blob: 8e995148f56e263ecde7e5e7a390645b585f2c52 [file] [log] [blame]
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*
*/
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <drm/drmP.h>
#include <linux/firmware.h>
#include <drm/amdgpu_drm.h>
#include "amdgpu.h"
#include "cgs_linux.h"
#include "atom.h"
#include "amdgpu_ucode.h"
struct amdgpu_cgs_device {
struct cgs_device base;
struct amdgpu_device *adev;
};
#define CGS_FUNC_ADEV \
struct amdgpu_device *adev = \
((struct amdgpu_cgs_device *)cgs_device)->adev
static int amdgpu_cgs_gpu_mem_info(void *cgs_device, enum cgs_gpu_mem_type type,
uint64_t *mc_start, uint64_t *mc_size,
uint64_t *mem_size)
{
CGS_FUNC_ADEV;
switch(type) {
case CGS_GPU_MEM_TYPE__VISIBLE_CONTIG_FB:
case CGS_GPU_MEM_TYPE__VISIBLE_FB:
*mc_start = 0;
*mc_size = adev->mc.visible_vram_size;
*mem_size = adev->mc.visible_vram_size - adev->vram_pin_size;
break;
case CGS_GPU_MEM_TYPE__INVISIBLE_CONTIG_FB:
case CGS_GPU_MEM_TYPE__INVISIBLE_FB:
*mc_start = adev->mc.visible_vram_size;
*mc_size = adev->mc.real_vram_size - adev->mc.visible_vram_size;
*mem_size = *mc_size;
break;
case CGS_GPU_MEM_TYPE__GART_CACHEABLE:
case CGS_GPU_MEM_TYPE__GART_WRITECOMBINE:
*mc_start = adev->mc.gtt_start;
*mc_size = adev->mc.gtt_size;
*mem_size = adev->mc.gtt_size - adev->gart_pin_size;
break;
default:
return -EINVAL;
}
return 0;
}
static int amdgpu_cgs_gmap_kmem(void *cgs_device, void *kmem,
uint64_t size,
uint64_t min_offset, uint64_t max_offset,
cgs_handle_t *kmem_handle, uint64_t *mcaddr)
{
CGS_FUNC_ADEV;
int ret;
struct amdgpu_bo *bo;
struct page *kmem_page = vmalloc_to_page(kmem);
int npages = ALIGN(size, PAGE_SIZE) >> PAGE_SHIFT;
struct sg_table *sg = drm_prime_pages_to_sg(&kmem_page, npages);
ret = amdgpu_bo_create(adev, size, PAGE_SIZE, false,
AMDGPU_GEM_DOMAIN_GTT, 0, sg, NULL, &bo);
if (ret)
return ret;
ret = amdgpu_bo_reserve(bo, false);
if (unlikely(ret != 0))
return ret;
/* pin buffer into GTT */
ret = amdgpu_bo_pin_restricted(bo, AMDGPU_GEM_DOMAIN_GTT,
min_offset, max_offset, mcaddr);
amdgpu_bo_unreserve(bo);
*kmem_handle = (cgs_handle_t)bo;
return ret;
}
static int amdgpu_cgs_gunmap_kmem(void *cgs_device, cgs_handle_t kmem_handle)
{
struct amdgpu_bo *obj = (struct amdgpu_bo *)kmem_handle;
if (obj) {
int r = amdgpu_bo_reserve(obj, false);
if (likely(r == 0)) {
amdgpu_bo_unpin(obj);
amdgpu_bo_unreserve(obj);
}
amdgpu_bo_unref(&obj);
}
return 0;
}
static int amdgpu_cgs_alloc_gpu_mem(void *cgs_device,
enum cgs_gpu_mem_type type,
uint64_t size, uint64_t align,
uint64_t min_offset, uint64_t max_offset,
cgs_handle_t *handle)
{
CGS_FUNC_ADEV;
uint16_t flags = 0;
int ret = 0;
uint32_t domain = 0;
struct amdgpu_bo *obj;
struct ttm_placement placement;
struct ttm_place place;
if (min_offset > max_offset) {
BUG_ON(1);
return -EINVAL;
}
/* fail if the alignment is not a power of 2 */
if (((align != 1) && (align & (align - 1)))
|| size == 0 || align == 0)
return -EINVAL;
switch(type) {
case CGS_GPU_MEM_TYPE__VISIBLE_CONTIG_FB:
case CGS_GPU_MEM_TYPE__VISIBLE_FB:
flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
domain = AMDGPU_GEM_DOMAIN_VRAM;
if (max_offset > adev->mc.real_vram_size)
return -EINVAL;
place.fpfn = min_offset >> PAGE_SHIFT;
place.lpfn = max_offset >> PAGE_SHIFT;
place.flags = TTM_PL_FLAG_WC | TTM_PL_FLAG_UNCACHED |
TTM_PL_FLAG_VRAM;
break;
case CGS_GPU_MEM_TYPE__INVISIBLE_CONTIG_FB:
case CGS_GPU_MEM_TYPE__INVISIBLE_FB:
flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
domain = AMDGPU_GEM_DOMAIN_VRAM;
if (adev->mc.visible_vram_size < adev->mc.real_vram_size) {
place.fpfn =
max(min_offset, adev->mc.visible_vram_size) >> PAGE_SHIFT;
place.lpfn =
min(max_offset, adev->mc.real_vram_size) >> PAGE_SHIFT;
place.flags = TTM_PL_FLAG_WC | TTM_PL_FLAG_UNCACHED |
TTM_PL_FLAG_VRAM;
}
break;
case CGS_GPU_MEM_TYPE__GART_CACHEABLE:
domain = AMDGPU_GEM_DOMAIN_GTT;
place.fpfn = min_offset >> PAGE_SHIFT;
place.lpfn = max_offset >> PAGE_SHIFT;
place.flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_TT;
break;
case CGS_GPU_MEM_TYPE__GART_WRITECOMBINE:
flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
domain = AMDGPU_GEM_DOMAIN_GTT;
place.fpfn = min_offset >> PAGE_SHIFT;
place.lpfn = max_offset >> PAGE_SHIFT;
place.flags = TTM_PL_FLAG_WC | TTM_PL_FLAG_TT |
TTM_PL_FLAG_UNCACHED;
break;
default:
return -EINVAL;
}
*handle = 0;
placement.placement = &place;
placement.num_placement = 1;
placement.busy_placement = &place;
placement.num_busy_placement = 1;
ret = amdgpu_bo_create_restricted(adev, size, PAGE_SIZE,
true, domain, flags,
NULL, &placement, NULL,
&obj);
if (ret) {
DRM_ERROR("(%d) bo create failed\n", ret);
return ret;
}
*handle = (cgs_handle_t)obj;
return ret;
}
static int amdgpu_cgs_free_gpu_mem(void *cgs_device, cgs_handle_t handle)
{
struct amdgpu_bo *obj = (struct amdgpu_bo *)handle;
if (obj) {
int r = amdgpu_bo_reserve(obj, false);
if (likely(r == 0)) {
amdgpu_bo_kunmap(obj);
amdgpu_bo_unpin(obj);
amdgpu_bo_unreserve(obj);
}
amdgpu_bo_unref(&obj);
}
return 0;
}
static int amdgpu_cgs_gmap_gpu_mem(void *cgs_device, cgs_handle_t handle,
uint64_t *mcaddr)
{
int r;
u64 min_offset, max_offset;
struct amdgpu_bo *obj = (struct amdgpu_bo *)handle;
WARN_ON_ONCE(obj->placement.num_placement > 1);
min_offset = obj->placements[0].fpfn << PAGE_SHIFT;
max_offset = obj->placements[0].lpfn << PAGE_SHIFT;
r = amdgpu_bo_reserve(obj, false);
if (unlikely(r != 0))
return r;
r = amdgpu_bo_pin_restricted(obj, AMDGPU_GEM_DOMAIN_GTT,
min_offset, max_offset, mcaddr);
amdgpu_bo_unreserve(obj);
return r;
}
static int amdgpu_cgs_gunmap_gpu_mem(void *cgs_device, cgs_handle_t handle)
{
int r;
struct amdgpu_bo *obj = (struct amdgpu_bo *)handle;
r = amdgpu_bo_reserve(obj, false);
if (unlikely(r != 0))
return r;
r = amdgpu_bo_unpin(obj);
amdgpu_bo_unreserve(obj);
return r;
}
static int amdgpu_cgs_kmap_gpu_mem(void *cgs_device, cgs_handle_t handle,
void **map)
{
int r;
struct amdgpu_bo *obj = (struct amdgpu_bo *)handle;
r = amdgpu_bo_reserve(obj, false);
if (unlikely(r != 0))
return r;
r = amdgpu_bo_kmap(obj, map);
amdgpu_bo_unreserve(obj);
return r;
}
static int amdgpu_cgs_kunmap_gpu_mem(void *cgs_device, cgs_handle_t handle)
{
int r;
struct amdgpu_bo *obj = (struct amdgpu_bo *)handle;
r = amdgpu_bo_reserve(obj, false);
if (unlikely(r != 0))
return r;
amdgpu_bo_kunmap(obj);
amdgpu_bo_unreserve(obj);
return r;
}
static uint32_t amdgpu_cgs_read_register(void *cgs_device, unsigned offset)
{
CGS_FUNC_ADEV;
return RREG32(offset);
}
static void amdgpu_cgs_write_register(void *cgs_device, unsigned offset,
uint32_t value)
{
CGS_FUNC_ADEV;
WREG32(offset, value);
}
static uint32_t amdgpu_cgs_read_ind_register(void *cgs_device,
enum cgs_ind_reg space,
unsigned index)
{
CGS_FUNC_ADEV;
switch (space) {
case CGS_IND_REG__MMIO:
return RREG32_IDX(index);
case CGS_IND_REG__PCIE:
return RREG32_PCIE(index);
case CGS_IND_REG__SMC:
return RREG32_SMC(index);
case CGS_IND_REG__UVD_CTX:
return RREG32_UVD_CTX(index);
case CGS_IND_REG__DIDT:
return RREG32_DIDT(index);
case CGS_IND_REG__AUDIO_ENDPT:
DRM_ERROR("audio endpt register access not implemented.\n");
return 0;
}
WARN(1, "Invalid indirect register space");
return 0;
}
static void amdgpu_cgs_write_ind_register(void *cgs_device,
enum cgs_ind_reg space,
unsigned index, uint32_t value)
{
CGS_FUNC_ADEV;
switch (space) {
case CGS_IND_REG__MMIO:
return WREG32_IDX(index, value);
case CGS_IND_REG__PCIE:
return WREG32_PCIE(index, value);
case CGS_IND_REG__SMC:
return WREG32_SMC(index, value);
case CGS_IND_REG__UVD_CTX:
return WREG32_UVD_CTX(index, value);
case CGS_IND_REG__DIDT:
return WREG32_DIDT(index, value);
case CGS_IND_REG__AUDIO_ENDPT:
DRM_ERROR("audio endpt register access not implemented.\n");
return;
}
WARN(1, "Invalid indirect register space");
}
static uint8_t amdgpu_cgs_read_pci_config_byte(void *cgs_device, unsigned addr)
{
CGS_FUNC_ADEV;
uint8_t val;
int ret = pci_read_config_byte(adev->pdev, addr, &val);
if (WARN(ret, "pci_read_config_byte error"))
return 0;
return val;
}
static uint16_t amdgpu_cgs_read_pci_config_word(void *cgs_device, unsigned addr)
{
CGS_FUNC_ADEV;
uint16_t val;
int ret = pci_read_config_word(adev->pdev, addr, &val);
if (WARN(ret, "pci_read_config_word error"))
return 0;
return val;
}
static uint32_t amdgpu_cgs_read_pci_config_dword(void *cgs_device,
unsigned addr)
{
CGS_FUNC_ADEV;
uint32_t val;
int ret = pci_read_config_dword(adev->pdev, addr, &val);
if (WARN(ret, "pci_read_config_dword error"))
return 0;
return val;
}
static void amdgpu_cgs_write_pci_config_byte(void *cgs_device, unsigned addr,
uint8_t value)
{
CGS_FUNC_ADEV;
int ret = pci_write_config_byte(adev->pdev, addr, value);
WARN(ret, "pci_write_config_byte error");
}
static void amdgpu_cgs_write_pci_config_word(void *cgs_device, unsigned addr,
uint16_t value)
{
CGS_FUNC_ADEV;
int ret = pci_write_config_word(adev->pdev, addr, value);
WARN(ret, "pci_write_config_word error");
}
static void amdgpu_cgs_write_pci_config_dword(void *cgs_device, unsigned addr,
uint32_t value)
{
CGS_FUNC_ADEV;
int ret = pci_write_config_dword(adev->pdev, addr, value);
WARN(ret, "pci_write_config_dword error");
}
static const void *amdgpu_cgs_atom_get_data_table(void *cgs_device,
unsigned table, uint16_t *size,
uint8_t *frev, uint8_t *crev)
{
CGS_FUNC_ADEV;
uint16_t data_start;
if (amdgpu_atom_parse_data_header(
adev->mode_info.atom_context, table, size,
frev, crev, &data_start))
return (uint8_t*)adev->mode_info.atom_context->bios +
data_start;
return NULL;
}
static int amdgpu_cgs_atom_get_cmd_table_revs(void *cgs_device, unsigned table,
uint8_t *frev, uint8_t *crev)
{
CGS_FUNC_ADEV;
if (amdgpu_atom_parse_cmd_header(
adev->mode_info.atom_context, table,
frev, crev))
return 0;
return -EINVAL;
}
static int amdgpu_cgs_atom_exec_cmd_table(void *cgs_device, unsigned table,
void *args)
{
CGS_FUNC_ADEV;
return amdgpu_atom_execute_table(
adev->mode_info.atom_context, table, args);
}
static int amdgpu_cgs_create_pm_request(void *cgs_device, cgs_handle_t *request)
{
/* TODO */
return 0;
}
static int amdgpu_cgs_destroy_pm_request(void *cgs_device, cgs_handle_t request)
{
/* TODO */
return 0;
}
static int amdgpu_cgs_set_pm_request(void *cgs_device, cgs_handle_t request,
int active)
{
/* TODO */
return 0;
}
static int amdgpu_cgs_pm_request_clock(void *cgs_device, cgs_handle_t request,
enum cgs_clock clock, unsigned freq)
{
/* TODO */
return 0;
}
static int amdgpu_cgs_pm_request_engine(void *cgs_device, cgs_handle_t request,
enum cgs_engine engine, int powered)
{
/* TODO */
return 0;
}
static int amdgpu_cgs_pm_query_clock_limits(void *cgs_device,
enum cgs_clock clock,
struct cgs_clock_limits *limits)
{
/* TODO */
return 0;
}
static int amdgpu_cgs_set_camera_voltages(void *cgs_device, uint32_t mask,
const uint32_t *voltages)
{
DRM_ERROR("not implemented");
return -EPERM;
}
struct cgs_irq_params {
unsigned src_id;
cgs_irq_source_set_func_t set;
cgs_irq_handler_func_t handler;
void *private_data;
};
static int cgs_set_irq_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
struct cgs_irq_params *irq_params =
(struct cgs_irq_params *)src->data;
if (!irq_params)
return -EINVAL;
if (!irq_params->set)
return -EINVAL;
return irq_params->set(irq_params->private_data,
irq_params->src_id,
type,
(int)state);
}
static int cgs_process_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
struct cgs_irq_params *irq_params =
(struct cgs_irq_params *)source->data;
if (!irq_params)
return -EINVAL;
if (!irq_params->handler)
return -EINVAL;
return irq_params->handler(irq_params->private_data,
irq_params->src_id,
entry->iv_entry);
}
static const struct amdgpu_irq_src_funcs cgs_irq_funcs = {
.set = cgs_set_irq_state,
.process = cgs_process_irq,
};
static int amdgpu_cgs_add_irq_source(void *cgs_device, unsigned src_id,
unsigned num_types,
cgs_irq_source_set_func_t set,
cgs_irq_handler_func_t handler,
void *private_data)
{
CGS_FUNC_ADEV;
int ret = 0;
struct cgs_irq_params *irq_params;
struct amdgpu_irq_src *source =
kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
if (!source)
return -ENOMEM;
irq_params =
kzalloc(sizeof(struct cgs_irq_params), GFP_KERNEL);
if (!irq_params) {
kfree(source);
return -ENOMEM;
}
source->num_types = num_types;
source->funcs = &cgs_irq_funcs;
irq_params->src_id = src_id;
irq_params->set = set;
irq_params->handler = handler;
irq_params->private_data = private_data;
source->data = (void *)irq_params;
ret = amdgpu_irq_add_id(adev, src_id, source);
if (ret) {
kfree(irq_params);
kfree(source);
}
return ret;
}
static int amdgpu_cgs_irq_get(void *cgs_device, unsigned src_id, unsigned type)
{
CGS_FUNC_ADEV;
return amdgpu_irq_get(adev, adev->irq.sources[src_id], type);
}
static int amdgpu_cgs_irq_put(void *cgs_device, unsigned src_id, unsigned type)
{
CGS_FUNC_ADEV;
return amdgpu_irq_put(adev, adev->irq.sources[src_id], type);
}
int amdgpu_cgs_set_clockgating_state(void *cgs_device,
enum amd_ip_block_type block_type,
enum amd_clockgating_state state)
{
CGS_FUNC_ADEV;
int i, r = -1;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_block_status[i].valid)
continue;
if (adev->ip_blocks[i].type == block_type) {
r = adev->ip_blocks[i].funcs->set_clockgating_state(
(void *)adev,
state);
break;
}
}
return r;
}
int amdgpu_cgs_set_powergating_state(void *cgs_device,
enum amd_ip_block_type block_type,
enum amd_powergating_state state)
{
CGS_FUNC_ADEV;
int i, r = -1;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_block_status[i].valid)
continue;
if (adev->ip_blocks[i].type == block_type) {
r = adev->ip_blocks[i].funcs->set_powergating_state(
(void *)adev,
state);
break;
}
}
return r;
}
static uint32_t fw_type_convert(void *cgs_device, uint32_t fw_type)
{
CGS_FUNC_ADEV;
enum AMDGPU_UCODE_ID result = AMDGPU_UCODE_ID_MAXIMUM;
switch (fw_type) {
case CGS_UCODE_ID_SDMA0:
result = AMDGPU_UCODE_ID_SDMA0;
break;
case CGS_UCODE_ID_SDMA1:
result = AMDGPU_UCODE_ID_SDMA1;
break;
case CGS_UCODE_ID_CP_CE:
result = AMDGPU_UCODE_ID_CP_CE;
break;
case CGS_UCODE_ID_CP_PFP:
result = AMDGPU_UCODE_ID_CP_PFP;
break;
case CGS_UCODE_ID_CP_ME:
result = AMDGPU_UCODE_ID_CP_ME;
break;
case CGS_UCODE_ID_CP_MEC:
case CGS_UCODE_ID_CP_MEC_JT1:
result = AMDGPU_UCODE_ID_CP_MEC1;
break;
case CGS_UCODE_ID_CP_MEC_JT2:
if (adev->asic_type == CHIP_TONGA)
result = AMDGPU_UCODE_ID_CP_MEC2;
else if (adev->asic_type == CHIP_CARRIZO)
result = AMDGPU_UCODE_ID_CP_MEC1;
break;
case CGS_UCODE_ID_RLC_G:
result = AMDGPU_UCODE_ID_RLC_G;
break;
default:
DRM_ERROR("Firmware type not supported\n");
}
return result;
}
static int amdgpu_cgs_get_firmware_info(void *cgs_device,
enum cgs_ucode_id type,
struct cgs_firmware_info *info)
{
CGS_FUNC_ADEV;
if (CGS_UCODE_ID_SMU != type) {
uint64_t gpu_addr;
uint32_t data_size;
const struct gfx_firmware_header_v1_0 *header;
enum AMDGPU_UCODE_ID id;
struct amdgpu_firmware_info *ucode;
id = fw_type_convert(cgs_device, type);
ucode = &adev->firmware.ucode[id];
if (ucode->fw == NULL)
return -EINVAL;
gpu_addr = ucode->mc_addr;
header = (const struct gfx_firmware_header_v1_0 *)ucode->fw->data;
data_size = le32_to_cpu(header->header.ucode_size_bytes);
if ((type == CGS_UCODE_ID_CP_MEC_JT1) ||
(type == CGS_UCODE_ID_CP_MEC_JT2)) {
gpu_addr += le32_to_cpu(header->jt_offset) << 2;
data_size = le32_to_cpu(header->jt_size) << 2;
}
info->mc_addr = gpu_addr;
info->image_size = data_size;
info->version = (uint16_t)le32_to_cpu(header->header.ucode_version);
info->feature_version = (uint16_t)le32_to_cpu(header->ucode_feature_version);
} else {
char fw_name[30] = {0};
int err = 0;
uint32_t ucode_size;
uint32_t ucode_start_address;
const uint8_t *src;
const struct smc_firmware_header_v1_0 *hdr;
switch (adev->asic_type) {
case CHIP_TONGA:
strcpy(fw_name, "amdgpu/tonga_smc.bin");
break;
default:
DRM_ERROR("SMC firmware not supported\n");
return -EINVAL;
}
err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
if (err) {
DRM_ERROR("Failed to request firmware\n");
return err;
}
err = amdgpu_ucode_validate(adev->pm.fw);
if (err) {
DRM_ERROR("Failed to load firmware \"%s\"", fw_name);
release_firmware(adev->pm.fw);
adev->pm.fw = NULL;
return err;
}
hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);
ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes);
ucode_start_address = le32_to_cpu(hdr->ucode_start_addr);
src = (const uint8_t *)(adev->pm.fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
info->version = adev->pm.fw_version;
info->image_size = ucode_size;
info->kptr = (void *)src;
}
return 0;
}
static const struct cgs_ops amdgpu_cgs_ops = {
amdgpu_cgs_gpu_mem_info,
amdgpu_cgs_gmap_kmem,
amdgpu_cgs_gunmap_kmem,
amdgpu_cgs_alloc_gpu_mem,
amdgpu_cgs_free_gpu_mem,
amdgpu_cgs_gmap_gpu_mem,
amdgpu_cgs_gunmap_gpu_mem,
amdgpu_cgs_kmap_gpu_mem,
amdgpu_cgs_kunmap_gpu_mem,
amdgpu_cgs_read_register,
amdgpu_cgs_write_register,
amdgpu_cgs_read_ind_register,
amdgpu_cgs_write_ind_register,
amdgpu_cgs_read_pci_config_byte,
amdgpu_cgs_read_pci_config_word,
amdgpu_cgs_read_pci_config_dword,
amdgpu_cgs_write_pci_config_byte,
amdgpu_cgs_write_pci_config_word,
amdgpu_cgs_write_pci_config_dword,
amdgpu_cgs_atom_get_data_table,
amdgpu_cgs_atom_get_cmd_table_revs,
amdgpu_cgs_atom_exec_cmd_table,
amdgpu_cgs_create_pm_request,
amdgpu_cgs_destroy_pm_request,
amdgpu_cgs_set_pm_request,
amdgpu_cgs_pm_request_clock,
amdgpu_cgs_pm_request_engine,
amdgpu_cgs_pm_query_clock_limits,
amdgpu_cgs_set_camera_voltages,
amdgpu_cgs_get_firmware_info,
amdgpu_cgs_set_powergating_state,
amdgpu_cgs_set_clockgating_state
};
static const struct cgs_os_ops amdgpu_cgs_os_ops = {
amdgpu_cgs_add_irq_source,
amdgpu_cgs_irq_get,
amdgpu_cgs_irq_put
};
void *amdgpu_cgs_create_device(struct amdgpu_device *adev)
{
struct amdgpu_cgs_device *cgs_device =
kmalloc(sizeof(*cgs_device), GFP_KERNEL);
if (!cgs_device) {
DRM_ERROR("Couldn't allocate CGS device structure\n");
return NULL;
}
cgs_device->base.ops = &amdgpu_cgs_ops;
cgs_device->base.os_ops = &amdgpu_cgs_os_ops;
cgs_device->adev = adev;
return cgs_device;
}
void amdgpu_cgs_destroy_device(void *cgs_device)
{
kfree(cgs_device);
}