blob: 8546c8dccd51b003fc9aba3038184cd2d0eedbea [file] [log] [blame]
/* Copyright (c) 2009-2011, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
*/
#include <linux/module.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/uaccess.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/pm_runtime.h>
#include <linux/usb.h>
#include <linux/usb/otg.h>
#include <linux/usb/ulpi.h>
#include <linux/usb/gadget.h>
#include <linux/usb/hcd.h>
#include <linux/usb/msm_hsusb.h>
#include <linux/usb/msm_hsusb_hw.h>
#include <linux/regulator/consumer.h>
#define MSM_USB_BASE (motg->regs)
#define DRIVER_NAME "msm_otg"
#define ULPI_IO_TIMEOUT_USEC (10 * 1000)
#define USB_PHY_3P3_VOL_MIN 3050000 /* uV */
#define USB_PHY_3P3_VOL_MAX 3300000 /* uV */
#define USB_PHY_3P3_HPM_LOAD 50000 /* uA */
#define USB_PHY_3P3_LPM_LOAD 4000 /* uA */
#define USB_PHY_1P8_VOL_MIN 1800000 /* uV */
#define USB_PHY_1P8_VOL_MAX 1800000 /* uV */
#define USB_PHY_1P8_HPM_LOAD 50000 /* uA */
#define USB_PHY_1P8_LPM_LOAD 4000 /* uA */
#define USB_PHY_VDD_DIG_VOL_MIN 1000000 /* uV */
#define USB_PHY_VDD_DIG_VOL_MAX 1320000 /* uV */
static struct regulator *hsusb_3p3;
static struct regulator *hsusb_1p8;
static struct regulator *hsusb_vddcx;
static int msm_hsusb_init_vddcx(struct msm_otg *motg, int init)
{
int ret = 0;
if (init) {
hsusb_vddcx = regulator_get(motg->phy.dev, "HSUSB_VDDCX");
if (IS_ERR(hsusb_vddcx)) {
dev_err(motg->phy.dev, "unable to get hsusb vddcx\n");
return PTR_ERR(hsusb_vddcx);
}
ret = regulator_set_voltage(hsusb_vddcx,
USB_PHY_VDD_DIG_VOL_MIN,
USB_PHY_VDD_DIG_VOL_MAX);
if (ret) {
dev_err(motg->phy.dev, "unable to set the voltage "
"for hsusb vddcx\n");
regulator_put(hsusb_vddcx);
return ret;
}
ret = regulator_enable(hsusb_vddcx);
if (ret) {
dev_err(motg->phy.dev, "unable to enable hsusb vddcx\n");
regulator_put(hsusb_vddcx);
}
} else {
ret = regulator_set_voltage(hsusb_vddcx, 0,
USB_PHY_VDD_DIG_VOL_MAX);
if (ret)
dev_err(motg->phy.dev, "unable to set the voltage "
"for hsusb vddcx\n");
ret = regulator_disable(hsusb_vddcx);
if (ret)
dev_err(motg->phy.dev, "unable to disable hsusb vddcx\n");
regulator_put(hsusb_vddcx);
}
return ret;
}
static int msm_hsusb_ldo_init(struct msm_otg *motg, int init)
{
int rc = 0;
if (init) {
hsusb_3p3 = regulator_get(motg->phy.dev, "HSUSB_3p3");
if (IS_ERR(hsusb_3p3)) {
dev_err(motg->phy.dev, "unable to get hsusb 3p3\n");
return PTR_ERR(hsusb_3p3);
}
rc = regulator_set_voltage(hsusb_3p3, USB_PHY_3P3_VOL_MIN,
USB_PHY_3P3_VOL_MAX);
if (rc) {
dev_err(motg->phy.dev, "unable to set voltage level "
"for hsusb 3p3\n");
goto put_3p3;
}
rc = regulator_enable(hsusb_3p3);
if (rc) {
dev_err(motg->phy.dev, "unable to enable the hsusb 3p3\n");
goto put_3p3;
}
hsusb_1p8 = regulator_get(motg->phy.dev, "HSUSB_1p8");
if (IS_ERR(hsusb_1p8)) {
dev_err(motg->phy.dev, "unable to get hsusb 1p8\n");
rc = PTR_ERR(hsusb_1p8);
goto disable_3p3;
}
rc = regulator_set_voltage(hsusb_1p8, USB_PHY_1P8_VOL_MIN,
USB_PHY_1P8_VOL_MAX);
if (rc) {
dev_err(motg->phy.dev, "unable to set voltage level "
"for hsusb 1p8\n");
goto put_1p8;
}
rc = regulator_enable(hsusb_1p8);
if (rc) {
dev_err(motg->phy.dev, "unable to enable the hsusb 1p8\n");
goto put_1p8;
}
return 0;
}
regulator_disable(hsusb_1p8);
put_1p8:
regulator_put(hsusb_1p8);
disable_3p3:
regulator_disable(hsusb_3p3);
put_3p3:
regulator_put(hsusb_3p3);
return rc;
}
#ifdef CONFIG_PM_SLEEP
#define USB_PHY_SUSP_DIG_VOL 500000
static int msm_hsusb_config_vddcx(int high)
{
int max_vol = USB_PHY_VDD_DIG_VOL_MAX;
int min_vol;
int ret;
if (high)
min_vol = USB_PHY_VDD_DIG_VOL_MIN;
else
min_vol = USB_PHY_SUSP_DIG_VOL;
ret = regulator_set_voltage(hsusb_vddcx, min_vol, max_vol);
if (ret) {
pr_err("%s: unable to set the voltage for regulator "
"HSUSB_VDDCX\n", __func__);
return ret;
}
pr_debug("%s: min_vol:%d max_vol:%d\n", __func__, min_vol, max_vol);
return ret;
}
#endif
static int msm_hsusb_ldo_set_mode(int on)
{
int ret = 0;
if (!hsusb_1p8 || IS_ERR(hsusb_1p8)) {
pr_err("%s: HSUSB_1p8 is not initialized\n", __func__);
return -ENODEV;
}
if (!hsusb_3p3 || IS_ERR(hsusb_3p3)) {
pr_err("%s: HSUSB_3p3 is not initialized\n", __func__);
return -ENODEV;
}
if (on) {
ret = regulator_set_optimum_mode(hsusb_1p8,
USB_PHY_1P8_HPM_LOAD);
if (ret < 0) {
pr_err("%s: Unable to set HPM of the regulator "
"HSUSB_1p8\n", __func__);
return ret;
}
ret = regulator_set_optimum_mode(hsusb_3p3,
USB_PHY_3P3_HPM_LOAD);
if (ret < 0) {
pr_err("%s: Unable to set HPM of the regulator "
"HSUSB_3p3\n", __func__);
regulator_set_optimum_mode(hsusb_1p8,
USB_PHY_1P8_LPM_LOAD);
return ret;
}
} else {
ret = regulator_set_optimum_mode(hsusb_1p8,
USB_PHY_1P8_LPM_LOAD);
if (ret < 0)
pr_err("%s: Unable to set LPM of the regulator "
"HSUSB_1p8\n", __func__);
ret = regulator_set_optimum_mode(hsusb_3p3,
USB_PHY_3P3_LPM_LOAD);
if (ret < 0)
pr_err("%s: Unable to set LPM of the regulator "
"HSUSB_3p3\n", __func__);
}
pr_debug("reg (%s)\n", on ? "HPM" : "LPM");
return ret < 0 ? ret : 0;
}
static int ulpi_read(struct usb_phy *phy, u32 reg)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
int cnt = 0;
/* initiate read operation */
writel(ULPI_RUN | ULPI_READ | ULPI_ADDR(reg),
USB_ULPI_VIEWPORT);
/* wait for completion */
while (cnt < ULPI_IO_TIMEOUT_USEC) {
if (!(readl(USB_ULPI_VIEWPORT) & ULPI_RUN))
break;
udelay(1);
cnt++;
}
if (cnt >= ULPI_IO_TIMEOUT_USEC) {
dev_err(phy->dev, "ulpi_read: timeout %08x\n",
readl(USB_ULPI_VIEWPORT));
return -ETIMEDOUT;
}
return ULPI_DATA_READ(readl(USB_ULPI_VIEWPORT));
}
static int ulpi_write(struct usb_phy *phy, u32 val, u32 reg)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
int cnt = 0;
/* initiate write operation */
writel(ULPI_RUN | ULPI_WRITE |
ULPI_ADDR(reg) | ULPI_DATA(val),
USB_ULPI_VIEWPORT);
/* wait for completion */
while (cnt < ULPI_IO_TIMEOUT_USEC) {
if (!(readl(USB_ULPI_VIEWPORT) & ULPI_RUN))
break;
udelay(1);
cnt++;
}
if (cnt >= ULPI_IO_TIMEOUT_USEC) {
dev_err(phy->dev, "ulpi_write: timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static struct usb_phy_io_ops msm_otg_io_ops = {
.read = ulpi_read,
.write = ulpi_write,
};
static void ulpi_init(struct msm_otg *motg)
{
struct msm_otg_platform_data *pdata = motg->pdata;
int *seq = pdata->phy_init_seq;
if (!seq)
return;
while (seq[0] >= 0) {
dev_vdbg(motg->phy.dev, "ulpi: write 0x%02x to 0x%02x\n",
seq[0], seq[1]);
ulpi_write(&motg->phy, seq[0], seq[1]);
seq += 2;
}
}
static int msm_otg_link_clk_reset(struct msm_otg *motg, bool assert)
{
int ret = 0;
if (!motg->pdata->link_clk_reset)
return ret;
ret = motg->pdata->link_clk_reset(motg->clk, assert);
if (ret)
dev_err(motg->phy.dev, "usb link clk reset %s failed\n",
assert ? "assert" : "deassert");
return ret;
}
static int msm_otg_phy_clk_reset(struct msm_otg *motg)
{
int ret = 0;
if (!motg->pdata->phy_clk_reset)
return ret;
ret = motg->pdata->phy_clk_reset(motg->phy_reset_clk);
if (ret)
dev_err(motg->phy.dev, "usb phy clk reset failed\n");
return ret;
}
static int msm_otg_phy_reset(struct msm_otg *motg)
{
u32 val;
int ret;
int retries;
ret = msm_otg_link_clk_reset(motg, 1);
if (ret)
return ret;
ret = msm_otg_phy_clk_reset(motg);
if (ret)
return ret;
ret = msm_otg_link_clk_reset(motg, 0);
if (ret)
return ret;
val = readl(USB_PORTSC) & ~PORTSC_PTS_MASK;
writel(val | PORTSC_PTS_ULPI, USB_PORTSC);
for (retries = 3; retries > 0; retries--) {
ret = ulpi_write(&motg->phy, ULPI_FUNC_CTRL_SUSPENDM,
ULPI_CLR(ULPI_FUNC_CTRL));
if (!ret)
break;
ret = msm_otg_phy_clk_reset(motg);
if (ret)
return ret;
}
if (!retries)
return -ETIMEDOUT;
/* This reset calibrates the phy, if the above write succeeded */
ret = msm_otg_phy_clk_reset(motg);
if (ret)
return ret;
for (retries = 3; retries > 0; retries--) {
ret = ulpi_read(&motg->phy, ULPI_DEBUG);
if (ret != -ETIMEDOUT)
break;
ret = msm_otg_phy_clk_reset(motg);
if (ret)
return ret;
}
if (!retries)
return -ETIMEDOUT;
dev_info(motg->phy.dev, "phy_reset: success\n");
return 0;
}
#define LINK_RESET_TIMEOUT_USEC (250 * 1000)
static int msm_otg_reset(struct usb_phy *phy)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
struct msm_otg_platform_data *pdata = motg->pdata;
int cnt = 0;
int ret;
u32 val = 0;
u32 ulpi_val = 0;
ret = msm_otg_phy_reset(motg);
if (ret) {
dev_err(phy->dev, "phy_reset failed\n");
return ret;
}
ulpi_init(motg);
writel(USBCMD_RESET, USB_USBCMD);
while (cnt < LINK_RESET_TIMEOUT_USEC) {
if (!(readl(USB_USBCMD) & USBCMD_RESET))
break;
udelay(1);
cnt++;
}
if (cnt >= LINK_RESET_TIMEOUT_USEC)
return -ETIMEDOUT;
/* select ULPI phy */
writel(0x80000000, USB_PORTSC);
msleep(100);
writel(0x0, USB_AHBBURST);
writel(0x00, USB_AHBMODE);
if (pdata->otg_control == OTG_PHY_CONTROL) {
val = readl(USB_OTGSC);
if (pdata->mode == USB_OTG) {
ulpi_val = ULPI_INT_IDGRD | ULPI_INT_SESS_VALID;
val |= OTGSC_IDIE | OTGSC_BSVIE;
} else if (pdata->mode == USB_PERIPHERAL) {
ulpi_val = ULPI_INT_SESS_VALID;
val |= OTGSC_BSVIE;
}
writel(val, USB_OTGSC);
ulpi_write(phy, ulpi_val, ULPI_USB_INT_EN_RISE);
ulpi_write(phy, ulpi_val, ULPI_USB_INT_EN_FALL);
}
return 0;
}
#define PHY_SUSPEND_TIMEOUT_USEC (500 * 1000)
#define PHY_RESUME_TIMEOUT_USEC (100 * 1000)
#ifdef CONFIG_PM_SLEEP
static int msm_otg_suspend(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
struct usb_bus *bus = phy->otg->host;
struct msm_otg_platform_data *pdata = motg->pdata;
int cnt = 0;
if (atomic_read(&motg->in_lpm))
return 0;
disable_irq(motg->irq);
/*
* Chipidea 45-nm PHY suspend sequence:
*
* Interrupt Latch Register auto-clear feature is not present
* in all PHY versions. Latch register is clear on read type.
* Clear latch register to avoid spurious wakeup from
* low power mode (LPM).
*
* PHY comparators are disabled when PHY enters into low power
* mode (LPM). Keep PHY comparators ON in LPM only when we expect
* VBUS/Id notifications from USB PHY. Otherwise turn off USB
* PHY comparators. This save significant amount of power.
*
* PLL is not turned off when PHY enters into low power mode (LPM).
* Disable PLL for maximum power savings.
*/
if (motg->pdata->phy_type == CI_45NM_INTEGRATED_PHY) {
ulpi_read(phy, 0x14);
if (pdata->otg_control == OTG_PHY_CONTROL)
ulpi_write(phy, 0x01, 0x30);
ulpi_write(phy, 0x08, 0x09);
}
/*
* PHY may take some time or even fail to enter into low power
* mode (LPM). Hence poll for 500 msec and reset the PHY and link
* in failure case.
*/
writel(readl(USB_PORTSC) | PORTSC_PHCD, USB_PORTSC);
while (cnt < PHY_SUSPEND_TIMEOUT_USEC) {
if (readl(USB_PORTSC) & PORTSC_PHCD)
break;
udelay(1);
cnt++;
}
if (cnt >= PHY_SUSPEND_TIMEOUT_USEC) {
dev_err(phy->dev, "Unable to suspend PHY\n");
msm_otg_reset(phy);
enable_irq(motg->irq);
return -ETIMEDOUT;
}
/*
* PHY has capability to generate interrupt asynchronously in low
* power mode (LPM). This interrupt is level triggered. So USB IRQ
* line must be disabled till async interrupt enable bit is cleared
* in USBCMD register. Assert STP (ULPI interface STOP signal) to
* block data communication from PHY.
*/
writel(readl(USB_USBCMD) | ASYNC_INTR_CTRL | ULPI_STP_CTRL, USB_USBCMD);
if (motg->pdata->phy_type == SNPS_28NM_INTEGRATED_PHY &&
motg->pdata->otg_control == OTG_PMIC_CONTROL)
writel(readl(USB_PHY_CTRL) | PHY_RETEN, USB_PHY_CTRL);
clk_disable_unprepare(motg->pclk);
clk_disable_unprepare(motg->clk);
if (motg->core_clk)
clk_disable_unprepare(motg->core_clk);
if (!IS_ERR(motg->pclk_src))
clk_disable_unprepare(motg->pclk_src);
if (motg->pdata->phy_type == SNPS_28NM_INTEGRATED_PHY &&
motg->pdata->otg_control == OTG_PMIC_CONTROL) {
msm_hsusb_ldo_set_mode(0);
msm_hsusb_config_vddcx(0);
}
if (device_may_wakeup(phy->dev))
enable_irq_wake(motg->irq);
if (bus)
clear_bit(HCD_FLAG_HW_ACCESSIBLE, &(bus_to_hcd(bus))->flags);
atomic_set(&motg->in_lpm, 1);
enable_irq(motg->irq);
dev_info(phy->dev, "USB in low power mode\n");
return 0;
}
static int msm_otg_resume(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
struct usb_bus *bus = phy->otg->host;
int cnt = 0;
unsigned temp;
if (!atomic_read(&motg->in_lpm))
return 0;
if (!IS_ERR(motg->pclk_src))
clk_prepare_enable(motg->pclk_src);
clk_prepare_enable(motg->pclk);
clk_prepare_enable(motg->clk);
if (motg->core_clk)
clk_prepare_enable(motg->core_clk);
if (motg->pdata->phy_type == SNPS_28NM_INTEGRATED_PHY &&
motg->pdata->otg_control == OTG_PMIC_CONTROL) {
msm_hsusb_ldo_set_mode(1);
msm_hsusb_config_vddcx(1);
writel(readl(USB_PHY_CTRL) & ~PHY_RETEN, USB_PHY_CTRL);
}
temp = readl(USB_USBCMD);
temp &= ~ASYNC_INTR_CTRL;
temp &= ~ULPI_STP_CTRL;
writel(temp, USB_USBCMD);
/*
* PHY comes out of low power mode (LPM) in case of wakeup
* from asynchronous interrupt.
*/
if (!(readl(USB_PORTSC) & PORTSC_PHCD))
goto skip_phy_resume;
writel(readl(USB_PORTSC) & ~PORTSC_PHCD, USB_PORTSC);
while (cnt < PHY_RESUME_TIMEOUT_USEC) {
if (!(readl(USB_PORTSC) & PORTSC_PHCD))
break;
udelay(1);
cnt++;
}
if (cnt >= PHY_RESUME_TIMEOUT_USEC) {
/*
* This is a fatal error. Reset the link and
* PHY. USB state can not be restored. Re-insertion
* of USB cable is the only way to get USB working.
*/
dev_err(phy->dev, "Unable to resume USB."
"Re-plugin the cable\n");
msm_otg_reset(phy);
}
skip_phy_resume:
if (device_may_wakeup(phy->dev))
disable_irq_wake(motg->irq);
if (bus)
set_bit(HCD_FLAG_HW_ACCESSIBLE, &(bus_to_hcd(bus))->flags);
atomic_set(&motg->in_lpm, 0);
if (motg->async_int) {
motg->async_int = 0;
pm_runtime_put(phy->dev);
enable_irq(motg->irq);
}
dev_info(phy->dev, "USB exited from low power mode\n");
return 0;
}
#endif
static void msm_otg_notify_charger(struct msm_otg *motg, unsigned mA)
{
if (motg->cur_power == mA)
return;
/* TODO: Notify PMIC about available current */
dev_info(motg->phy.dev, "Avail curr from USB = %u\n", mA);
motg->cur_power = mA;
}
static int msm_otg_set_power(struct usb_phy *phy, unsigned mA)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
/*
* Gadget driver uses set_power method to notify about the
* available current based on suspend/configured states.
*
* IDEV_CHG can be drawn irrespective of suspend/un-configured
* states when CDP/ACA is connected.
*/
if (motg->chg_type == USB_SDP_CHARGER)
msm_otg_notify_charger(motg, mA);
return 0;
}
static void msm_otg_start_host(struct usb_phy *phy, int on)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
struct msm_otg_platform_data *pdata = motg->pdata;
struct usb_hcd *hcd;
if (!phy->otg->host)
return;
hcd = bus_to_hcd(phy->otg->host);
if (on) {
dev_dbg(phy->dev, "host on\n");
if (pdata->vbus_power)
pdata->vbus_power(1);
/*
* Some boards have a switch cotrolled by gpio
* to enable/disable internal HUB. Enable internal
* HUB before kicking the host.
*/
if (pdata->setup_gpio)
pdata->setup_gpio(OTG_STATE_A_HOST);
#ifdef CONFIG_USB
usb_add_hcd(hcd, hcd->irq, IRQF_SHARED);
device_wakeup_enable(hcd->self.controller);
#endif
} else {
dev_dbg(phy->dev, "host off\n");
#ifdef CONFIG_USB
usb_remove_hcd(hcd);
#endif
if (pdata->setup_gpio)
pdata->setup_gpio(OTG_STATE_UNDEFINED);
if (pdata->vbus_power)
pdata->vbus_power(0);
}
}
static int msm_otg_set_host(struct usb_otg *otg, struct usb_bus *host)
{
struct msm_otg *motg = container_of(otg->phy, struct msm_otg, phy);
struct usb_hcd *hcd;
/*
* Fail host registration if this board can support
* only peripheral configuration.
*/
if (motg->pdata->mode == USB_PERIPHERAL) {
dev_info(otg->phy->dev, "Host mode is not supported\n");
return -ENODEV;
}
if (!host) {
if (otg->phy->state == OTG_STATE_A_HOST) {
pm_runtime_get_sync(otg->phy->dev);
msm_otg_start_host(otg->phy, 0);
otg->host = NULL;
otg->phy->state = OTG_STATE_UNDEFINED;
schedule_work(&motg->sm_work);
} else {
otg->host = NULL;
}
return 0;
}
hcd = bus_to_hcd(host);
hcd->power_budget = motg->pdata->power_budget;
otg->host = host;
dev_dbg(otg->phy->dev, "host driver registered w/ tranceiver\n");
/*
* Kick the state machine work, if peripheral is not supported
* or peripheral is already registered with us.
*/
if (motg->pdata->mode == USB_HOST || otg->gadget) {
pm_runtime_get_sync(otg->phy->dev);
schedule_work(&motg->sm_work);
}
return 0;
}
static void msm_otg_start_peripheral(struct usb_phy *phy, int on)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
struct msm_otg_platform_data *pdata = motg->pdata;
if (!phy->otg->gadget)
return;
if (on) {
dev_dbg(phy->dev, "gadget on\n");
/*
* Some boards have a switch cotrolled by gpio
* to enable/disable internal HUB. Disable internal
* HUB before kicking the gadget.
*/
if (pdata->setup_gpio)
pdata->setup_gpio(OTG_STATE_B_PERIPHERAL);
usb_gadget_vbus_connect(phy->otg->gadget);
} else {
dev_dbg(phy->dev, "gadget off\n");
usb_gadget_vbus_disconnect(phy->otg->gadget);
if (pdata->setup_gpio)
pdata->setup_gpio(OTG_STATE_UNDEFINED);
}
}
static int msm_otg_set_peripheral(struct usb_otg *otg,
struct usb_gadget *gadget)
{
struct msm_otg *motg = container_of(otg->phy, struct msm_otg, phy);
/*
* Fail peripheral registration if this board can support
* only host configuration.
*/
if (motg->pdata->mode == USB_HOST) {
dev_info(otg->phy->dev, "Peripheral mode is not supported\n");
return -ENODEV;
}
if (!gadget) {
if (otg->phy->state == OTG_STATE_B_PERIPHERAL) {
pm_runtime_get_sync(otg->phy->dev);
msm_otg_start_peripheral(otg->phy, 0);
otg->gadget = NULL;
otg->phy->state = OTG_STATE_UNDEFINED;
schedule_work(&motg->sm_work);
} else {
otg->gadget = NULL;
}
return 0;
}
otg->gadget = gadget;
dev_dbg(otg->phy->dev, "peripheral driver registered w/ tranceiver\n");
/*
* Kick the state machine work, if host is not supported
* or host is already registered with us.
*/
if (motg->pdata->mode == USB_PERIPHERAL || otg->host) {
pm_runtime_get_sync(otg->phy->dev);
schedule_work(&motg->sm_work);
}
return 0;
}
static bool msm_chg_check_secondary_det(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
bool ret = false;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
ret = chg_det & (1 << 4);
break;
case SNPS_28NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x87);
ret = chg_det & 1;
break;
default:
break;
}
return ret;
}
static void msm_chg_enable_secondary_det(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
/* Turn off charger block */
chg_det |= ~(1 << 1);
ulpi_write(phy, chg_det, 0x34);
udelay(20);
/* control chg block via ULPI */
chg_det &= ~(1 << 3);
ulpi_write(phy, chg_det, 0x34);
/* put it in host mode for enabling D- source */
chg_det &= ~(1 << 2);
ulpi_write(phy, chg_det, 0x34);
/* Turn on chg detect block */
chg_det &= ~(1 << 1);
ulpi_write(phy, chg_det, 0x34);
udelay(20);
/* enable chg detection */
chg_det &= ~(1 << 0);
ulpi_write(phy, chg_det, 0x34);
break;
case SNPS_28NM_INTEGRATED_PHY:
/*
* Configure DM as current source, DP as current sink
* and enable battery charging comparators.
*/
ulpi_write(phy, 0x8, 0x85);
ulpi_write(phy, 0x2, 0x85);
ulpi_write(phy, 0x1, 0x85);
break;
default:
break;
}
}
static bool msm_chg_check_primary_det(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
bool ret = false;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
ret = chg_det & (1 << 4);
break;
case SNPS_28NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x87);
ret = chg_det & 1;
break;
default:
break;
}
return ret;
}
static void msm_chg_enable_primary_det(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
/* enable chg detection */
chg_det &= ~(1 << 0);
ulpi_write(phy, chg_det, 0x34);
break;
case SNPS_28NM_INTEGRATED_PHY:
/*
* Configure DP as current source, DM as current sink
* and enable battery charging comparators.
*/
ulpi_write(phy, 0x2, 0x85);
ulpi_write(phy, 0x1, 0x85);
break;
default:
break;
}
}
static bool msm_chg_check_dcd(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 line_state;
bool ret = false;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
line_state = ulpi_read(phy, 0x15);
ret = !(line_state & 1);
break;
case SNPS_28NM_INTEGRATED_PHY:
line_state = ulpi_read(phy, 0x87);
ret = line_state & 2;
break;
default:
break;
}
return ret;
}
static void msm_chg_disable_dcd(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
chg_det &= ~(1 << 5);
ulpi_write(phy, chg_det, 0x34);
break;
case SNPS_28NM_INTEGRATED_PHY:
ulpi_write(phy, 0x10, 0x86);
break;
default:
break;
}
}
static void msm_chg_enable_dcd(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
/* Turn on D+ current source */
chg_det |= (1 << 5);
ulpi_write(phy, chg_det, 0x34);
break;
case SNPS_28NM_INTEGRATED_PHY:
/* Data contact detection enable */
ulpi_write(phy, 0x10, 0x85);
break;
default:
break;
}
}
static void msm_chg_block_on(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 func_ctrl, chg_det;
/* put the controller in non-driving mode */
func_ctrl = ulpi_read(phy, ULPI_FUNC_CTRL);
func_ctrl &= ~ULPI_FUNC_CTRL_OPMODE_MASK;
func_ctrl |= ULPI_FUNC_CTRL_OPMODE_NONDRIVING;
ulpi_write(phy, func_ctrl, ULPI_FUNC_CTRL);
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
/* control chg block via ULPI */
chg_det &= ~(1 << 3);
ulpi_write(phy, chg_det, 0x34);
/* Turn on chg detect block */
chg_det &= ~(1 << 1);
ulpi_write(phy, chg_det, 0x34);
udelay(20);
break;
case SNPS_28NM_INTEGRATED_PHY:
/* Clear charger detecting control bits */
ulpi_write(phy, 0x3F, 0x86);
/* Clear alt interrupt latch and enable bits */
ulpi_write(phy, 0x1F, 0x92);
ulpi_write(phy, 0x1F, 0x95);
udelay(100);
break;
default:
break;
}
}
static void msm_chg_block_off(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 func_ctrl, chg_det;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
/* Turn off charger block */
chg_det |= ~(1 << 1);
ulpi_write(phy, chg_det, 0x34);
break;
case SNPS_28NM_INTEGRATED_PHY:
/* Clear charger detecting control bits */
ulpi_write(phy, 0x3F, 0x86);
/* Clear alt interrupt latch and enable bits */
ulpi_write(phy, 0x1F, 0x92);
ulpi_write(phy, 0x1F, 0x95);
break;
default:
break;
}
/* put the controller in normal mode */
func_ctrl = ulpi_read(phy, ULPI_FUNC_CTRL);
func_ctrl &= ~ULPI_FUNC_CTRL_OPMODE_MASK;
func_ctrl |= ULPI_FUNC_CTRL_OPMODE_NORMAL;
ulpi_write(phy, func_ctrl, ULPI_FUNC_CTRL);
}
#define MSM_CHG_DCD_POLL_TIME (100 * HZ/1000) /* 100 msec */
#define MSM_CHG_DCD_MAX_RETRIES 6 /* Tdcd_tmout = 6 * 100 msec */
#define MSM_CHG_PRIMARY_DET_TIME (40 * HZ/1000) /* TVDPSRC_ON */
#define MSM_CHG_SECONDARY_DET_TIME (40 * HZ/1000) /* TVDMSRC_ON */
static void msm_chg_detect_work(struct work_struct *w)
{
struct msm_otg *motg = container_of(w, struct msm_otg, chg_work.work);
struct usb_phy *phy = &motg->phy;
bool is_dcd, tmout, vout;
unsigned long delay;
dev_dbg(phy->dev, "chg detection work\n");
switch (motg->chg_state) {
case USB_CHG_STATE_UNDEFINED:
pm_runtime_get_sync(phy->dev);
msm_chg_block_on(motg);
msm_chg_enable_dcd(motg);
motg->chg_state = USB_CHG_STATE_WAIT_FOR_DCD;
motg->dcd_retries = 0;
delay = MSM_CHG_DCD_POLL_TIME;
break;
case USB_CHG_STATE_WAIT_FOR_DCD:
is_dcd = msm_chg_check_dcd(motg);
tmout = ++motg->dcd_retries == MSM_CHG_DCD_MAX_RETRIES;
if (is_dcd || tmout) {
msm_chg_disable_dcd(motg);
msm_chg_enable_primary_det(motg);
delay = MSM_CHG_PRIMARY_DET_TIME;
motg->chg_state = USB_CHG_STATE_DCD_DONE;
} else {
delay = MSM_CHG_DCD_POLL_TIME;
}
break;
case USB_CHG_STATE_DCD_DONE:
vout = msm_chg_check_primary_det(motg);
if (vout) {
msm_chg_enable_secondary_det(motg);
delay = MSM_CHG_SECONDARY_DET_TIME;
motg->chg_state = USB_CHG_STATE_PRIMARY_DONE;
} else {
motg->chg_type = USB_SDP_CHARGER;
motg->chg_state = USB_CHG_STATE_DETECTED;
delay = 0;
}
break;
case USB_CHG_STATE_PRIMARY_DONE:
vout = msm_chg_check_secondary_det(motg);
if (vout)
motg->chg_type = USB_DCP_CHARGER;
else
motg->chg_type = USB_CDP_CHARGER;
motg->chg_state = USB_CHG_STATE_SECONDARY_DONE;
/* fall through */
case USB_CHG_STATE_SECONDARY_DONE:
motg->chg_state = USB_CHG_STATE_DETECTED;
case USB_CHG_STATE_DETECTED:
msm_chg_block_off(motg);
dev_dbg(phy->dev, "charger = %d\n", motg->chg_type);
schedule_work(&motg->sm_work);
return;
default:
return;
}
schedule_delayed_work(&motg->chg_work, delay);
}
/*
* We support OTG, Peripheral only and Host only configurations. In case
* of OTG, mode switch (host-->peripheral/peripheral-->host) can happen
* via Id pin status or user request (debugfs). Id/BSV interrupts are not
* enabled when switch is controlled by user and default mode is supplied
* by board file, which can be changed by userspace later.
*/
static void msm_otg_init_sm(struct msm_otg *motg)
{
struct msm_otg_platform_data *pdata = motg->pdata;
u32 otgsc = readl(USB_OTGSC);
switch (pdata->mode) {
case USB_OTG:
if (pdata->otg_control == OTG_PHY_CONTROL) {
if (otgsc & OTGSC_ID)
set_bit(ID, &motg->inputs);
else
clear_bit(ID, &motg->inputs);
if (otgsc & OTGSC_BSV)
set_bit(B_SESS_VLD, &motg->inputs);
else
clear_bit(B_SESS_VLD, &motg->inputs);
} else if (pdata->otg_control == OTG_USER_CONTROL) {
if (pdata->default_mode == USB_HOST) {
clear_bit(ID, &motg->inputs);
} else if (pdata->default_mode == USB_PERIPHERAL) {
set_bit(ID, &motg->inputs);
set_bit(B_SESS_VLD, &motg->inputs);
} else {
set_bit(ID, &motg->inputs);
clear_bit(B_SESS_VLD, &motg->inputs);
}
}
break;
case USB_HOST:
clear_bit(ID, &motg->inputs);
break;
case USB_PERIPHERAL:
set_bit(ID, &motg->inputs);
if (otgsc & OTGSC_BSV)
set_bit(B_SESS_VLD, &motg->inputs);
else
clear_bit(B_SESS_VLD, &motg->inputs);
break;
default:
break;
}
}
static void msm_otg_sm_work(struct work_struct *w)
{
struct msm_otg *motg = container_of(w, struct msm_otg, sm_work);
struct usb_otg *otg = motg->phy.otg;
switch (otg->phy->state) {
case OTG_STATE_UNDEFINED:
dev_dbg(otg->phy->dev, "OTG_STATE_UNDEFINED state\n");
msm_otg_reset(otg->phy);
msm_otg_init_sm(motg);
otg->phy->state = OTG_STATE_B_IDLE;
/* FALL THROUGH */
case OTG_STATE_B_IDLE:
dev_dbg(otg->phy->dev, "OTG_STATE_B_IDLE state\n");
if (!test_bit(ID, &motg->inputs) && otg->host) {
/* disable BSV bit */
writel(readl(USB_OTGSC) & ~OTGSC_BSVIE, USB_OTGSC);
msm_otg_start_host(otg->phy, 1);
otg->phy->state = OTG_STATE_A_HOST;
} else if (test_bit(B_SESS_VLD, &motg->inputs)) {
switch (motg->chg_state) {
case USB_CHG_STATE_UNDEFINED:
msm_chg_detect_work(&motg->chg_work.work);
break;
case USB_CHG_STATE_DETECTED:
switch (motg->chg_type) {
case USB_DCP_CHARGER:
msm_otg_notify_charger(motg,
IDEV_CHG_MAX);
break;
case USB_CDP_CHARGER:
msm_otg_notify_charger(motg,
IDEV_CHG_MAX);
msm_otg_start_peripheral(otg->phy, 1);
otg->phy->state
= OTG_STATE_B_PERIPHERAL;
break;
case USB_SDP_CHARGER:
msm_otg_notify_charger(motg, IUNIT);
msm_otg_start_peripheral(otg->phy, 1);
otg->phy->state
= OTG_STATE_B_PERIPHERAL;
break;
default:
break;
}
break;
default:
break;
}
} else {
/*
* If charger detection work is pending, decrement
* the pm usage counter to balance with the one that
* is incremented in charger detection work.
*/
if (cancel_delayed_work_sync(&motg->chg_work)) {
pm_runtime_put_sync(otg->phy->dev);
msm_otg_reset(otg->phy);
}
msm_otg_notify_charger(motg, 0);
motg->chg_state = USB_CHG_STATE_UNDEFINED;
motg->chg_type = USB_INVALID_CHARGER;
}
pm_runtime_put_sync(otg->phy->dev);
break;
case OTG_STATE_B_PERIPHERAL:
dev_dbg(otg->phy->dev, "OTG_STATE_B_PERIPHERAL state\n");
if (!test_bit(B_SESS_VLD, &motg->inputs) ||
!test_bit(ID, &motg->inputs)) {
msm_otg_notify_charger(motg, 0);
msm_otg_start_peripheral(otg->phy, 0);
motg->chg_state = USB_CHG_STATE_UNDEFINED;
motg->chg_type = USB_INVALID_CHARGER;
otg->phy->state = OTG_STATE_B_IDLE;
msm_otg_reset(otg->phy);
schedule_work(w);
}
break;
case OTG_STATE_A_HOST:
dev_dbg(otg->phy->dev, "OTG_STATE_A_HOST state\n");
if (test_bit(ID, &motg->inputs)) {
msm_otg_start_host(otg->phy, 0);
otg->phy->state = OTG_STATE_B_IDLE;
msm_otg_reset(otg->phy);
schedule_work(w);
}
break;
default:
break;
}
}
static irqreturn_t msm_otg_irq(int irq, void *data)
{
struct msm_otg *motg = data;
struct usb_phy *phy = &motg->phy;
u32 otgsc = 0;
if (atomic_read(&motg->in_lpm)) {
disable_irq_nosync(irq);
motg->async_int = 1;
pm_runtime_get(phy->dev);
return IRQ_HANDLED;
}
otgsc = readl(USB_OTGSC);
if (!(otgsc & (OTGSC_IDIS | OTGSC_BSVIS)))
return IRQ_NONE;
if ((otgsc & OTGSC_IDIS) && (otgsc & OTGSC_IDIE)) {
if (otgsc & OTGSC_ID)
set_bit(ID, &motg->inputs);
else
clear_bit(ID, &motg->inputs);
dev_dbg(phy->dev, "ID set/clear\n");
pm_runtime_get_noresume(phy->dev);
} else if ((otgsc & OTGSC_BSVIS) && (otgsc & OTGSC_BSVIE)) {
if (otgsc & OTGSC_BSV)
set_bit(B_SESS_VLD, &motg->inputs);
else
clear_bit(B_SESS_VLD, &motg->inputs);
dev_dbg(phy->dev, "BSV set/clear\n");
pm_runtime_get_noresume(phy->dev);
}
writel(otgsc, USB_OTGSC);
schedule_work(&motg->sm_work);
return IRQ_HANDLED;
}
static int msm_otg_mode_show(struct seq_file *s, void *unused)
{
struct msm_otg *motg = s->private;
struct usb_otg *otg = motg->phy.otg;
switch (otg->phy->state) {
case OTG_STATE_A_HOST:
seq_printf(s, "host\n");
break;
case OTG_STATE_B_PERIPHERAL:
seq_printf(s, "peripheral\n");
break;
default:
seq_printf(s, "none\n");
break;
}
return 0;
}
static int msm_otg_mode_open(struct inode *inode, struct file *file)
{
return single_open(file, msm_otg_mode_show, inode->i_private);
}
static ssize_t msm_otg_mode_write(struct file *file, const char __user *ubuf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct msm_otg *motg = s->private;
char buf[16];
struct usb_otg *otg = motg->phy.otg;
int status = count;
enum usb_mode_type req_mode;
memset(buf, 0x00, sizeof(buf));
if (copy_from_user(&buf, ubuf, min_t(size_t, sizeof(buf) - 1, count))) {
status = -EFAULT;
goto out;
}
if (!strncmp(buf, "host", 4)) {
req_mode = USB_HOST;
} else if (!strncmp(buf, "peripheral", 10)) {
req_mode = USB_PERIPHERAL;
} else if (!strncmp(buf, "none", 4)) {
req_mode = USB_NONE;
} else {
status = -EINVAL;
goto out;
}
switch (req_mode) {
case USB_NONE:
switch (otg->phy->state) {
case OTG_STATE_A_HOST:
case OTG_STATE_B_PERIPHERAL:
set_bit(ID, &motg->inputs);
clear_bit(B_SESS_VLD, &motg->inputs);
break;
default:
goto out;
}
break;
case USB_PERIPHERAL:
switch (otg->phy->state) {
case OTG_STATE_B_IDLE:
case OTG_STATE_A_HOST:
set_bit(ID, &motg->inputs);
set_bit(B_SESS_VLD, &motg->inputs);
break;
default:
goto out;
}
break;
case USB_HOST:
switch (otg->phy->state) {
case OTG_STATE_B_IDLE:
case OTG_STATE_B_PERIPHERAL:
clear_bit(ID, &motg->inputs);
break;
default:
goto out;
}
break;
default:
goto out;
}
pm_runtime_get_sync(otg->phy->dev);
schedule_work(&motg->sm_work);
out:
return status;
}
const struct file_operations msm_otg_mode_fops = {
.open = msm_otg_mode_open,
.read = seq_read,
.write = msm_otg_mode_write,
.llseek = seq_lseek,
.release = single_release,
};
static struct dentry *msm_otg_dbg_root;
static struct dentry *msm_otg_dbg_mode;
static int msm_otg_debugfs_init(struct msm_otg *motg)
{
msm_otg_dbg_root = debugfs_create_dir("msm_otg", NULL);
if (!msm_otg_dbg_root || IS_ERR(msm_otg_dbg_root))
return -ENODEV;
msm_otg_dbg_mode = debugfs_create_file("mode", S_IRUGO | S_IWUSR,
msm_otg_dbg_root, motg, &msm_otg_mode_fops);
if (!msm_otg_dbg_mode) {
debugfs_remove(msm_otg_dbg_root);
msm_otg_dbg_root = NULL;
return -ENODEV;
}
return 0;
}
static void msm_otg_debugfs_cleanup(void)
{
debugfs_remove(msm_otg_dbg_mode);
debugfs_remove(msm_otg_dbg_root);
}
static int __init msm_otg_probe(struct platform_device *pdev)
{
int ret = 0;
struct resource *res;
struct msm_otg *motg;
struct usb_phy *phy;
dev_info(&pdev->dev, "msm_otg probe\n");
if (!dev_get_platdata(&pdev->dev)) {
dev_err(&pdev->dev, "No platform data given. Bailing out\n");
return -ENODEV;
}
motg = kzalloc(sizeof(struct msm_otg), GFP_KERNEL);
if (!motg) {
dev_err(&pdev->dev, "unable to allocate msm_otg\n");
return -ENOMEM;
}
motg->phy.otg = kzalloc(sizeof(struct usb_otg), GFP_KERNEL);
if (!motg->phy.otg) {
dev_err(&pdev->dev, "unable to allocate msm_otg\n");
return -ENOMEM;
}
motg->pdata = dev_get_platdata(&pdev->dev);
phy = &motg->phy;
phy->dev = &pdev->dev;
motg->phy_reset_clk = clk_get(&pdev->dev, "usb_phy_clk");
if (IS_ERR(motg->phy_reset_clk)) {
dev_err(&pdev->dev, "failed to get usb_phy_clk\n");
ret = PTR_ERR(motg->phy_reset_clk);
goto free_motg;
}
motg->clk = clk_get(&pdev->dev, "usb_hs_clk");
if (IS_ERR(motg->clk)) {
dev_err(&pdev->dev, "failed to get usb_hs_clk\n");
ret = PTR_ERR(motg->clk);
goto put_phy_reset_clk;
}
clk_set_rate(motg->clk, 60000000);
/*
* If USB Core is running its protocol engine based on CORE CLK,
* CORE CLK must be running at >55Mhz for correct HSUSB
* operation and USB core cannot tolerate frequency changes on
* CORE CLK. For such USB cores, vote for maximum clk frequency
* on pclk source
*/
if (motg->pdata->pclk_src_name) {
motg->pclk_src = clk_get(&pdev->dev,
motg->pdata->pclk_src_name);
if (IS_ERR(motg->pclk_src))
goto put_clk;
clk_set_rate(motg->pclk_src, INT_MAX);
clk_prepare_enable(motg->pclk_src);
} else
motg->pclk_src = ERR_PTR(-ENOENT);
motg->pclk = clk_get(&pdev->dev, "usb_hs_pclk");
if (IS_ERR(motg->pclk)) {
dev_err(&pdev->dev, "failed to get usb_hs_pclk\n");
ret = PTR_ERR(motg->pclk);
goto put_pclk_src;
}
/*
* USB core clock is not present on all MSM chips. This
* clock is introduced to remove the dependency on AXI
* bus frequency.
*/
motg->core_clk = clk_get(&pdev->dev, "usb_hs_core_clk");
if (IS_ERR(motg->core_clk))
motg->core_clk = NULL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "failed to get platform resource mem\n");
ret = -ENODEV;
goto put_core_clk;
}
motg->regs = ioremap(res->start, resource_size(res));
if (!motg->regs) {
dev_err(&pdev->dev, "ioremap failed\n");
ret = -ENOMEM;
goto put_core_clk;
}
dev_info(&pdev->dev, "OTG regs = %p\n", motg->regs);
motg->irq = platform_get_irq(pdev, 0);
if (!motg->irq) {
dev_err(&pdev->dev, "platform_get_irq failed\n");
ret = -ENODEV;
goto free_regs;
}
clk_prepare_enable(motg->clk);
clk_prepare_enable(motg->pclk);
ret = msm_hsusb_init_vddcx(motg, 1);
if (ret) {
dev_err(&pdev->dev, "hsusb vddcx configuration failed\n");
goto free_regs;
}
ret = msm_hsusb_ldo_init(motg, 1);
if (ret) {
dev_err(&pdev->dev, "hsusb vreg configuration failed\n");
goto vddcx_exit;
}
ret = msm_hsusb_ldo_set_mode(1);
if (ret) {
dev_err(&pdev->dev, "hsusb vreg enable failed\n");
goto ldo_exit;
}
if (motg->core_clk)
clk_prepare_enable(motg->core_clk);
writel(0, USB_USBINTR);
writel(0, USB_OTGSC);
INIT_WORK(&motg->sm_work, msm_otg_sm_work);
INIT_DELAYED_WORK(&motg->chg_work, msm_chg_detect_work);
ret = request_irq(motg->irq, msm_otg_irq, IRQF_SHARED,
"msm_otg", motg);
if (ret) {
dev_err(&pdev->dev, "request irq failed\n");
goto disable_clks;
}
phy->init = msm_otg_reset;
phy->set_power = msm_otg_set_power;
phy->io_ops = &msm_otg_io_ops;
phy->otg->phy = &motg->phy;
phy->otg->set_host = msm_otg_set_host;
phy->otg->set_peripheral = msm_otg_set_peripheral;
ret = usb_add_phy(&motg->phy, USB_PHY_TYPE_USB2);
if (ret) {
dev_err(&pdev->dev, "usb_add_phy failed\n");
goto free_irq;
}
platform_set_drvdata(pdev, motg);
device_init_wakeup(&pdev->dev, 1);
if (motg->pdata->mode == USB_OTG &&
motg->pdata->otg_control == OTG_USER_CONTROL) {
ret = msm_otg_debugfs_init(motg);
if (ret)
dev_dbg(&pdev->dev, "mode debugfs file is"
"not available\n");
}
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
return 0;
free_irq:
free_irq(motg->irq, motg);
disable_clks:
clk_disable_unprepare(motg->pclk);
clk_disable_unprepare(motg->clk);
ldo_exit:
msm_hsusb_ldo_init(motg, 0);
vddcx_exit:
msm_hsusb_init_vddcx(motg, 0);
free_regs:
iounmap(motg->regs);
put_core_clk:
if (motg->core_clk)
clk_put(motg->core_clk);
clk_put(motg->pclk);
put_pclk_src:
if (!IS_ERR(motg->pclk_src)) {
clk_disable_unprepare(motg->pclk_src);
clk_put(motg->pclk_src);
}
put_clk:
clk_put(motg->clk);
put_phy_reset_clk:
clk_put(motg->phy_reset_clk);
free_motg:
kfree(motg->phy.otg);
kfree(motg);
return ret;
}
static int msm_otg_remove(struct platform_device *pdev)
{
struct msm_otg *motg = platform_get_drvdata(pdev);
struct usb_phy *phy = &motg->phy;
int cnt = 0;
if (phy->otg->host || phy->otg->gadget)
return -EBUSY;
msm_otg_debugfs_cleanup();
cancel_delayed_work_sync(&motg->chg_work);
cancel_work_sync(&motg->sm_work);
pm_runtime_resume(&pdev->dev);
device_init_wakeup(&pdev->dev, 0);
pm_runtime_disable(&pdev->dev);
usb_remove_phy(phy);
free_irq(motg->irq, motg);
/*
* Put PHY in low power mode.
*/
ulpi_read(phy, 0x14);
ulpi_write(phy, 0x08, 0x09);
writel(readl(USB_PORTSC) | PORTSC_PHCD, USB_PORTSC);
while (cnt < PHY_SUSPEND_TIMEOUT_USEC) {
if (readl(USB_PORTSC) & PORTSC_PHCD)
break;
udelay(1);
cnt++;
}
if (cnt >= PHY_SUSPEND_TIMEOUT_USEC)
dev_err(phy->dev, "Unable to suspend PHY\n");
clk_disable_unprepare(motg->pclk);
clk_disable_unprepare(motg->clk);
if (motg->core_clk)
clk_disable_unprepare(motg->core_clk);
if (!IS_ERR(motg->pclk_src)) {
clk_disable_unprepare(motg->pclk_src);
clk_put(motg->pclk_src);
}
msm_hsusb_ldo_init(motg, 0);
iounmap(motg->regs);
pm_runtime_set_suspended(&pdev->dev);
clk_put(motg->phy_reset_clk);
clk_put(motg->pclk);
clk_put(motg->clk);
if (motg->core_clk)
clk_put(motg->core_clk);
kfree(motg->phy.otg);
kfree(motg);
return 0;
}
#ifdef CONFIG_PM_RUNTIME
static int msm_otg_runtime_idle(struct device *dev)
{
struct msm_otg *motg = dev_get_drvdata(dev);
struct usb_otg *otg = motg->phy.otg;
dev_dbg(dev, "OTG runtime idle\n");
/*
* It is observed some times that a spurious interrupt
* comes when PHY is put into LPM immediately after PHY reset.
* This 1 sec delay also prevents entering into LPM immediately
* after asynchronous interrupt.
*/
if (otg->phy->state != OTG_STATE_UNDEFINED)
pm_schedule_suspend(dev, 1000);
return -EAGAIN;
}
static int msm_otg_runtime_suspend(struct device *dev)
{
struct msm_otg *motg = dev_get_drvdata(dev);
dev_dbg(dev, "OTG runtime suspend\n");
return msm_otg_suspend(motg);
}
static int msm_otg_runtime_resume(struct device *dev)
{
struct msm_otg *motg = dev_get_drvdata(dev);
dev_dbg(dev, "OTG runtime resume\n");
return msm_otg_resume(motg);
}
#endif
#ifdef CONFIG_PM_SLEEP
static int msm_otg_pm_suspend(struct device *dev)
{
struct msm_otg *motg = dev_get_drvdata(dev);
dev_dbg(dev, "OTG PM suspend\n");
return msm_otg_suspend(motg);
}
static int msm_otg_pm_resume(struct device *dev)
{
struct msm_otg *motg = dev_get_drvdata(dev);
int ret;
dev_dbg(dev, "OTG PM resume\n");
ret = msm_otg_resume(motg);
if (ret)
return ret;
/*
* Runtime PM Documentation recommends bringing the
* device to full powered state upon resume.
*/
pm_runtime_disable(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
return 0;
}
#endif
#ifdef CONFIG_PM
static const struct dev_pm_ops msm_otg_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(msm_otg_pm_suspend, msm_otg_pm_resume)
SET_RUNTIME_PM_OPS(msm_otg_runtime_suspend, msm_otg_runtime_resume,
msm_otg_runtime_idle)
};
#endif
static struct platform_driver msm_otg_driver = {
.remove = msm_otg_remove,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
#ifdef CONFIG_PM
.pm = &msm_otg_dev_pm_ops,
#endif
},
};
module_platform_driver_probe(msm_otg_driver, msm_otg_probe);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MSM USB transceiver driver");