| /* |
| * arch/arm/include/asm/pgtable-3level.h |
| * |
| * Copyright (C) 2011 ARM Ltd. |
| * Author: Catalin Marinas <catalin.marinas@arm.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| #ifndef _ASM_PGTABLE_3LEVEL_H |
| #define _ASM_PGTABLE_3LEVEL_H |
| |
| /* |
| * With LPAE, there are 3 levels of page tables. Each level has 512 entries of |
| * 8 bytes each, occupying a 4K page. The first level table covers a range of |
| * 512GB, each entry representing 1GB. Since we are limited to 4GB input |
| * address range, only 4 entries in the PGD are used. |
| * |
| * There are enough spare bits in a page table entry for the kernel specific |
| * state. |
| */ |
| #define PTRS_PER_PTE 512 |
| #define PTRS_PER_PMD 512 |
| #define PTRS_PER_PGD 4 |
| |
| #define PTE_HWTABLE_PTRS (0) |
| #define PTE_HWTABLE_OFF (0) |
| #define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u64)) |
| |
| /* |
| * PGDIR_SHIFT determines the size a top-level page table entry can map. |
| */ |
| #define PGDIR_SHIFT 30 |
| |
| /* |
| * PMD_SHIFT determines the size a middle-level page table entry can map. |
| */ |
| #define PMD_SHIFT 21 |
| |
| #define PMD_SIZE (1UL << PMD_SHIFT) |
| #define PMD_MASK (~((1 << PMD_SHIFT) - 1)) |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~((1 << PGDIR_SHIFT) - 1)) |
| |
| /* |
| * section address mask and size definitions. |
| */ |
| #define SECTION_SHIFT 21 |
| #define SECTION_SIZE (1UL << SECTION_SHIFT) |
| #define SECTION_MASK (~((1 << SECTION_SHIFT) - 1)) |
| |
| #define USER_PTRS_PER_PGD (PAGE_OFFSET / PGDIR_SIZE) |
| |
| /* |
| * Hugetlb definitions. |
| */ |
| #define HPAGE_SHIFT PMD_SHIFT |
| #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT) |
| #define HPAGE_MASK (~(HPAGE_SIZE - 1)) |
| #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT) |
| |
| /* |
| * "Linux" PTE definitions for LPAE. |
| * |
| * These bits overlap with the hardware bits but the naming is preserved for |
| * consistency with the classic page table format. |
| */ |
| #define L_PTE_VALID (_AT(pteval_t, 1) << 0) /* Valid */ |
| #define L_PTE_PRESENT (_AT(pteval_t, 3) << 0) /* Present */ |
| #define L_PTE_FILE (_AT(pteval_t, 1) << 2) /* only when !PRESENT */ |
| #define L_PTE_USER (_AT(pteval_t, 1) << 6) /* AP[1] */ |
| #define L_PTE_RDONLY (_AT(pteval_t, 1) << 7) /* AP[2] */ |
| #define L_PTE_SHARED (_AT(pteval_t, 3) << 8) /* SH[1:0], inner shareable */ |
| #define L_PTE_YOUNG (_AT(pteval_t, 1) << 10) /* AF */ |
| #define L_PTE_XN (_AT(pteval_t, 1) << 54) /* XN */ |
| #define L_PTE_DIRTY (_AT(pteval_t, 1) << 55) /* unused */ |
| #define L_PTE_SPECIAL (_AT(pteval_t, 1) << 56) /* unused */ |
| #define L_PTE_NONE (_AT(pteval_t, 1) << 57) /* PROT_NONE */ |
| |
| #define PMD_SECT_VALID (_AT(pmdval_t, 1) << 0) |
| #define PMD_SECT_DIRTY (_AT(pmdval_t, 1) << 55) |
| #define PMD_SECT_SPLITTING (_AT(pmdval_t, 1) << 56) |
| #define PMD_SECT_NONE (_AT(pmdval_t, 1) << 57) |
| |
| /* |
| * To be used in assembly code with the upper page attributes. |
| */ |
| #define L_PTE_XN_HIGH (1 << (54 - 32)) |
| #define L_PTE_DIRTY_HIGH (1 << (55 - 32)) |
| |
| /* |
| * AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers). |
| */ |
| #define L_PTE_MT_UNCACHED (_AT(pteval_t, 0) << 2) /* strongly ordered */ |
| #define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 1) << 2) /* normal non-cacheable */ |
| #define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 2) << 2) /* normal inner write-through */ |
| #define L_PTE_MT_WRITEBACK (_AT(pteval_t, 3) << 2) /* normal inner write-back */ |
| #define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 7) << 2) /* normal inner write-alloc */ |
| #define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 4) << 2) /* device */ |
| #define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 4) << 2) /* device */ |
| #define L_PTE_MT_DEV_WC (_AT(pteval_t, 1) << 2) /* normal non-cacheable */ |
| #define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 3) << 2) /* normal inner write-back */ |
| #define L_PTE_MT_MASK (_AT(pteval_t, 7) << 2) |
| |
| /* |
| * Software PGD flags. |
| */ |
| #define L_PGD_SWAPPER (_AT(pgdval_t, 1) << 55) /* swapper_pg_dir entry */ |
| |
| /* |
| * 2nd stage PTE definitions for LPAE. |
| */ |
| #define L_PTE_S2_MT_UNCACHED (_AT(pteval_t, 0x5) << 2) /* MemAttr[3:0] */ |
| #define L_PTE_S2_MT_WRITETHROUGH (_AT(pteval_t, 0xa) << 2) /* MemAttr[3:0] */ |
| #define L_PTE_S2_MT_WRITEBACK (_AT(pteval_t, 0xf) << 2) /* MemAttr[3:0] */ |
| #define L_PTE_S2_RDONLY (_AT(pteval_t, 1) << 6) /* HAP[1] */ |
| #define L_PTE_S2_RDWR (_AT(pteval_t, 3) << 6) /* HAP[2:1] */ |
| |
| #define L_PMD_S2_RDWR (_AT(pmdval_t, 3) << 6) /* HAP[2:1] */ |
| |
| /* |
| * Hyp-mode PL2 PTE definitions for LPAE. |
| */ |
| #define L_PTE_HYP L_PTE_USER |
| |
| #ifndef __ASSEMBLY__ |
| |
| #define pud_none(pud) (!pud_val(pud)) |
| #define pud_bad(pud) (!(pud_val(pud) & 2)) |
| #define pud_present(pud) (pud_val(pud)) |
| #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ |
| PMD_TYPE_TABLE) |
| #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ |
| PMD_TYPE_SECT) |
| #define pmd_large(pmd) pmd_sect(pmd) |
| |
| #define pud_clear(pudp) \ |
| do { \ |
| *pudp = __pud(0); \ |
| clean_pmd_entry(pudp); \ |
| } while (0) |
| |
| #define set_pud(pudp, pud) \ |
| do { \ |
| *pudp = pud; \ |
| flush_pmd_entry(pudp); \ |
| } while (0) |
| |
| static inline pmd_t *pud_page_vaddr(pud_t pud) |
| { |
| return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK); |
| } |
| |
| /* Find an entry in the second-level page table.. */ |
| #define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)) |
| static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr) |
| { |
| return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(addr); |
| } |
| |
| #define pmd_bad(pmd) (!(pmd_val(pmd) & 2)) |
| |
| #define copy_pmd(pmdpd,pmdps) \ |
| do { \ |
| *pmdpd = *pmdps; \ |
| flush_pmd_entry(pmdpd); \ |
| } while (0) |
| |
| #define pmd_clear(pmdp) \ |
| do { \ |
| *pmdp = __pmd(0); \ |
| clean_pmd_entry(pmdp); \ |
| } while (0) |
| |
| /* |
| * For 3 levels of paging the PTE_EXT_NG bit will be set for user address ptes |
| * that are written to a page table but not for ptes created with mk_pte. |
| * |
| * In hugetlb_no_page, a new huge pte (new_pte) is generated and passed to |
| * hugetlb_cow, where it is compared with an entry in a page table. |
| * This comparison test fails erroneously leading ultimately to a memory leak. |
| * |
| * To correct this behaviour, we mask off PTE_EXT_NG for any pte that is |
| * present before running the comparison. |
| */ |
| #define __HAVE_ARCH_PTE_SAME |
| #define pte_same(pte_a,pte_b) ((pte_present(pte_a) ? pte_val(pte_a) & ~PTE_EXT_NG \ |
| : pte_val(pte_a)) \ |
| == (pte_present(pte_b) ? pte_val(pte_b) & ~PTE_EXT_NG \ |
| : pte_val(pte_b))) |
| |
| #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,__pte(pte_val(pte)|(ext))) |
| |
| #define pte_huge(pte) (pte_val(pte) && !(pte_val(pte) & PTE_TABLE_BIT)) |
| #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT)) |
| |
| #define pmd_young(pmd) (pmd_val(pmd) & PMD_SECT_AF) |
| |
| #define __HAVE_ARCH_PMD_WRITE |
| #define pmd_write(pmd) (!(pmd_val(pmd) & PMD_SECT_RDONLY)) |
| |
| #define pmd_hugewillfault(pmd) (!pmd_young(pmd) || !pmd_write(pmd)) |
| #define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd)) |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| #define pmd_trans_huge(pmd) (pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT)) |
| #define pmd_trans_splitting(pmd) (pmd_val(pmd) & PMD_SECT_SPLITTING) |
| #endif |
| |
| #define PMD_BIT_FUNC(fn,op) \ |
| static inline pmd_t pmd_##fn(pmd_t pmd) { pmd_val(pmd) op; return pmd; } |
| |
| PMD_BIT_FUNC(wrprotect, |= PMD_SECT_RDONLY); |
| PMD_BIT_FUNC(mkold, &= ~PMD_SECT_AF); |
| PMD_BIT_FUNC(mksplitting, |= PMD_SECT_SPLITTING); |
| PMD_BIT_FUNC(mkwrite, &= ~PMD_SECT_RDONLY); |
| PMD_BIT_FUNC(mkdirty, |= PMD_SECT_DIRTY); |
| PMD_BIT_FUNC(mkyoung, |= PMD_SECT_AF); |
| |
| #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT)) |
| |
| #define pmd_pfn(pmd) (((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT) |
| #define pfn_pmd(pfn,prot) (__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))) |
| #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot) |
| |
| /* represent a notpresent pmd by zero, this is used by pmdp_invalidate */ |
| #define pmd_mknotpresent(pmd) (__pmd(0)) |
| |
| static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) |
| { |
| const pmdval_t mask = PMD_SECT_USER | PMD_SECT_XN | PMD_SECT_RDONLY | |
| PMD_SECT_VALID | PMD_SECT_NONE; |
| pmd_val(pmd) = (pmd_val(pmd) & ~mask) | (pgprot_val(newprot) & mask); |
| return pmd; |
| } |
| |
| static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, |
| pmd_t *pmdp, pmd_t pmd) |
| { |
| BUG_ON(addr >= TASK_SIZE); |
| |
| /* create a faulting entry if PROT_NONE protected */ |
| if (pmd_val(pmd) & PMD_SECT_NONE) |
| pmd_val(pmd) &= ~PMD_SECT_VALID; |
| |
| *pmdp = __pmd(pmd_val(pmd) | PMD_SECT_nG); |
| flush_pmd_entry(pmdp); |
| } |
| |
| static inline int has_transparent_hugepage(void) |
| { |
| return 1; |
| } |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| #endif /* _ASM_PGTABLE_3LEVEL_H */ |