| /* |
| * Input layer to RF Kill interface connector |
| * |
| * Copyright (c) 2007 Dmitry Torokhov |
| * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation. |
| * |
| * If you ever run into a situation in which you have a SW_ type rfkill |
| * input device, then you can revive code that was removed in the patch |
| * "rfkill-input: remove unused code". |
| */ |
| |
| #include <linux/input.h> |
| #include <linux/slab.h> |
| #include <linux/moduleparam.h> |
| #include <linux/workqueue.h> |
| #include <linux/init.h> |
| #include <linux/rfkill.h> |
| #include <linux/sched.h> |
| |
| #include "rfkill.h" |
| |
| enum rfkill_input_master_mode { |
| RFKILL_INPUT_MASTER_UNLOCK = 0, |
| RFKILL_INPUT_MASTER_RESTORE = 1, |
| RFKILL_INPUT_MASTER_UNBLOCKALL = 2, |
| NUM_RFKILL_INPUT_MASTER_MODES |
| }; |
| |
| /* Delay (in ms) between consecutive switch ops */ |
| #define RFKILL_OPS_DELAY 200 |
| |
| static enum rfkill_input_master_mode rfkill_master_switch_mode = |
| RFKILL_INPUT_MASTER_UNBLOCKALL; |
| module_param_named(master_switch_mode, rfkill_master_switch_mode, uint, 0); |
| MODULE_PARM_DESC(master_switch_mode, |
| "SW_RFKILL_ALL ON should: 0=do nothing (only unlock); 1=restore; 2=unblock all"); |
| |
| static spinlock_t rfkill_op_lock; |
| static bool rfkill_op_pending; |
| static unsigned long rfkill_sw_pending[BITS_TO_LONGS(NUM_RFKILL_TYPES)]; |
| static unsigned long rfkill_sw_state[BITS_TO_LONGS(NUM_RFKILL_TYPES)]; |
| |
| enum rfkill_sched_op { |
| RFKILL_GLOBAL_OP_EPO = 0, |
| RFKILL_GLOBAL_OP_RESTORE, |
| RFKILL_GLOBAL_OP_UNLOCK, |
| RFKILL_GLOBAL_OP_UNBLOCK, |
| }; |
| |
| static enum rfkill_sched_op rfkill_master_switch_op; |
| static enum rfkill_sched_op rfkill_op; |
| |
| static void __rfkill_handle_global_op(enum rfkill_sched_op op) |
| { |
| unsigned int i; |
| |
| switch (op) { |
| case RFKILL_GLOBAL_OP_EPO: |
| rfkill_epo(); |
| break; |
| case RFKILL_GLOBAL_OP_RESTORE: |
| rfkill_restore_states(); |
| break; |
| case RFKILL_GLOBAL_OP_UNLOCK: |
| rfkill_remove_epo_lock(); |
| break; |
| case RFKILL_GLOBAL_OP_UNBLOCK: |
| rfkill_remove_epo_lock(); |
| for (i = 0; i < NUM_RFKILL_TYPES; i++) |
| rfkill_switch_all(i, false); |
| break; |
| default: |
| /* memory corruption or bug, fail safely */ |
| rfkill_epo(); |
| WARN(1, "Unknown requested operation %d! " |
| "rfkill Emergency Power Off activated\n", |
| op); |
| } |
| } |
| |
| static void __rfkill_handle_normal_op(const enum rfkill_type type, |
| const bool complement) |
| { |
| bool blocked; |
| |
| blocked = rfkill_get_global_sw_state(type); |
| if (complement) |
| blocked = !blocked; |
| |
| rfkill_switch_all(type, blocked); |
| } |
| |
| static void rfkill_op_handler(struct work_struct *work) |
| { |
| unsigned int i; |
| bool c; |
| |
| spin_lock_irq(&rfkill_op_lock); |
| do { |
| if (rfkill_op_pending) { |
| enum rfkill_sched_op op = rfkill_op; |
| rfkill_op_pending = false; |
| memset(rfkill_sw_pending, 0, |
| sizeof(rfkill_sw_pending)); |
| spin_unlock_irq(&rfkill_op_lock); |
| |
| __rfkill_handle_global_op(op); |
| |
| spin_lock_irq(&rfkill_op_lock); |
| |
| /* |
| * handle global ops first -- during unlocked period |
| * we might have gotten a new global op. |
| */ |
| if (rfkill_op_pending) |
| continue; |
| } |
| |
| if (rfkill_is_epo_lock_active()) |
| continue; |
| |
| for (i = 0; i < NUM_RFKILL_TYPES; i++) { |
| if (__test_and_clear_bit(i, rfkill_sw_pending)) { |
| c = __test_and_clear_bit(i, rfkill_sw_state); |
| spin_unlock_irq(&rfkill_op_lock); |
| |
| __rfkill_handle_normal_op(i, c); |
| |
| spin_lock_irq(&rfkill_op_lock); |
| } |
| } |
| } while (rfkill_op_pending); |
| spin_unlock_irq(&rfkill_op_lock); |
| } |
| |
| static DECLARE_DELAYED_WORK(rfkill_op_work, rfkill_op_handler); |
| static unsigned long rfkill_last_scheduled; |
| |
| static unsigned long rfkill_ratelimit(const unsigned long last) |
| { |
| const unsigned long delay = msecs_to_jiffies(RFKILL_OPS_DELAY); |
| return time_after(jiffies, last + delay) ? 0 : delay; |
| } |
| |
| static void rfkill_schedule_ratelimited(void) |
| { |
| if (schedule_delayed_work(&rfkill_op_work, |
| rfkill_ratelimit(rfkill_last_scheduled))) |
| rfkill_last_scheduled = jiffies; |
| } |
| |
| static void rfkill_schedule_global_op(enum rfkill_sched_op op) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rfkill_op_lock, flags); |
| rfkill_op = op; |
| rfkill_op_pending = true; |
| if (op == RFKILL_GLOBAL_OP_EPO && !rfkill_is_epo_lock_active()) { |
| /* bypass the limiter for EPO */ |
| mod_delayed_work(system_wq, &rfkill_op_work, 0); |
| rfkill_last_scheduled = jiffies; |
| } else |
| rfkill_schedule_ratelimited(); |
| spin_unlock_irqrestore(&rfkill_op_lock, flags); |
| } |
| |
| static void rfkill_schedule_toggle(enum rfkill_type type) |
| { |
| unsigned long flags; |
| |
| if (rfkill_is_epo_lock_active()) |
| return; |
| |
| spin_lock_irqsave(&rfkill_op_lock, flags); |
| if (!rfkill_op_pending) { |
| __set_bit(type, rfkill_sw_pending); |
| __change_bit(type, rfkill_sw_state); |
| rfkill_schedule_ratelimited(); |
| } |
| spin_unlock_irqrestore(&rfkill_op_lock, flags); |
| } |
| |
| static void rfkill_schedule_evsw_rfkillall(int state) |
| { |
| if (state) |
| rfkill_schedule_global_op(rfkill_master_switch_op); |
| else |
| rfkill_schedule_global_op(RFKILL_GLOBAL_OP_EPO); |
| } |
| |
| static void rfkill_event(struct input_handle *handle, unsigned int type, |
| unsigned int code, int data) |
| { |
| if (type == EV_KEY && data == 1) { |
| switch (code) { |
| case KEY_WLAN: |
| rfkill_schedule_toggle(RFKILL_TYPE_WLAN); |
| break; |
| case KEY_BLUETOOTH: |
| rfkill_schedule_toggle(RFKILL_TYPE_BLUETOOTH); |
| break; |
| case KEY_UWB: |
| rfkill_schedule_toggle(RFKILL_TYPE_UWB); |
| break; |
| case KEY_WIMAX: |
| rfkill_schedule_toggle(RFKILL_TYPE_WIMAX); |
| break; |
| case KEY_RFKILL: |
| rfkill_schedule_toggle(RFKILL_TYPE_ALL); |
| break; |
| } |
| } else if (type == EV_SW && code == SW_RFKILL_ALL) |
| rfkill_schedule_evsw_rfkillall(data); |
| } |
| |
| static int rfkill_connect(struct input_handler *handler, struct input_dev *dev, |
| const struct input_device_id *id) |
| { |
| struct input_handle *handle; |
| int error; |
| |
| handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL); |
| if (!handle) |
| return -ENOMEM; |
| |
| handle->dev = dev; |
| handle->handler = handler; |
| handle->name = "rfkill"; |
| |
| /* causes rfkill_start() to be called */ |
| error = input_register_handle(handle); |
| if (error) |
| goto err_free_handle; |
| |
| error = input_open_device(handle); |
| if (error) |
| goto err_unregister_handle; |
| |
| return 0; |
| |
| err_unregister_handle: |
| input_unregister_handle(handle); |
| err_free_handle: |
| kfree(handle); |
| return error; |
| } |
| |
| static void rfkill_start(struct input_handle *handle) |
| { |
| /* |
| * Take event_lock to guard against configuration changes, we |
| * should be able to deal with concurrency with rfkill_event() |
| * just fine (which event_lock will also avoid). |
| */ |
| spin_lock_irq(&handle->dev->event_lock); |
| |
| if (test_bit(EV_SW, handle->dev->evbit) && |
| test_bit(SW_RFKILL_ALL, handle->dev->swbit)) |
| rfkill_schedule_evsw_rfkillall(test_bit(SW_RFKILL_ALL, |
| handle->dev->sw)); |
| |
| spin_unlock_irq(&handle->dev->event_lock); |
| } |
| |
| static void rfkill_disconnect(struct input_handle *handle) |
| { |
| input_close_device(handle); |
| input_unregister_handle(handle); |
| kfree(handle); |
| } |
| |
| static const struct input_device_id rfkill_ids[] = { |
| { |
| .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT, |
| .evbit = { BIT_MASK(EV_KEY) }, |
| .keybit = { [BIT_WORD(KEY_WLAN)] = BIT_MASK(KEY_WLAN) }, |
| }, |
| { |
| .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT, |
| .evbit = { BIT_MASK(EV_KEY) }, |
| .keybit = { [BIT_WORD(KEY_BLUETOOTH)] = BIT_MASK(KEY_BLUETOOTH) }, |
| }, |
| { |
| .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT, |
| .evbit = { BIT_MASK(EV_KEY) }, |
| .keybit = { [BIT_WORD(KEY_UWB)] = BIT_MASK(KEY_UWB) }, |
| }, |
| { |
| .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT, |
| .evbit = { BIT_MASK(EV_KEY) }, |
| .keybit = { [BIT_WORD(KEY_WIMAX)] = BIT_MASK(KEY_WIMAX) }, |
| }, |
| { |
| .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT, |
| .evbit = { BIT_MASK(EV_KEY) }, |
| .keybit = { [BIT_WORD(KEY_RFKILL)] = BIT_MASK(KEY_RFKILL) }, |
| }, |
| { |
| .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_SWBIT, |
| .evbit = { BIT(EV_SW) }, |
| .swbit = { [BIT_WORD(SW_RFKILL_ALL)] = BIT_MASK(SW_RFKILL_ALL) }, |
| }, |
| { } |
| }; |
| |
| static struct input_handler rfkill_handler = { |
| .name = "rfkill", |
| .event = rfkill_event, |
| .connect = rfkill_connect, |
| .start = rfkill_start, |
| .disconnect = rfkill_disconnect, |
| .id_table = rfkill_ids, |
| }; |
| |
| int __init rfkill_handler_init(void) |
| { |
| switch (rfkill_master_switch_mode) { |
| case RFKILL_INPUT_MASTER_UNBLOCKALL: |
| rfkill_master_switch_op = RFKILL_GLOBAL_OP_UNBLOCK; |
| break; |
| case RFKILL_INPUT_MASTER_RESTORE: |
| rfkill_master_switch_op = RFKILL_GLOBAL_OP_RESTORE; |
| break; |
| case RFKILL_INPUT_MASTER_UNLOCK: |
| rfkill_master_switch_op = RFKILL_GLOBAL_OP_UNLOCK; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| spin_lock_init(&rfkill_op_lock); |
| |
| /* Avoid delay at first schedule */ |
| rfkill_last_scheduled = |
| jiffies - msecs_to_jiffies(RFKILL_OPS_DELAY) - 1; |
| return input_register_handler(&rfkill_handler); |
| } |
| |
| void __exit rfkill_handler_exit(void) |
| { |
| input_unregister_handler(&rfkill_handler); |
| cancel_delayed_work_sync(&rfkill_op_work); |
| } |