* Wait here at least 100ms before reading R0'
*/
if (hdcp->init_data.client_id == HDCP_CLIENT_HDMI) {
msleep(100);
} else {
if (!hdcp->sink_r0_ready) {
reinit_completion(&hdcp->sink_r0_available);
timeout_count = wait_for_completion_timeout(
&hdcp->sink_r0_available, HZ / 2);
if (hdcp->reauth) {
pr_err("sink R0 not ready\n");
rc = -EINVAL;
goto error;
}
}
}
do {
memset(buf, 0, sizeof(buf));
rc = sde_hdcp_1x_read(hdcp, &hdcp->sink_addr.r0,
buf, false);
if (rc) {
pr_err("error reading R0' from sink\n");
goto error;
}
pr_debug("sink R0'read: %2x%2x\n", buf[1], buf[0]);
DSS_REG_W(io, reg_set->data2_0, (((u32)buf[1]) << 8) | buf[0]);
rc = readl_poll_timeout(io->base + reg_set->status,
link0_status, (link0_status & BIT(12)) ||
!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING),
r0_read_delay_us, r0_read_timeout_us);
} while (rc && --r0_retry);
error:
if (!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING))
rc = -EINVAL;
return rc;
}
static int sde_hdcp_1x_authentication_part1(struct sde_hdcp_1x *hdcp)
{
int rc;
if (!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING)) {
pr_err("invalid state\n");
return -EINVAL;
}
sde_hdcp_1x_enable_interrupts(hdcp);
rc = sde_hdcp_1x_read_bcaps(hdcp);
if (rc)
goto error;
rc = sde_hdcp_1x_wait_for_hw_ready(hdcp);
if (rc)
goto error;
rc = sde_hdcp_1x_read_an_aksv_from_hw(hdcp);
if (rc)
goto error;
rc = sde_hdcp_1x_get_bksv_from_sink(hdcp);
if (rc)
goto error;
rc = sde_hdcp_1x_send_an_aksv_to_sink(hdcp);
if (rc)
goto error;
sde_hdcp_1x_enable_sink_irq_hpd(hdcp);
rc = sde_hdcp_1x_verify_r0(hdcp);
if (rc)
goto error;
pr_info("SUCCESSFUL\n");
return 0;
error:
pr_err("%s: FAILED\n", SDE_HDCP_STATE_NAME);
return rc;
}
static int sde_hdcp_1x_transfer_v_h(struct sde_hdcp_1x *hdcp)
{
int rc = 0;
struct dss_io_data *io = hdcp->init_data.hdcp_io;
struct sde_hdcp_reg_set *reg_set = &hdcp->reg_set;
struct sde_hdcp_1x_reg_data reg_data[] = {
{reg_set->sec_data7, &hdcp->sink_addr.v_h0},
{reg_set->sec_data8, &hdcp->sink_addr.v_h1},
{reg_set->sec_data9, &hdcp->sink_addr.v_h2},
{reg_set->sec_data10, &hdcp->sink_addr.v_h3},
{reg_set->sec_data11, &hdcp->sink_addr.v_h4},
};
struct sde_hdcp_sink_addr sink = {"V", reg_data->sink->addr};
u32 size = ARRAY_SIZE(reg_data);
u8 buf[0xFF] = {0};
u32 i = 0, len = 0;
if (!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING)) {
pr_err("invalid state\n");
return -EINVAL;
}
for (i = 0; i < size; i++) {
struct sde_hdcp_1x_reg_data *rd = reg_data + i;
len += rd->sink->len;
}
sink.len = len;
rc = sde_hdcp_1x_read(hdcp, &sink, buf, false);
if (rc) {
pr_err("error reading %s\n", sink.name);
goto end;
}
for (i = 0; i < size; i++) {
struct sde_hdcp_1x_reg_data *rd = reg_data + i;
u32 reg_data;
memcpy(&reg_data, buf + (sizeof(u32) * i), sizeof(u32));
DSS_REG_W(io, rd->reg_id, reg_data);
}
end:
return rc;
}
static int sde_hdcp_1x_validate_downstream(struct sde_hdcp_1x *hdcp)
{
int rc;
u8 buf[2] = {0, 0};
u8 device_count, depth;
u8 max_cascade_exceeded, max_devs_exceeded;
u16 bstatus;
struct sde_hdcp_reg_set *reg_set = &hdcp->reg_set;
if (!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING)) {
pr_err("invalid state\n");
return -EINVAL;
}
rc = sde_hdcp_1x_read(hdcp, &hdcp->sink_addr.bstatus,
buf, false);
if (rc) {
pr_err("error reading bstatus\n");
goto end;
}
bstatus = buf[1];
bstatus = (bstatus << 8) | buf[0];
device_count = bstatus & 0x7F;
pr_debug("device count %d\n", device_count);
/* Cascaded repeater depth */
depth = (bstatus >> 8) & 0x7;
pr_debug("depth %d\n", depth);
/*
* HDCP Compliance 1B-05:
* Check if no. of devices connected to repeater
* exceed max_devices_connected from bit 7 of Bstatus.
*/
max_devs_exceeded = (bstatus & BIT(7)) >> 7;
if (max_devs_exceeded == 0x01) {
pr_err("no. of devs connected exceed max allowed\n");
rc = -EINVAL;
goto end;
}
/*
* HDCP Compliance 1B-06:
* Check if no. of cascade connected to repeater
* exceed max_cascade_connected from bit 11 of Bstatus.
*/
max_cascade_exceeded = (bstatus & BIT(11)) >> 11;
if (max_cascade_exceeded == 0x01) {
pr_err("no. of cascade connections exceed max allowed\n");
rc = -EINVAL;
goto end;
}
/* Update topology information */
hdcp->current_tp.dev_count = device_count;
hdcp->current_tp.max_cascade_exceeded = max_cascade_exceeded;
hdcp->current_tp.max_dev_exceeded = max_devs_exceeded;
hdcp->current_tp.depth = depth;
DSS_REG_W(hdcp->init_data.hdcp_io,
reg_set->sec_data12, hdcp->bcaps | (bstatus << 8));
end:
return rc;
}
static int sde_hdcp_1x_read_ksv_fifo(struct sde_hdcp_1x *hdcp)
{
u32 ksv_read_retry = 20, ksv_bytes, rc = 0;
u8 *ksv_fifo = hdcp->current_tp.ksv_list;
if (!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING)) {
pr_err("invalid state\n");
return -EINVAL;
}
memset(ksv_fifo, 0, sizeof(hdcp->current_tp.ksv_list));
/* each KSV is 5 bytes long */
ksv_bytes = 5 * hdcp->current_tp.dev_count;
hdcp->sink_addr.ksv_fifo.len = ksv_bytes;
while (ksv_bytes && --ksv_read_retry) {
rc = sde_hdcp_1x_read(hdcp, &hdcp->sink_addr.ksv_fifo,
ksv_fifo, true);
if (rc)
pr_err("could not read ksv fifo (%d)\n",
ksv_read_retry);
else
break;
}
if (rc)
pr_err("error reading ksv_fifo\n");
return rc;
}
static int sde_hdcp_1x_write_ksv_fifo(struct sde_hdcp_1x *hdcp)
{
int i, rc = 0;
u8 *ksv_fifo = hdcp->current_tp.ksv_list;
u32 ksv_bytes = hdcp->sink_addr.ksv_fifo.len;
struct dss_io_data *io = hdcp->init_data.core_io;
struct dss_io_data *sec_io = hdcp->init_data.hdcp_io;
struct sde_hdcp_reg_set *reg_set = &hdcp->reg_set;
u32 sha_status = 0, status;
if (!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING)) {
pr_err("invalid state\n");
return -EINVAL;
}
/* reset SHA Controller */
DSS_REG_W(sec_io, reg_set->sec_sha_ctrl, 0x1);
DSS_REG_W(sec_io, reg_set->sec_sha_ctrl, 0x0);
for (i = 0; i < ksv_bytes - 1; i++) {
/* Write KSV byte and do not set DONE bit[0] */
DSS_REG_W_ND(sec_io, reg_set->sec_sha_data, ksv_fifo[i] << 16);
/*
* Once 64 bytes have been written, we need to poll for
* HDCP_SHA_BLOCK_DONE before writing any further
*/
if (i && !((i + 1) % 64)) {
rc = readl_poll_timeout(io->base + reg_set->sha_status,
sha_status, (sha_status & BIT(0)) ||
!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING),
HDCP_POLL_SLEEP_US, HDCP_POLL_TIMEOUT_US);
if (rc) {
pr_err("block not done\n");
goto error;
}
}
}
/* Write l to DONE bit[0] */
DSS_REG_W_ND(sec_io, reg_set->sec_sha_data,
(ksv_fifo[ksv_bytes - 1] << 16) | 0x1);
/* Now wait for HDCP_SHA_COMP_DONE */
rc = readl_poll_timeout(io->base + reg_set->sha_status, sha_status,
(sha_status & BIT(4)) ||
!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING),
HDCP_POLL_SLEEP_US, HDCP_POLL_TIMEOUT_US);
if (rc) {
pr_err("V computation not done\n");
goto error;
}
/* Wait for V_MATCHES */
rc = readl_poll_timeout(io->base + reg_set->status, status,
(status & BIT(reg_set->v_offset)) ||
!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING),
HDCP_POLL_SLEEP_US, HDCP_POLL_TIMEOUT_US);
if (rc) {
pr_err("V mismatch\n");
rc = -EINVAL;
}
error:
if (!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING))
rc = -EINVAL;
return rc;
}
static int sde_hdcp_1x_wait_for_ksv_ready(struct sde_hdcp_1x *hdcp)
{
int rc, timeout;
if (!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING)) {
pr_err("invalid state\n");
return -EINVAL;
}
/*
* Wait until READY bit is set in BCAPS, as per HDCP specifications
* maximum permitted time to check for READY bit is five seconds.
*/
rc = sde_hdcp_1x_read(hdcp, &hdcp->sink_addr.bcaps,
&hdcp->bcaps, false);
if (rc) {
pr_err("error reading bcaps\n");
goto error;
}
if (hdcp->init_data.client_id == HDCP_CLIENT_HDMI) {
timeout = 50;
while (!(hdcp->bcaps & BIT(5)) && --timeout) {
rc = sde_hdcp_1x_read(hdcp,
&hdcp->sink_addr.bcaps,
&hdcp->bcaps, false);
if (rc ||
!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING)) {
pr_err("error reading bcaps\n");
goto error;
}
msleep(100);
}
} else {
u8 cp_buf = 0;
struct sde_hdcp_sink_addr *sink =
&hdcp->sink_addr.cp_irq_status;
timeout = jiffies_to_msecs(jiffies);
while (1) {
rc = sde_hdcp_1x_read(hdcp, sink, &cp_buf, false);
if (rc)
goto error;
if (cp_buf & BIT(0))
break;
/* max timeout of 5 sec as per hdcp 1.x spec */
if (abs(timeout - jiffies_to_msecs(jiffies)) > 5000) {
timeout = 0;
break;
}
if (hdcp->ksv_ready || hdcp->reauth ||
!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING))
break;
/* re-read after a minimum delay */
msleep(20);
}
}
if (!timeout || hdcp->reauth ||
!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING)) {
pr_err("DS KSV not ready\n");
rc = -EINVAL;
} else {
hdcp->ksv_ready = true;
}
error:
return rc;
}
static int sde_hdcp_1x_authentication_part2(struct sde_hdcp_1x *hdcp)
{
int rc;
int v_retry = 3;
rc = sde_hdcp_1x_validate_downstream(hdcp);
if (rc)
goto error;
rc = sde_hdcp_1x_read_ksv_fifo(hdcp);
if (rc)
goto error;
do {
rc = sde_hdcp_1x_transfer_v_h(hdcp);
if (rc)
goto error;
/* do not proceed further if no device connected */
if (!hdcp->current_tp.dev_count)
goto error;
rc = sde_hdcp_1x_write_ksv_fifo(hdcp);
} while (--v_retry && rc);
error:
if (rc) {
pr_err("%s: FAILED\n", SDE_HDCP_STATE_NAME);
} else {
hdcp->hdcp_state = HDCP_STATE_AUTHENTICATED;
pr_info("SUCCESSFUL\n");
}
return rc;
}
static void sde_hdcp_1x_cache_topology(struct sde_hdcp_1x *hdcp)
{
if (!hdcp || !hdcp->init_data.core_io) {
pr_err("invalid input\n");
return;
}
memcpy((void *)&hdcp->cached_tp,
(void *) &hdcp->current_tp,
sizeof(hdcp->cached_tp));
hdcp1_cache_repeater_topology((void *)&hdcp->cached_tp);
}
static void sde_hdcp_1x_notify_topology(void)
{
hdcp1_notify_topology();
}
static void sde_hdcp_1x_update_auth_status(struct sde_hdcp_1x *hdcp)
{
if (sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATED)) {
sde_hdcp_1x_cache_topology(hdcp);
sde_hdcp_1x_notify_topology();
}
if (hdcp->init_data.notify_status &&
!sde_hdcp_1x_state(HDCP_STATE_INACTIVE)) {
hdcp->init_data.notify_status(
hdcp->init_data.cb_data,
hdcp->hdcp_state);
}
}
static void sde_hdcp_1x_auth_work(struct work_struct *work)
{
int rc;
struct delayed_work *dw = to_delayed_work(work);
struct sde_hdcp_1x *hdcp = container_of(dw,
struct sde_hdcp_1x, hdcp_auth_work);
struct dss_io_data *io;
if (!hdcp) {
pr_err("invalid input\n");
return;
}
if (!sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING)) {
pr_err("invalid state\n");
return;
}
hdcp->sink_r0_ready = false;
hdcp->reauth = false;
hdcp->ksv_ready = false;
io = hdcp->init_data.core_io;
/* Enabling Software DDC for HDMI and REF timer for DP */
if (hdcp->init_data.client_id == HDCP_CLIENT_HDMI)
DSS_REG_W_ND(io, REG_HDMI_DDC_ARBITRATION, DSS_REG_R(io,
REG_HDMI_DDC_ARBITRATION) & ~(BIT(4)));
else if (hdcp->init_data.client_id == HDCP_CLIENT_DP) {
DSS_REG_W(io, DP_DP_HPD_REFTIMER, 0x10013);
}
/*
* program hw to enable encryption as soon as
* authentication is successful.
*/
hdcp1_set_enc(true);
rc = sde_hdcp_1x_authentication_part1(hdcp);
if (rc)
goto end;
if (hdcp->current_tp.ds_type == DS_REPEATER) {
rc = sde_hdcp_1x_wait_for_ksv_ready(hdcp);
if (rc)
goto end;
} else {
hdcp->hdcp_state = HDCP_STATE_AUTHENTICATED;
goto end;
}
hdcp->ksv_ready = false;
rc = sde_hdcp_1x_authentication_part2(hdcp);
if (rc)
goto end;
/*
* Disabling software DDC before going into part3 to make sure
* there is no Arbitration between software and hardware for DDC
*/
if (hdcp->init_data.client_id == HDCP_CLIENT_HDMI)
DSS_REG_W_ND(io, REG_HDMI_DDC_ARBITRATION, DSS_REG_R(io,
REG_HDMI_DDC_ARBITRATION) | (BIT(4)));
end:
if (rc && !sde_hdcp_1x_state(HDCP_STATE_INACTIVE))
hdcp->hdcp_state = HDCP_STATE_AUTH_FAIL;
sde_hdcp_1x_update_auth_status(hdcp);
}
static int sde_hdcp_1x_authenticate(void *input)
{
struct sde_hdcp_1x *hdcp = (struct sde_hdcp_1x *)input;
if (!hdcp) {
pr_err("invalid input\n");
return -EINVAL;
}
flush_delayed_work(&hdcp->hdcp_auth_work);
if (!sde_hdcp_1x_state(HDCP_STATE_INACTIVE)) {
pr_err("invalid state\n");
return -EINVAL;
}
if (!sde_hdcp_1x_load_keys(input)) {
queue_delayed_work(hdcp->workq,
&hdcp->hdcp_auth_work, HZ/2);
} else {
hdcp->hdcp_state = HDCP_STATE_AUTH_FAIL;
sde_hdcp_1x_update_auth_status(hdcp);
}
return 0;
} /* hdcp_1x_authenticate */
static int sde_hdcp_1x_reauthenticate(void *input)
{
struct sde_hdcp_1x *hdcp = (struct sde_hdcp_1x *)input;
struct dss_io_data *io;
struct sde_hdcp_reg_set *reg_set;
struct sde_hdcp_int_set *isr;
u32 ret = 0, reg;
if (!hdcp || !hdcp->init_data.core_io) {
pr_err("invalid input\n");
return -EINVAL;
}
io = hdcp->init_data.core_io;
reg_set = &hdcp->reg_set;
isr = &hdcp->int_set;
if (!sde_hdcp_1x_state(HDCP_STATE_AUTH_FAIL)) {
pr_err("invalid state\n");
return -EINVAL;
}
/* Disable HDCP interrupts */
DSS_REG_W(io, isr->int_reg, DSS_REG_R(io, isr->int_reg) & ~HDCP_INT_EN);
reg = DSS_REG_R(io, reg_set->reset);
DSS_REG_W(io, reg_set->reset, reg | reg_set->reset_bit);
/* Disable encryption and disable the HDCP block */
DSS_REG_W(io, reg_set->ctrl, 0);
DSS_REG_W(io, reg_set->reset, reg & ~reg_set->reset_bit);
hdcp->hdcp_state = HDCP_STATE_INACTIVE;
sde_hdcp_1x_authenticate(hdcp);
return ret;
} /* hdcp_1x_reauthenticate */
static void sde_hdcp_1x_off(void *input)
{
struct sde_hdcp_1x *hdcp = (struct sde_hdcp_1x *)input;
struct dss_io_data *io;
struct sde_hdcp_reg_set *reg_set;
struct sde_hdcp_int_set *isr;
int rc = 0;
u32 reg;
if (!hdcp || !hdcp->init_data.core_io) {
pr_err("invalid input\n");
return;
}
io = hdcp->init_data.core_io;
reg_set = &hdcp->reg_set;
isr = &hdcp->int_set;
if (sde_hdcp_1x_state(HDCP_STATE_INACTIVE)) {
pr_err("invalid state\n");
return;
}
/*
* Disable HDCP interrupts.
* Also, need to set the state to inactive here so that any ongoing
* reauth works will know that the HDCP session has been turned off.
*/
mutex_lock(hdcp->init_data.mutex);
DSS_REG_W(io, isr->int_reg,
DSS_REG_R(io, isr->int_reg) & ~HDCP_INT_EN);
hdcp->hdcp_state = HDCP_STATE_INACTIVE;
mutex_unlock(hdcp->init_data.mutex);
/* complete any wait pending */
complete_all(&hdcp->sink_r0_available);
complete_all(&hdcp->r0_checked);
/*
* Cancel any pending auth/reauth attempts.
* If one is ongoing, this will wait for it to finish.
* No more reauthentiaction attempts will be scheduled since we
* set the currect state to inactive.
*/
rc = cancel_delayed_work_sync(&hdcp->hdcp_auth_work);
if (rc)
pr_debug("%s: Deleted hdcp auth work\n",
SDE_HDCP_STATE_NAME);
hdcp1_set_enc(false);
reg = DSS_REG_R(io, reg_set->reset);
DSS_REG_W(io, reg_set->reset, reg | reg_set->reset_bit);
/* Disable encryption and disable the HDCP block */
DSS_REG_W(io, reg_set->ctrl, 0);
DSS_REG_W(io, reg_set->reset, reg & ~reg_set->reset_bit);
hdcp->sink_r0_ready = false;
pr_debug("%s: HDCP: Off\n", SDE_HDCP_STATE_NAME);
} /* hdcp_1x_off */
static int sde_hdcp_1x_isr(void *input)
{
struct sde_hdcp_1x *hdcp = (struct sde_hdcp_1x *)input;
int rc = 0;
struct dss_io_data *io;
u32 hdcp_int_val;
struct sde_hdcp_reg_set *reg_set;
struct sde_hdcp_int_set *isr;
if (!hdcp || !hdcp->init_data.core_io) {
pr_err("invalid input\n");
rc = -EINVAL;
goto error;
}
io = hdcp->init_data.core_io;
reg_set = &hdcp->reg_set;
isr = &hdcp->int_set;
hdcp_int_val = DSS_REG_R(io, isr->int_reg);
/* Ignore HDCP interrupts if HDCP is disabled */
if (sde_hdcp_1x_state(HDCP_STATE_INACTIVE)) {
DSS_REG_W(io, isr->int_reg, hdcp_int_val | HDCP_INT_CLR);
return 0;
}
if (hdcp_int_val & isr->auth_success_int) {
/* AUTH_SUCCESS_INT */
DSS_REG_W(io, isr->int_reg,
(hdcp_int_val | isr->auth_success_ack));
pr_debug("%s: AUTH SUCCESS\n", SDE_HDCP_STATE_NAME);
if (sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING))
complete_all(&hdcp->r0_checked);
}
if (hdcp_int_val & isr->auth_fail_int) {
/* AUTH_FAIL_INT */
u32 link_status = DSS_REG_R(io, reg_set->status);
DSS_REG_W(io, isr->int_reg,
(hdcp_int_val | isr->auth_fail_ack));
pr_debug("%s: AUTH FAIL, LINK0_STATUS=0x%08x\n",
SDE_HDCP_STATE_NAME, link_status);
if (sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATED)) {
hdcp->hdcp_state = HDCP_STATE_AUTH_FAIL;
sde_hdcp_1x_update_auth_status(hdcp);
} else if (sde_hdcp_1x_state(HDCP_STATE_AUTHENTICATING)) {
complete_all(&hdcp->r0_checked);
}
/* Clear AUTH_FAIL_INFO as well */
DSS_REG_W(io, isr->int_reg,
(hdcp_int_val | isr->auth_fail_info_ack));
}
if (hdcp_int_val & isr->tx_req_int) {
/* DDC_XFER_REQ_INT */
DSS_REG_W(io, isr->int_reg,
(hdcp_int_val | isr->tx_req_ack));
pr_debug("%s: DDC_XFER_REQ_INT received\n",
SDE_HDCP_STATE_NAME);
}
if (hdcp_int_val & isr->tx_req_done_int) {
/* DDC_XFER_DONE_INT */
DSS_REG_W(io, isr->int_reg,
(hdcp_int_val | isr->tx_req_done_ack));
pr_debug("%s: DDC_XFER_DONE received\n",
SDE_HDCP_STATE_NAME);
}
if (hdcp_int_val & isr->encryption_ready) {
/* Encryption enabled */
DSS_REG_W(io, isr->int_reg,
(hdcp_int_val | isr->encryption_ready_ack));
pr_debug("%s: encryption ready received\n",
SDE_HDCP_STATE_NAME);
}
if (hdcp_int_val & isr->encryption_not_ready) {
/* Encryption enabled */
DSS_REG_W(io, isr->int_reg,
(hdcp_int_val | isr->encryption_not_ready_ack));
pr_debug("%s: encryption not ready received\n",
SDE_HDCP_STATE_NAME);
}
error:
return rc;
}
void sde_hdcp_1x_deinit(void *input)
{
struct sde_hdcp_1x *hdcp = (struct sde_hdcp_1x *)input;
if (!hdcp) {
pr_err("invalid input\n");
return;
}
if (hdcp->workq)
destroy_workqueue(hdcp->workq);
kfree(hdcp);
} /* hdcp_1x_deinit */
static void sde_hdcp_1x_update_client_reg_set(struct sde_hdcp_1x *hdcp)
{
if (hdcp->init_data.client_id == HDCP_CLIENT_DP) {
struct sde_hdcp_reg_set reg_set = HDCP_REG_SET_CLIENT_DP;
struct sde_hdcp_sink_addr_map sink_addr = HDCP_DP_SINK_ADDR_MAP;
struct sde_hdcp_int_set isr = HDCP_DP_INT_SET;
hdcp->reg_set = reg_set;
hdcp->sink_addr = sink_addr;
hdcp->int_set = isr;
}
}
static bool sde_hdcp_1x_is_cp_irq_raised(struct sde_hdcp_1x *hdcp)
{
int ret;
u8 buf = 0;
struct sde_hdcp_sink_addr sink = {"irq", 0x201, 1};
ret = sde_hdcp_1x_read(hdcp, &sink, &buf, false);
if (ret)
pr_err("error reading irq_vector\n");
return buf & BIT(2) ? true : false;
}
static void sde_hdcp_1x_clear_cp_irq(struct sde_hdcp_1x *hdcp)
{
int ret;
u8 buf = BIT(2);
struct sde_hdcp_sink_addr sink = {"irq", 0x201, 1};
ret = sde_hdcp_1x_write(hdcp, &sink, &buf);
if (ret)
pr_err("error clearing irq_vector\n");
}
static int sde_hdcp_1x_cp_irq(void *input)
{
struct sde_hdcp_1x *hdcp = (struct sde_hdcp_1x *)input;
u8 buf = 0;
int ret;
if (!hdcp) {
pr_err("invalid input\n");
goto irq_not_handled;
}
if (!sde_hdcp_1x_is_cp_irq_raised(hdcp)) {
pr_debug("cp_irq not raised\n");
goto irq_not_handled;
}
ret = sde_hdcp_1x_read(hdcp, &hdcp->sink_addr.cp_irq_status,
&buf, false);
if (ret) {
pr_err("error reading cp_irq_status\n");
goto irq_not_handled;
}
if ((buf & BIT(2)) || (buf & BIT(3))) {
pr_err("%s\n",
buf & BIT(2) ? "LINK_INTEGRITY_FAILURE" :
"REAUTHENTICATION_REQUEST");
hdcp->reauth = true;
if (!sde_hdcp_1x_state(HDCP_STATE_INACTIVE))
hdcp->hdcp_state = HDCP_STATE_AUTH_FAIL;
complete_all(&hdcp->sink_r0_available);
sde_hdcp_1x_update_auth_status(hdcp);
} else if (buf & BIT(1)) {
pr_debug("R0' AVAILABLE\n");
hdcp->sink_r0_ready = true;
complete_all(&hdcp->sink_r0_available);
} else if ((buf & BIT(0))) {
pr_debug("KSVs READY\n");
hdcp->ksv_ready = true;
} else {
pr_debug("spurious interrupt\n");
}
sde_hdcp_1x_clear_cp_irq(hdcp);
return 0;
irq_not_handled:
return -EINVAL;
}
void *sde_hdcp_1x_init(struct sde_hdcp_init_data *init_data)
{
struct sde_hdcp_1x *hdcp = NULL;
char name[20];
static struct sde_hdcp_ops ops = {
.isr = sde_hdcp_1x_isr,
.cp_irq = sde_hdcp_1x_cp_irq,
.reauthenticate = sde_hdcp_1x_reauthenticate,
.authenticate = sde_hdcp_1x_authenticate,
.off = sde_hdcp_1x_off
};
if (!init_data || !init_data->core_io || !init_data->qfprom_io ||
!init_data->mutex || !init_data->notify_status ||
!init_data->workq || !init_data->cb_data) {
pr_err("invalid input\n");
goto error;
}
if (init_data->sec_access && !init_data->hdcp_io) {
pr_err("hdcp_io required\n");
goto error;
}
hdcp = kzalloc(sizeof(*hdcp), GFP_KERNEL);
if (!hdcp)
goto error;
hdcp->init_data = *init_data;
hdcp->ops = &ops;
snprintf(name, sizeof(name), "hdcp_1x_%d",
hdcp->init_data.client_id);
hdcp->workq = create_workqueue(name);
if (!hdcp->workq) {
pr_err("Error creating workqueue\n");
kfree(hdcp);
goto error;
}
sde_hdcp_1x_update_client_reg_set(hdcp);
INIT_DELAYED_WORK(&hdcp->hdcp_auth_work, sde_hdcp_1x_auth_work);
hdcp->hdcp_state = HDCP_STATE_INACTIVE;
init_completion(&hdcp->r0_checked);
init_completion(&hdcp->sink_r0_available);
pr_debug("HDCP module initialized. HDCP_STATE=%s\n",
SDE_HDCP_STATE_NAME);
return (void *)hdcp;
error:
return NULL;
} /* hdcp_1x_init */
struct sde_hdcp_ops *sde_hdcp_1x_start(void *input)
{
return ((struct sde_hdcp_1x *)input)->ops;
}