| /* |
| * CCI cache coherent interconnect driver |
| * |
| * Copyright (C) 2013 ARM Ltd. |
| * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed "as is" WITHOUT ANY WARRANTY of any |
| * kind, whether express or implied; without even the implied warranty |
| * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/arm-cci.h> |
| #include <linux/io.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_platform.h> |
| #include <linux/perf_event.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/smp_plat.h> |
| |
| #define DRIVER_NAME "CCI-400" |
| #define DRIVER_NAME_PMU DRIVER_NAME " PMU" |
| |
| #define CCI_PORT_CTRL 0x0 |
| #define CCI_CTRL_STATUS 0xc |
| |
| #define CCI_ENABLE_SNOOP_REQ 0x1 |
| #define CCI_ENABLE_DVM_REQ 0x2 |
| #define CCI_ENABLE_REQ (CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ) |
| |
| struct cci_nb_ports { |
| unsigned int nb_ace; |
| unsigned int nb_ace_lite; |
| }; |
| |
| enum cci_ace_port_type { |
| ACE_INVALID_PORT = 0x0, |
| ACE_PORT, |
| ACE_LITE_PORT, |
| }; |
| |
| struct cci_ace_port { |
| void __iomem *base; |
| unsigned long phys; |
| enum cci_ace_port_type type; |
| struct device_node *dn; |
| }; |
| |
| static struct cci_ace_port *ports; |
| static unsigned int nb_cci_ports; |
| |
| static void __iomem *cci_ctrl_base; |
| static unsigned long cci_ctrl_phys; |
| |
| #ifdef CONFIG_HW_PERF_EVENTS |
| |
| #define CCI_PMCR 0x0100 |
| #define CCI_PID2 0x0fe8 |
| |
| #define CCI_PMCR_CEN 0x00000001 |
| #define CCI_PMCR_NCNT_MASK 0x0000f800 |
| #define CCI_PMCR_NCNT_SHIFT 11 |
| |
| #define CCI_PID2_REV_MASK 0xf0 |
| #define CCI_PID2_REV_SHIFT 4 |
| |
| /* Port ids */ |
| #define CCI_PORT_S0 0 |
| #define CCI_PORT_S1 1 |
| #define CCI_PORT_S2 2 |
| #define CCI_PORT_S3 3 |
| #define CCI_PORT_S4 4 |
| #define CCI_PORT_M0 5 |
| #define CCI_PORT_M1 6 |
| #define CCI_PORT_M2 7 |
| |
| #define CCI_REV_R0 0 |
| #define CCI_REV_R1 1 |
| #define CCI_REV_R1_PX 5 |
| |
| #define CCI_PMU_EVT_SEL 0x000 |
| #define CCI_PMU_CNTR 0x004 |
| #define CCI_PMU_CNTR_CTRL 0x008 |
| #define CCI_PMU_OVRFLW 0x00c |
| |
| #define CCI_PMU_OVRFLW_FLAG 1 |
| |
| #define CCI_PMU_CNTR_BASE(idx) ((idx) * SZ_4K) |
| |
| #define CCI_PMU_CNTR_MASK ((1ULL << 32) -1) |
| |
| /* |
| * Instead of an event id to monitor CCI cycles, a dedicated counter is |
| * provided. Use 0xff to represent CCI cycles and hope that no future revisions |
| * make use of this event in hardware. |
| */ |
| enum cci400_perf_events { |
| CCI_PMU_CYCLES = 0xff |
| }; |
| |
| #define CCI_PMU_EVENT_MASK 0xff |
| #define CCI_PMU_EVENT_SOURCE(event) ((event >> 5) & 0x7) |
| #define CCI_PMU_EVENT_CODE(event) (event & 0x1f) |
| |
| #define CCI_PMU_MAX_HW_EVENTS 5 /* CCI PMU has 4 counters + 1 cycle counter */ |
| |
| #define CCI_PMU_CYCLE_CNTR_IDX 0 |
| #define CCI_PMU_CNTR0_IDX 1 |
| #define CCI_PMU_CNTR_LAST(cci_pmu) (CCI_PMU_CYCLE_CNTR_IDX + cci_pmu->num_events - 1) |
| |
| /* |
| * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8 |
| * ports and bits 4:0 are event codes. There are different event codes |
| * associated with each port type. |
| * |
| * Additionally, the range of events associated with the port types changed |
| * between Rev0 and Rev1. |
| * |
| * The constants below define the range of valid codes for each port type for |
| * the different revisions and are used to validate the event to be monitored. |
| */ |
| |
| #define CCI_REV_R0_SLAVE_PORT_MIN_EV 0x00 |
| #define CCI_REV_R0_SLAVE_PORT_MAX_EV 0x13 |
| #define CCI_REV_R0_MASTER_PORT_MIN_EV 0x14 |
| #define CCI_REV_R0_MASTER_PORT_MAX_EV 0x1a |
| |
| #define CCI_REV_R1_SLAVE_PORT_MIN_EV 0x00 |
| #define CCI_REV_R1_SLAVE_PORT_MAX_EV 0x14 |
| #define CCI_REV_R1_MASTER_PORT_MIN_EV 0x00 |
| #define CCI_REV_R1_MASTER_PORT_MAX_EV 0x11 |
| |
| struct pmu_port_event_ranges { |
| u8 slave_min; |
| u8 slave_max; |
| u8 master_min; |
| u8 master_max; |
| }; |
| |
| static struct pmu_port_event_ranges port_event_range[] = { |
| [CCI_REV_R0] = { |
| .slave_min = CCI_REV_R0_SLAVE_PORT_MIN_EV, |
| .slave_max = CCI_REV_R0_SLAVE_PORT_MAX_EV, |
| .master_min = CCI_REV_R0_MASTER_PORT_MIN_EV, |
| .master_max = CCI_REV_R0_MASTER_PORT_MAX_EV, |
| }, |
| [CCI_REV_R1] = { |
| .slave_min = CCI_REV_R1_SLAVE_PORT_MIN_EV, |
| .slave_max = CCI_REV_R1_SLAVE_PORT_MAX_EV, |
| .master_min = CCI_REV_R1_MASTER_PORT_MIN_EV, |
| .master_max = CCI_REV_R1_MASTER_PORT_MAX_EV, |
| }, |
| }; |
| |
| /* |
| * Export different PMU names for the different revisions so userspace knows |
| * because the event ids are different |
| */ |
| static char *const pmu_names[] = { |
| [CCI_REV_R0] = "CCI_400", |
| [CCI_REV_R1] = "CCI_400_r1", |
| }; |
| |
| struct cci_pmu_hw_events { |
| struct perf_event *events[CCI_PMU_MAX_HW_EVENTS]; |
| unsigned long used_mask[BITS_TO_LONGS(CCI_PMU_MAX_HW_EVENTS)]; |
| raw_spinlock_t pmu_lock; |
| }; |
| |
| struct cci_pmu { |
| void __iomem *base; |
| struct pmu pmu; |
| int nr_irqs; |
| int irqs[CCI_PMU_MAX_HW_EVENTS]; |
| unsigned long active_irqs; |
| struct pmu_port_event_ranges *port_ranges; |
| struct cci_pmu_hw_events hw_events; |
| struct platform_device *plat_device; |
| int num_events; |
| atomic_t active_events; |
| struct mutex reserve_mutex; |
| cpumask_t cpus; |
| }; |
| static struct cci_pmu *pmu; |
| |
| #define to_cci_pmu(c) (container_of(c, struct cci_pmu, pmu)) |
| |
| static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs) |
| { |
| int i; |
| |
| for (i = 0; i < nr_irqs; i++) |
| if (irq == irqs[i]) |
| return true; |
| |
| return false; |
| } |
| |
| static int probe_cci_revision(void) |
| { |
| int rev; |
| rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK; |
| rev >>= CCI_PID2_REV_SHIFT; |
| |
| if (rev < CCI_REV_R1_PX) |
| return CCI_REV_R0; |
| else |
| return CCI_REV_R1; |
| } |
| |
| static struct pmu_port_event_ranges *port_range_by_rev(void) |
| { |
| int rev = probe_cci_revision(); |
| |
| return &port_event_range[rev]; |
| } |
| |
| static int pmu_is_valid_slave_event(u8 ev_code) |
| { |
| return pmu->port_ranges->slave_min <= ev_code && |
| ev_code <= pmu->port_ranges->slave_max; |
| } |
| |
| static int pmu_is_valid_master_event(u8 ev_code) |
| { |
| return pmu->port_ranges->master_min <= ev_code && |
| ev_code <= pmu->port_ranges->master_max; |
| } |
| |
| static int pmu_validate_hw_event(u8 hw_event) |
| { |
| u8 ev_source = CCI_PMU_EVENT_SOURCE(hw_event); |
| u8 ev_code = CCI_PMU_EVENT_CODE(hw_event); |
| |
| switch (ev_source) { |
| case CCI_PORT_S0: |
| case CCI_PORT_S1: |
| case CCI_PORT_S2: |
| case CCI_PORT_S3: |
| case CCI_PORT_S4: |
| /* Slave Interface */ |
| if (pmu_is_valid_slave_event(ev_code)) |
| return hw_event; |
| break; |
| case CCI_PORT_M0: |
| case CCI_PORT_M1: |
| case CCI_PORT_M2: |
| /* Master Interface */ |
| if (pmu_is_valid_master_event(ev_code)) |
| return hw_event; |
| break; |
| } |
| |
| return -ENOENT; |
| } |
| |
| static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx) |
| { |
| return CCI_PMU_CYCLE_CNTR_IDX <= idx && |
| idx <= CCI_PMU_CNTR_LAST(cci_pmu); |
| } |
| |
| static u32 pmu_read_register(int idx, unsigned int offset) |
| { |
| return readl_relaxed(pmu->base + CCI_PMU_CNTR_BASE(idx) + offset); |
| } |
| |
| static void pmu_write_register(u32 value, int idx, unsigned int offset) |
| { |
| return writel_relaxed(value, pmu->base + CCI_PMU_CNTR_BASE(idx) + offset); |
| } |
| |
| static void pmu_disable_counter(int idx) |
| { |
| pmu_write_register(0, idx, CCI_PMU_CNTR_CTRL); |
| } |
| |
| static void pmu_enable_counter(int idx) |
| { |
| pmu_write_register(1, idx, CCI_PMU_CNTR_CTRL); |
| } |
| |
| static void pmu_set_event(int idx, unsigned long event) |
| { |
| event &= CCI_PMU_EVENT_MASK; |
| pmu_write_register(event, idx, CCI_PMU_EVT_SEL); |
| } |
| |
| static u32 pmu_get_max_counters(void) |
| { |
| u32 n_cnts = (readl_relaxed(cci_ctrl_base + CCI_PMCR) & |
| CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT; |
| |
| /* add 1 for cycle counter */ |
| return n_cnts + 1; |
| } |
| |
| static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event) |
| { |
| struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); |
| struct hw_perf_event *hw_event = &event->hw; |
| unsigned long cci_event = hw_event->config_base & CCI_PMU_EVENT_MASK; |
| int idx; |
| |
| if (cci_event == CCI_PMU_CYCLES) { |
| if (test_and_set_bit(CCI_PMU_CYCLE_CNTR_IDX, hw->used_mask)) |
| return -EAGAIN; |
| |
| return CCI_PMU_CYCLE_CNTR_IDX; |
| } |
| |
| for (idx = CCI_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx) |
| if (!test_and_set_bit(idx, hw->used_mask)) |
| return idx; |
| |
| /* No counters available */ |
| return -EAGAIN; |
| } |
| |
| static int pmu_map_event(struct perf_event *event) |
| { |
| int mapping; |
| u8 config = event->attr.config & CCI_PMU_EVENT_MASK; |
| |
| if (event->attr.type < PERF_TYPE_MAX) |
| return -ENOENT; |
| |
| if (config == CCI_PMU_CYCLES) |
| mapping = config; |
| else |
| mapping = pmu_validate_hw_event(config); |
| |
| return mapping; |
| } |
| |
| static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler) |
| { |
| int i; |
| struct platform_device *pmu_device = cci_pmu->plat_device; |
| |
| if (unlikely(!pmu_device)) |
| return -ENODEV; |
| |
| if (pmu->nr_irqs < 1) { |
| dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n"); |
| return -ENODEV; |
| } |
| |
| /* |
| * Register all available CCI PMU interrupts. In the interrupt handler |
| * we iterate over the counters checking for interrupt source (the |
| * overflowing counter) and clear it. |
| * |
| * This should allow handling of non-unique interrupt for the counters. |
| */ |
| for (i = 0; i < pmu->nr_irqs; i++) { |
| int err = request_irq(pmu->irqs[i], handler, IRQF_SHARED, |
| "arm-cci-pmu", cci_pmu); |
| if (err) { |
| dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n", |
| pmu->irqs[i]); |
| return err; |
| } |
| |
| set_bit(i, &pmu->active_irqs); |
| } |
| |
| return 0; |
| } |
| |
| static void pmu_free_irq(struct cci_pmu *cci_pmu) |
| { |
| int i; |
| |
| for (i = 0; i < pmu->nr_irqs; i++) { |
| if (!test_and_clear_bit(i, &pmu->active_irqs)) |
| continue; |
| |
| free_irq(pmu->irqs[i], cci_pmu); |
| } |
| } |
| |
| static u32 pmu_read_counter(struct perf_event *event) |
| { |
| struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); |
| struct hw_perf_event *hw_counter = &event->hw; |
| int idx = hw_counter->idx; |
| u32 value; |
| |
| if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { |
| dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); |
| return 0; |
| } |
| value = pmu_read_register(idx, CCI_PMU_CNTR); |
| |
| return value; |
| } |
| |
| static void pmu_write_counter(struct perf_event *event, u32 value) |
| { |
| struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); |
| struct hw_perf_event *hw_counter = &event->hw; |
| int idx = hw_counter->idx; |
| |
| if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) |
| dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); |
| else |
| pmu_write_register(value, idx, CCI_PMU_CNTR); |
| } |
| |
| static u64 pmu_event_update(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| u64 delta, prev_raw_count, new_raw_count; |
| |
| do { |
| prev_raw_count = local64_read(&hwc->prev_count); |
| new_raw_count = pmu_read_counter(event); |
| } while (local64_cmpxchg(&hwc->prev_count, prev_raw_count, |
| new_raw_count) != prev_raw_count); |
| |
| delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK; |
| |
| local64_add(delta, &event->count); |
| |
| return new_raw_count; |
| } |
| |
| static void pmu_read(struct perf_event *event) |
| { |
| pmu_event_update(event); |
| } |
| |
| void pmu_event_set_period(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| /* |
| * The CCI PMU counters have a period of 2^32. To account for the |
| * possiblity of extreme interrupt latency we program for a period of |
| * half that. Hopefully we can handle the interrupt before another 2^31 |
| * events occur and the counter overtakes its previous value. |
| */ |
| u64 val = 1ULL << 31; |
| local64_set(&hwc->prev_count, val); |
| pmu_write_counter(event, val); |
| } |
| |
| static irqreturn_t pmu_handle_irq(int irq_num, void *dev) |
| { |
| unsigned long flags; |
| struct cci_pmu *cci_pmu = dev; |
| struct cci_pmu_hw_events *events = &pmu->hw_events; |
| int idx, handled = IRQ_NONE; |
| |
| raw_spin_lock_irqsave(&events->pmu_lock, flags); |
| /* |
| * Iterate over counters and update the corresponding perf events. |
| * This should work regardless of whether we have per-counter overflow |
| * interrupt or a combined overflow interrupt. |
| */ |
| for (idx = CCI_PMU_CYCLE_CNTR_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) { |
| struct perf_event *event = events->events[idx]; |
| struct hw_perf_event *hw_counter; |
| |
| if (!event) |
| continue; |
| |
| hw_counter = &event->hw; |
| |
| /* Did this counter overflow? */ |
| if (!(pmu_read_register(idx, CCI_PMU_OVRFLW) & |
| CCI_PMU_OVRFLW_FLAG)) |
| continue; |
| |
| pmu_write_register(CCI_PMU_OVRFLW_FLAG, idx, CCI_PMU_OVRFLW); |
| |
| pmu_event_update(event); |
| pmu_event_set_period(event); |
| handled = IRQ_HANDLED; |
| } |
| raw_spin_unlock_irqrestore(&events->pmu_lock, flags); |
| |
| return IRQ_RETVAL(handled); |
| } |
| |
| static int cci_pmu_get_hw(struct cci_pmu *cci_pmu) |
| { |
| int ret = pmu_request_irq(cci_pmu, pmu_handle_irq); |
| if (ret) { |
| pmu_free_irq(cci_pmu); |
| return ret; |
| } |
| return 0; |
| } |
| |
| static void cci_pmu_put_hw(struct cci_pmu *cci_pmu) |
| { |
| pmu_free_irq(cci_pmu); |
| } |
| |
| static void hw_perf_event_destroy(struct perf_event *event) |
| { |
| struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); |
| atomic_t *active_events = &cci_pmu->active_events; |
| struct mutex *reserve_mutex = &cci_pmu->reserve_mutex; |
| |
| if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) { |
| cci_pmu_put_hw(cci_pmu); |
| mutex_unlock(reserve_mutex); |
| } |
| } |
| |
| static void cci_pmu_enable(struct pmu *pmu) |
| { |
| struct cci_pmu *cci_pmu = to_cci_pmu(pmu); |
| struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; |
| int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_events); |
| unsigned long flags; |
| u32 val; |
| |
| if (!enabled) |
| return; |
| |
| raw_spin_lock_irqsave(&hw_events->pmu_lock, flags); |
| |
| /* Enable all the PMU counters. */ |
| val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN; |
| writel(val, cci_ctrl_base + CCI_PMCR); |
| raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); |
| |
| } |
| |
| static void cci_pmu_disable(struct pmu *pmu) |
| { |
| struct cci_pmu *cci_pmu = to_cci_pmu(pmu); |
| struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; |
| unsigned long flags; |
| u32 val; |
| |
| raw_spin_lock_irqsave(&hw_events->pmu_lock, flags); |
| |
| /* Disable all the PMU counters. */ |
| val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN; |
| writel(val, cci_ctrl_base + CCI_PMCR); |
| raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); |
| } |
| |
| static void cci_pmu_start(struct perf_event *event, int pmu_flags) |
| { |
| struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); |
| struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->idx; |
| unsigned long flags; |
| |
| /* |
| * To handle interrupt latency, we always reprogram the period |
| * regardlesss of PERF_EF_RELOAD. |
| */ |
| if (pmu_flags & PERF_EF_RELOAD) |
| WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); |
| |
| hwc->state = 0; |
| |
| if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { |
| dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); |
| return; |
| } |
| |
| raw_spin_lock_irqsave(&hw_events->pmu_lock, flags); |
| |
| /* Configure the event to count, unless you are counting cycles */ |
| if (idx != CCI_PMU_CYCLE_CNTR_IDX) |
| pmu_set_event(idx, hwc->config_base); |
| |
| pmu_event_set_period(event); |
| pmu_enable_counter(idx); |
| |
| raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); |
| } |
| |
| static void cci_pmu_stop(struct perf_event *event, int pmu_flags) |
| { |
| struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->idx; |
| |
| if (hwc->state & PERF_HES_STOPPED) |
| return; |
| |
| if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { |
| dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); |
| return; |
| } |
| |
| /* |
| * We always reprogram the counter, so ignore PERF_EF_UPDATE. See |
| * cci_pmu_start() |
| */ |
| pmu_disable_counter(idx); |
| pmu_event_update(event); |
| hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; |
| } |
| |
| static int cci_pmu_add(struct perf_event *event, int flags) |
| { |
| struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); |
| struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; |
| struct hw_perf_event *hwc = &event->hw; |
| int idx; |
| int err = 0; |
| |
| perf_pmu_disable(event->pmu); |
| |
| /* If we don't have a space for the counter then finish early. */ |
| idx = pmu_get_event_idx(hw_events, event); |
| if (idx < 0) { |
| err = idx; |
| goto out; |
| } |
| |
| event->hw.idx = idx; |
| hw_events->events[idx] = event; |
| |
| hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; |
| if (flags & PERF_EF_START) |
| cci_pmu_start(event, PERF_EF_RELOAD); |
| |
| /* Propagate our changes to the userspace mapping. */ |
| perf_event_update_userpage(event); |
| |
| out: |
| perf_pmu_enable(event->pmu); |
| return err; |
| } |
| |
| static void cci_pmu_del(struct perf_event *event, int flags) |
| { |
| struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); |
| struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->idx; |
| |
| cci_pmu_stop(event, PERF_EF_UPDATE); |
| hw_events->events[idx] = NULL; |
| clear_bit(idx, hw_events->used_mask); |
| |
| perf_event_update_userpage(event); |
| } |
| |
| static int |
| validate_event(struct pmu *cci_pmu, |
| struct cci_pmu_hw_events *hw_events, |
| struct perf_event *event) |
| { |
| if (is_software_event(event)) |
| return 1; |
| |
| /* |
| * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The |
| * core perf code won't check that the pmu->ctx == leader->ctx |
| * until after pmu->event_init(event). |
| */ |
| if (event->pmu != cci_pmu) |
| return 0; |
| |
| if (event->state < PERF_EVENT_STATE_OFF) |
| return 1; |
| |
| if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) |
| return 1; |
| |
| return pmu_get_event_idx(hw_events, event) >= 0; |
| } |
| |
| static int |
| validate_group(struct perf_event *event) |
| { |
| struct perf_event *sibling, *leader = event->group_leader; |
| struct cci_pmu_hw_events fake_pmu = { |
| /* |
| * Initialise the fake PMU. We only need to populate the |
| * used_mask for the purposes of validation. |
| */ |
| .used_mask = CPU_BITS_NONE, |
| }; |
| |
| if (!validate_event(event->pmu, &fake_pmu, leader)) |
| return -EINVAL; |
| |
| list_for_each_entry(sibling, &leader->sibling_list, group_entry) { |
| if (!validate_event(event->pmu, &fake_pmu, sibling)) |
| return -EINVAL; |
| } |
| |
| if (!validate_event(event->pmu, &fake_pmu, event)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int |
| __hw_perf_event_init(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| int mapping; |
| |
| mapping = pmu_map_event(event); |
| |
| if (mapping < 0) { |
| pr_debug("event %x:%llx not supported\n", event->attr.type, |
| event->attr.config); |
| return mapping; |
| } |
| |
| /* |
| * We don't assign an index until we actually place the event onto |
| * hardware. Use -1 to signify that we haven't decided where to put it |
| * yet. |
| */ |
| hwc->idx = -1; |
| hwc->config_base = 0; |
| hwc->config = 0; |
| hwc->event_base = 0; |
| |
| /* |
| * Store the event encoding into the config_base field. |
| */ |
| hwc->config_base |= (unsigned long)mapping; |
| |
| /* |
| * Limit the sample_period to half of the counter width. That way, the |
| * new counter value is far less likely to overtake the previous one |
| * unless you have some serious IRQ latency issues. |
| */ |
| hwc->sample_period = CCI_PMU_CNTR_MASK >> 1; |
| hwc->last_period = hwc->sample_period; |
| local64_set(&hwc->period_left, hwc->sample_period); |
| |
| if (event->group_leader != event) { |
| if (validate_group(event) != 0) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int cci_pmu_event_init(struct perf_event *event) |
| { |
| struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); |
| atomic_t *active_events = &cci_pmu->active_events; |
| int err = 0; |
| int cpu; |
| |
| if (event->attr.type != event->pmu->type) |
| return -ENOENT; |
| |
| /* Shared by all CPUs, no meaningful state to sample */ |
| if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK) |
| return -EOPNOTSUPP; |
| |
| /* We have no filtering of any kind */ |
| if (event->attr.exclude_user || |
| event->attr.exclude_kernel || |
| event->attr.exclude_hv || |
| event->attr.exclude_idle || |
| event->attr.exclude_host || |
| event->attr.exclude_guest) |
| return -EINVAL; |
| |
| /* |
| * Following the example set by other "uncore" PMUs, we accept any CPU |
| * and rewrite its affinity dynamically rather than having perf core |
| * handle cpu == -1 and pid == -1 for this case. |
| * |
| * The perf core will pin online CPUs for the duration of this call and |
| * the event being installed into its context, so the PMU's CPU can't |
| * change under our feet. |
| */ |
| cpu = cpumask_first(&cci_pmu->cpus); |
| if (event->cpu < 0 || cpu < 0) |
| return -EINVAL; |
| event->cpu = cpu; |
| |
| event->destroy = hw_perf_event_destroy; |
| if (!atomic_inc_not_zero(active_events)) { |
| mutex_lock(&cci_pmu->reserve_mutex); |
| if (atomic_read(active_events) == 0) |
| err = cci_pmu_get_hw(cci_pmu); |
| if (!err) |
| atomic_inc(active_events); |
| mutex_unlock(&cci_pmu->reserve_mutex); |
| } |
| if (err) |
| return err; |
| |
| err = __hw_perf_event_init(event); |
| if (err) |
| hw_perf_event_destroy(event); |
| |
| return err; |
| } |
| |
| static ssize_t pmu_attr_cpumask_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| int n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl", |
| cpumask_pr_args(&pmu->cpus)); |
| buf[n++] = '\n'; |
| buf[n] = '\0'; |
| return n; |
| } |
| |
| static DEVICE_ATTR(cpumask, S_IRUGO, pmu_attr_cpumask_show, NULL); |
| |
| static struct attribute *pmu_attrs[] = { |
| &dev_attr_cpumask.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group pmu_attr_group = { |
| .attrs = pmu_attrs, |
| }; |
| |
| static const struct attribute_group *pmu_attr_groups[] = { |
| &pmu_attr_group, |
| NULL |
| }; |
| |
| static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev) |
| { |
| char *name = pmu_names[probe_cci_revision()]; |
| cci_pmu->pmu = (struct pmu) { |
| .name = pmu_names[probe_cci_revision()], |
| .task_ctx_nr = perf_invalid_context, |
| .pmu_enable = cci_pmu_enable, |
| .pmu_disable = cci_pmu_disable, |
| .event_init = cci_pmu_event_init, |
| .add = cci_pmu_add, |
| .del = cci_pmu_del, |
| .start = cci_pmu_start, |
| .stop = cci_pmu_stop, |
| .read = pmu_read, |
| .attr_groups = pmu_attr_groups, |
| }; |
| |
| cci_pmu->plat_device = pdev; |
| cci_pmu->num_events = pmu_get_max_counters(); |
| |
| return perf_pmu_register(&cci_pmu->pmu, name, -1); |
| } |
| |
| static int cci_pmu_cpu_notifier(struct notifier_block *self, |
| unsigned long action, void *hcpu) |
| { |
| unsigned int cpu = (long)hcpu; |
| unsigned int target; |
| |
| switch (action & ~CPU_TASKS_FROZEN) { |
| case CPU_DOWN_PREPARE: |
| if (!cpumask_test_and_clear_cpu(cpu, &pmu->cpus)) |
| break; |
| target = cpumask_any_but(cpu_online_mask, cpu); |
| if (target < 0) // UP, last CPU |
| break; |
| /* |
| * TODO: migrate context once core races on event->ctx have |
| * been fixed. |
| */ |
| cpumask_set_cpu(target, &pmu->cpus); |
| default: |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block cci_pmu_cpu_nb = { |
| .notifier_call = cci_pmu_cpu_notifier, |
| /* |
| * to migrate uncore events, our notifier should be executed |
| * before perf core's notifier. |
| */ |
| .priority = CPU_PRI_PERF + 1, |
| }; |
| |
| static const struct of_device_id arm_cci_pmu_matches[] = { |
| { |
| .compatible = "arm,cci-400-pmu", |
| }, |
| {}, |
| }; |
| |
| static int cci_pmu_probe(struct platform_device *pdev) |
| { |
| struct resource *res; |
| int i, ret, irq; |
| |
| pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL); |
| if (!pmu) |
| return -ENOMEM; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| pmu->base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(pmu->base)) |
| return -ENOMEM; |
| |
| /* |
| * CCI PMU has 5 overflow signals - one per counter; but some may be tied |
| * together to a common interrupt. |
| */ |
| pmu->nr_irqs = 0; |
| for (i = 0; i < CCI_PMU_MAX_HW_EVENTS; i++) { |
| irq = platform_get_irq(pdev, i); |
| if (irq < 0) |
| break; |
| |
| if (is_duplicate_irq(irq, pmu->irqs, pmu->nr_irqs)) |
| continue; |
| |
| pmu->irqs[pmu->nr_irqs++] = irq; |
| } |
| |
| /* |
| * Ensure that the device tree has as many interrupts as the number |
| * of counters. |
| */ |
| if (i < CCI_PMU_MAX_HW_EVENTS) { |
| dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n", |
| i, CCI_PMU_MAX_HW_EVENTS); |
| return -EINVAL; |
| } |
| |
| pmu->port_ranges = port_range_by_rev(); |
| if (!pmu->port_ranges) { |
| dev_warn(&pdev->dev, "CCI PMU version not supported\n"); |
| return -EINVAL; |
| } |
| |
| raw_spin_lock_init(&pmu->hw_events.pmu_lock); |
| mutex_init(&pmu->reserve_mutex); |
| atomic_set(&pmu->active_events, 0); |
| cpumask_set_cpu(smp_processor_id(), &pmu->cpus); |
| |
| ret = register_cpu_notifier(&cci_pmu_cpu_nb); |
| if (ret) |
| return ret; |
| |
| ret = cci_pmu_init(pmu, pdev); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int cci_platform_probe(struct platform_device *pdev) |
| { |
| if (!cci_probed()) |
| return -ENODEV; |
| |
| return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev); |
| } |
| |
| #endif /* CONFIG_HW_PERF_EVENTS */ |
| |
| struct cpu_port { |
| u64 mpidr; |
| u32 port; |
| }; |
| |
| /* |
| * Use the port MSB as valid flag, shift can be made dynamic |
| * by computing number of bits required for port indexes. |
| * Code disabling CCI cpu ports runs with D-cache invalidated |
| * and SCTLR bit clear so data accesses must be kept to a minimum |
| * to improve performance; for now shift is left static to |
| * avoid one more data access while disabling the CCI port. |
| */ |
| #define PORT_VALID_SHIFT 31 |
| #define PORT_VALID (0x1 << PORT_VALID_SHIFT) |
| |
| static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr) |
| { |
| port->port = PORT_VALID | index; |
| port->mpidr = mpidr; |
| } |
| |
| static inline bool cpu_port_is_valid(struct cpu_port *port) |
| { |
| return !!(port->port & PORT_VALID); |
| } |
| |
| static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr) |
| { |
| return port->mpidr == (mpidr & MPIDR_HWID_BITMASK); |
| } |
| |
| static struct cpu_port cpu_port[NR_CPUS]; |
| |
| /** |
| * __cci_ace_get_port - Function to retrieve the port index connected to |
| * a cpu or device. |
| * |
| * @dn: device node of the device to look-up |
| * @type: port type |
| * |
| * Return value: |
| * - CCI port index if success |
| * - -ENODEV if failure |
| */ |
| static int __cci_ace_get_port(struct device_node *dn, int type) |
| { |
| int i; |
| bool ace_match; |
| struct device_node *cci_portn; |
| |
| cci_portn = of_parse_phandle(dn, "cci-control-port", 0); |
| for (i = 0; i < nb_cci_ports; i++) { |
| ace_match = ports[i].type == type; |
| if (ace_match && cci_portn == ports[i].dn) |
| return i; |
| } |
| return -ENODEV; |
| } |
| |
| int cci_ace_get_port(struct device_node *dn) |
| { |
| return __cci_ace_get_port(dn, ACE_LITE_PORT); |
| } |
| EXPORT_SYMBOL_GPL(cci_ace_get_port); |
| |
| static void cci_ace_init_ports(void) |
| { |
| int port, cpu; |
| struct device_node *cpun; |
| |
| /* |
| * Port index look-up speeds up the function disabling ports by CPU, |
| * since the logical to port index mapping is done once and does |
| * not change after system boot. |
| * The stashed index array is initialized for all possible CPUs |
| * at probe time. |
| */ |
| for_each_possible_cpu(cpu) { |
| /* too early to use cpu->of_node */ |
| cpun = of_get_cpu_node(cpu, NULL); |
| |
| if (WARN(!cpun, "Missing cpu device node\n")) |
| continue; |
| |
| port = __cci_ace_get_port(cpun, ACE_PORT); |
| if (port < 0) |
| continue; |
| |
| init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu)); |
| } |
| |
| for_each_possible_cpu(cpu) { |
| WARN(!cpu_port_is_valid(&cpu_port[cpu]), |
| "CPU %u does not have an associated CCI port\n", |
| cpu); |
| } |
| } |
| /* |
| * Functions to enable/disable a CCI interconnect slave port |
| * |
| * They are called by low-level power management code to disable slave |
| * interfaces snoops and DVM broadcast. |
| * Since they may execute with cache data allocation disabled and |
| * after the caches have been cleaned and invalidated the functions provide |
| * no explicit locking since they may run with D-cache disabled, so normal |
| * cacheable kernel locks based on ldrex/strex may not work. |
| * Locking has to be provided by BSP implementations to ensure proper |
| * operations. |
| */ |
| |
| /** |
| * cci_port_control() - function to control a CCI port |
| * |
| * @port: index of the port to setup |
| * @enable: if true enables the port, if false disables it |
| */ |
| static void notrace cci_port_control(unsigned int port, bool enable) |
| { |
| void __iomem *base = ports[port].base; |
| |
| writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL); |
| /* |
| * This function is called from power down procedures |
| * and must not execute any instruction that might |
| * cause the processor to be put in a quiescent state |
| * (eg wfi). Hence, cpu_relax() can not be added to this |
| * read loop to optimize power, since it might hide possibly |
| * disruptive operations. |
| */ |
| while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1) |
| ; |
| } |
| |
| /** |
| * cci_disable_port_by_cpu() - function to disable a CCI port by CPU |
| * reference |
| * |
| * @mpidr: mpidr of the CPU whose CCI port should be disabled |
| * |
| * Disabling a CCI port for a CPU implies disabling the CCI port |
| * controlling that CPU cluster. Code disabling CPU CCI ports |
| * must make sure that the CPU running the code is the last active CPU |
| * in the cluster ie all other CPUs are quiescent in a low power state. |
| * |
| * Return: |
| * 0 on success |
| * -ENODEV on port look-up failure |
| */ |
| int notrace cci_disable_port_by_cpu(u64 mpidr) |
| { |
| int cpu; |
| bool is_valid; |
| for (cpu = 0; cpu < nr_cpu_ids; cpu++) { |
| is_valid = cpu_port_is_valid(&cpu_port[cpu]); |
| if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) { |
| cci_port_control(cpu_port[cpu].port, false); |
| return 0; |
| } |
| } |
| return -ENODEV; |
| } |
| EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu); |
| |
| /** |
| * cci_enable_port_for_self() - enable a CCI port for calling CPU |
| * |
| * Enabling a CCI port for the calling CPU implies enabling the CCI |
| * port controlling that CPU's cluster. Caller must make sure that the |
| * CPU running the code is the first active CPU in the cluster and all |
| * other CPUs are quiescent in a low power state or waiting for this CPU |
| * to complete the CCI initialization. |
| * |
| * Because this is called when the MMU is still off and with no stack, |
| * the code must be position independent and ideally rely on callee |
| * clobbered registers only. To achieve this we must code this function |
| * entirely in assembler. |
| * |
| * On success this returns with the proper CCI port enabled. In case of |
| * any failure this never returns as the inability to enable the CCI is |
| * fatal and there is no possible recovery at this stage. |
| */ |
| asmlinkage void __naked cci_enable_port_for_self(void) |
| { |
| asm volatile ("\n" |
| " .arch armv7-a\n" |
| " mrc p15, 0, r0, c0, c0, 5 @ get MPIDR value \n" |
| " and r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n" |
| " adr r1, 5f \n" |
| " ldr r2, [r1] \n" |
| " add r1, r1, r2 @ &cpu_port \n" |
| " add ip, r1, %[sizeof_cpu_port] \n" |
| |
| /* Loop over the cpu_port array looking for a matching MPIDR */ |
| "1: ldr r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n" |
| " cmp r2, r0 @ compare MPIDR \n" |
| " bne 2f \n" |
| |
| /* Found a match, now test port validity */ |
| " ldr r3, [r1, %[offsetof_cpu_port_port]] \n" |
| " tst r3, #"__stringify(PORT_VALID)" \n" |
| " bne 3f \n" |
| |
| /* no match, loop with the next cpu_port entry */ |
| "2: add r1, r1, %[sizeof_struct_cpu_port] \n" |
| " cmp r1, ip @ done? \n" |
| " blo 1b \n" |
| |
| /* CCI port not found -- cheaply try to stall this CPU */ |
| "cci_port_not_found: \n" |
| " wfi \n" |
| " wfe \n" |
| " b cci_port_not_found \n" |
| |
| /* Use matched port index to look up the corresponding ports entry */ |
| "3: bic r3, r3, #"__stringify(PORT_VALID)" \n" |
| " adr r0, 6f \n" |
| " ldmia r0, {r1, r2} \n" |
| " sub r1, r1, r0 @ virt - phys \n" |
| " ldr r0, [r0, r2] @ *(&ports) \n" |
| " mov r2, %[sizeof_struct_ace_port] \n" |
| " mla r0, r2, r3, r0 @ &ports[index] \n" |
| " sub r0, r0, r1 @ virt_to_phys() \n" |
| |
| /* Enable the CCI port */ |
| " ldr r0, [r0, %[offsetof_port_phys]] \n" |
| " mov r3, %[cci_enable_req]\n" |
| " str r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n" |
| |
| /* poll the status reg for completion */ |
| " adr r1, 7f \n" |
| " ldr r0, [r1] \n" |
| " ldr r0, [r0, r1] @ cci_ctrl_base \n" |
| "4: ldr r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n" |
| " tst r1, %[cci_control_status_bits] \n" |
| " bne 4b \n" |
| |
| " mov r0, #0 \n" |
| " bx lr \n" |
| |
| " .align 2 \n" |
| "5: .word cpu_port - . \n" |
| "6: .word . \n" |
| " .word ports - 6b \n" |
| "7: .word cci_ctrl_phys - . \n" |
| : : |
| [sizeof_cpu_port] "i" (sizeof(cpu_port)), |
| [cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ), |
| [cci_control_status_bits] "i" cpu_to_le32(1), |
| #ifndef __ARMEB__ |
| [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)), |
| #else |
| [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4), |
| #endif |
| [offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)), |
| [sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)), |
| [sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)), |
| [offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) ); |
| |
| unreachable(); |
| } |
| |
| /** |
| * __cci_control_port_by_device() - function to control a CCI port by device |
| * reference |
| * |
| * @dn: device node pointer of the device whose CCI port should be |
| * controlled |
| * @enable: if true enables the port, if false disables it |
| * |
| * Return: |
| * 0 on success |
| * -ENODEV on port look-up failure |
| */ |
| int notrace __cci_control_port_by_device(struct device_node *dn, bool enable) |
| { |
| int port; |
| |
| if (!dn) |
| return -ENODEV; |
| |
| port = __cci_ace_get_port(dn, ACE_LITE_PORT); |
| if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n", |
| dn->full_name)) |
| return -ENODEV; |
| cci_port_control(port, enable); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(__cci_control_port_by_device); |
| |
| /** |
| * __cci_control_port_by_index() - function to control a CCI port by port index |
| * |
| * @port: port index previously retrieved with cci_ace_get_port() |
| * @enable: if true enables the port, if false disables it |
| * |
| * Return: |
| * 0 on success |
| * -ENODEV on port index out of range |
| * -EPERM if operation carried out on an ACE PORT |
| */ |
| int notrace __cci_control_port_by_index(u32 port, bool enable) |
| { |
| if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT) |
| return -ENODEV; |
| /* |
| * CCI control for ports connected to CPUS is extremely fragile |
| * and must be made to go through a specific and controlled |
| * interface (ie cci_disable_port_by_cpu(); control by general purpose |
| * indexing is therefore disabled for ACE ports. |
| */ |
| if (ports[port].type == ACE_PORT) |
| return -EPERM; |
| |
| cci_port_control(port, enable); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(__cci_control_port_by_index); |
| |
| static const struct cci_nb_ports cci400_ports = { |
| .nb_ace = 2, |
| .nb_ace_lite = 3 |
| }; |
| |
| static const struct of_device_id arm_cci_matches[] = { |
| {.compatible = "arm,cci-400", .data = &cci400_ports }, |
| {}, |
| }; |
| |
| static const struct of_device_id arm_cci_ctrl_if_matches[] = { |
| {.compatible = "arm,cci-400-ctrl-if", }, |
| {}, |
| }; |
| |
| static int cci_probe(void) |
| { |
| struct cci_nb_ports const *cci_config; |
| int ret, i, nb_ace = 0, nb_ace_lite = 0; |
| struct device_node *np, *cp; |
| struct resource res; |
| const char *match_str; |
| bool is_ace; |
| |
| np = of_find_matching_node(NULL, arm_cci_matches); |
| if (!np) |
| return -ENODEV; |
| |
| if (!of_device_is_available(np)) |
| return -ENODEV; |
| |
| cci_config = of_match_node(arm_cci_matches, np)->data; |
| if (!cci_config) |
| return -ENODEV; |
| |
| nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite; |
| |
| ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL); |
| if (!ports) |
| return -ENOMEM; |
| |
| ret = of_address_to_resource(np, 0, &res); |
| if (!ret) { |
| cci_ctrl_base = ioremap(res.start, resource_size(&res)); |
| cci_ctrl_phys = res.start; |
| } |
| if (ret || !cci_ctrl_base) { |
| WARN(1, "unable to ioremap CCI ctrl\n"); |
| ret = -ENXIO; |
| goto memalloc_err; |
| } |
| |
| for_each_child_of_node(np, cp) { |
| if (!of_match_node(arm_cci_ctrl_if_matches, cp)) |
| continue; |
| |
| i = nb_ace + nb_ace_lite; |
| |
| if (i >= nb_cci_ports) |
| break; |
| |
| if (of_property_read_string(cp, "interface-type", |
| &match_str)) { |
| WARN(1, "node %s missing interface-type property\n", |
| cp->full_name); |
| continue; |
| } |
| is_ace = strcmp(match_str, "ace") == 0; |
| if (!is_ace && strcmp(match_str, "ace-lite")) { |
| WARN(1, "node %s containing invalid interface-type property, skipping it\n", |
| cp->full_name); |
| continue; |
| } |
| |
| ret = of_address_to_resource(cp, 0, &res); |
| if (!ret) { |
| ports[i].base = ioremap(res.start, resource_size(&res)); |
| ports[i].phys = res.start; |
| } |
| if (ret || !ports[i].base) { |
| WARN(1, "unable to ioremap CCI port %d\n", i); |
| continue; |
| } |
| |
| if (is_ace) { |
| if (WARN_ON(nb_ace >= cci_config->nb_ace)) |
| continue; |
| ports[i].type = ACE_PORT; |
| ++nb_ace; |
| } else { |
| if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite)) |
| continue; |
| ports[i].type = ACE_LITE_PORT; |
| ++nb_ace_lite; |
| } |
| ports[i].dn = cp; |
| } |
| |
| /* initialize a stashed array of ACE ports to speed-up look-up */ |
| cci_ace_init_ports(); |
| |
| /* |
| * Multi-cluster systems may need this data when non-coherent, during |
| * cluster power-up/power-down. Make sure it reaches main memory. |
| */ |
| sync_cache_w(&cci_ctrl_base); |
| sync_cache_w(&cci_ctrl_phys); |
| sync_cache_w(&ports); |
| sync_cache_w(&cpu_port); |
| __sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports); |
| pr_info("ARM CCI driver probed\n"); |
| return 0; |
| |
| memalloc_err: |
| |
| kfree(ports); |
| return ret; |
| } |
| |
| static int cci_init_status = -EAGAIN; |
| static DEFINE_MUTEX(cci_probing); |
| |
| static int cci_init(void) |
| { |
| if (cci_init_status != -EAGAIN) |
| return cci_init_status; |
| |
| mutex_lock(&cci_probing); |
| if (cci_init_status == -EAGAIN) |
| cci_init_status = cci_probe(); |
| mutex_unlock(&cci_probing); |
| return cci_init_status; |
| } |
| |
| #ifdef CONFIG_HW_PERF_EVENTS |
| static struct platform_driver cci_pmu_driver = { |
| .driver = { |
| .name = DRIVER_NAME_PMU, |
| .of_match_table = arm_cci_pmu_matches, |
| }, |
| .probe = cci_pmu_probe, |
| }; |
| |
| static struct platform_driver cci_platform_driver = { |
| .driver = { |
| .name = DRIVER_NAME, |
| .of_match_table = arm_cci_matches, |
| }, |
| .probe = cci_platform_probe, |
| }; |
| |
| static int __init cci_platform_init(void) |
| { |
| int ret; |
| |
| ret = platform_driver_register(&cci_pmu_driver); |
| if (ret) |
| return ret; |
| |
| return platform_driver_register(&cci_platform_driver); |
| } |
| |
| #else |
| |
| static int __init cci_platform_init(void) |
| { |
| return 0; |
| } |
| |
| #endif |
| /* |
| * To sort out early init calls ordering a helper function is provided to |
| * check if the CCI driver has beed initialized. Function check if the driver |
| * has been initialized, if not it calls the init function that probes |
| * the driver and updates the return value. |
| */ |
| bool cci_probed(void) |
| { |
| return cci_init() == 0; |
| } |
| EXPORT_SYMBOL_GPL(cci_probed); |
| |
| early_initcall(cci_init); |
| core_initcall(cci_platform_init); |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("ARM CCI support"); |