| /* |
| * Copyright (C) 2015 Red Hat. All rights reserved. |
| * |
| * This file is released under the GPL. |
| */ |
| |
| #include "dm-cache-policy.h" |
| #include "dm-cache-policy-internal.h" |
| #include "dm.h" |
| |
| #include <linux/hash.h> |
| #include <linux/jiffies.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/vmalloc.h> |
| #include <linux/math64.h> |
| |
| #define DM_MSG_PREFIX "cache-policy-smq" |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* |
| * Safe division functions that return zero on divide by zero. |
| */ |
| static unsigned safe_div(unsigned n, unsigned d) |
| { |
| return d ? n / d : 0u; |
| } |
| |
| static unsigned safe_mod(unsigned n, unsigned d) |
| { |
| return d ? n % d : 0u; |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| struct entry { |
| unsigned hash_next:28; |
| unsigned prev:28; |
| unsigned next:28; |
| unsigned level:7; |
| bool dirty:1; |
| bool allocated:1; |
| bool sentinel:1; |
| |
| dm_oblock_t oblock; |
| }; |
| |
| /*----------------------------------------------------------------*/ |
| |
| #define INDEXER_NULL ((1u << 28u) - 1u) |
| |
| /* |
| * An entry_space manages a set of entries that we use for the queues. |
| * The clean and dirty queues share entries, so this object is separate |
| * from the queue itself. |
| */ |
| struct entry_space { |
| struct entry *begin; |
| struct entry *end; |
| }; |
| |
| static int space_init(struct entry_space *es, unsigned nr_entries) |
| { |
| if (!nr_entries) { |
| es->begin = es->end = NULL; |
| return 0; |
| } |
| |
| es->begin = vzalloc(sizeof(struct entry) * nr_entries); |
| if (!es->begin) |
| return -ENOMEM; |
| |
| es->end = es->begin + nr_entries; |
| return 0; |
| } |
| |
| static void space_exit(struct entry_space *es) |
| { |
| vfree(es->begin); |
| } |
| |
| static struct entry *__get_entry(struct entry_space *es, unsigned block) |
| { |
| struct entry *e; |
| |
| e = es->begin + block; |
| BUG_ON(e >= es->end); |
| |
| return e; |
| } |
| |
| static unsigned to_index(struct entry_space *es, struct entry *e) |
| { |
| BUG_ON(e < es->begin || e >= es->end); |
| return e - es->begin; |
| } |
| |
| static struct entry *to_entry(struct entry_space *es, unsigned block) |
| { |
| if (block == INDEXER_NULL) |
| return NULL; |
| |
| return __get_entry(es, block); |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| struct ilist { |
| unsigned nr_elts; /* excluding sentinel entries */ |
| unsigned head, tail; |
| }; |
| |
| static void l_init(struct ilist *l) |
| { |
| l->nr_elts = 0; |
| l->head = l->tail = INDEXER_NULL; |
| } |
| |
| static struct entry *l_head(struct entry_space *es, struct ilist *l) |
| { |
| return to_entry(es, l->head); |
| } |
| |
| static struct entry *l_tail(struct entry_space *es, struct ilist *l) |
| { |
| return to_entry(es, l->tail); |
| } |
| |
| static struct entry *l_next(struct entry_space *es, struct entry *e) |
| { |
| return to_entry(es, e->next); |
| } |
| |
| static struct entry *l_prev(struct entry_space *es, struct entry *e) |
| { |
| return to_entry(es, e->prev); |
| } |
| |
| static bool l_empty(struct ilist *l) |
| { |
| return l->head == INDEXER_NULL; |
| } |
| |
| static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e) |
| { |
| struct entry *head = l_head(es, l); |
| |
| e->next = l->head; |
| e->prev = INDEXER_NULL; |
| |
| if (head) |
| head->prev = l->head = to_index(es, e); |
| else |
| l->head = l->tail = to_index(es, e); |
| |
| if (!e->sentinel) |
| l->nr_elts++; |
| } |
| |
| static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e) |
| { |
| struct entry *tail = l_tail(es, l); |
| |
| e->next = INDEXER_NULL; |
| e->prev = l->tail; |
| |
| if (tail) |
| tail->next = l->tail = to_index(es, e); |
| else |
| l->head = l->tail = to_index(es, e); |
| |
| if (!e->sentinel) |
| l->nr_elts++; |
| } |
| |
| static void l_add_before(struct entry_space *es, struct ilist *l, |
| struct entry *old, struct entry *e) |
| { |
| struct entry *prev = l_prev(es, old); |
| |
| if (!prev) |
| l_add_head(es, l, e); |
| |
| else { |
| e->prev = old->prev; |
| e->next = to_index(es, old); |
| prev->next = old->prev = to_index(es, e); |
| |
| if (!e->sentinel) |
| l->nr_elts++; |
| } |
| } |
| |
| static void l_del(struct entry_space *es, struct ilist *l, struct entry *e) |
| { |
| struct entry *prev = l_prev(es, e); |
| struct entry *next = l_next(es, e); |
| |
| if (prev) |
| prev->next = e->next; |
| else |
| l->head = e->next; |
| |
| if (next) |
| next->prev = e->prev; |
| else |
| l->tail = e->prev; |
| |
| if (!e->sentinel) |
| l->nr_elts--; |
| } |
| |
| static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l) |
| { |
| struct entry *e; |
| |
| for (e = l_tail(es, l); e; e = l_prev(es, e)) |
| if (!e->sentinel) { |
| l_del(es, l, e); |
| return e; |
| } |
| |
| return NULL; |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* |
| * The stochastic-multi-queue is a set of lru lists stacked into levels. |
| * Entries are moved up levels when they are used, which loosely orders the |
| * most accessed entries in the top levels and least in the bottom. This |
| * structure is *much* better than a single lru list. |
| */ |
| #define MAX_LEVELS 64u |
| |
| struct queue { |
| struct entry_space *es; |
| |
| unsigned nr_elts; |
| unsigned nr_levels; |
| struct ilist qs[MAX_LEVELS]; |
| |
| /* |
| * We maintain a count of the number of entries we would like in each |
| * level. |
| */ |
| unsigned last_target_nr_elts; |
| unsigned nr_top_levels; |
| unsigned nr_in_top_levels; |
| unsigned target_count[MAX_LEVELS]; |
| }; |
| |
| static void q_init(struct queue *q, struct entry_space *es, unsigned nr_levels) |
| { |
| unsigned i; |
| |
| q->es = es; |
| q->nr_elts = 0; |
| q->nr_levels = nr_levels; |
| |
| for (i = 0; i < q->nr_levels; i++) { |
| l_init(q->qs + i); |
| q->target_count[i] = 0u; |
| } |
| |
| q->last_target_nr_elts = 0u; |
| q->nr_top_levels = 0u; |
| q->nr_in_top_levels = 0u; |
| } |
| |
| static unsigned q_size(struct queue *q) |
| { |
| return q->nr_elts; |
| } |
| |
| /* |
| * Insert an entry to the back of the given level. |
| */ |
| static void q_push(struct queue *q, struct entry *e) |
| { |
| if (!e->sentinel) |
| q->nr_elts++; |
| |
| l_add_tail(q->es, q->qs + e->level, e); |
| } |
| |
| static void q_push_before(struct queue *q, struct entry *old, struct entry *e) |
| { |
| if (!e->sentinel) |
| q->nr_elts++; |
| |
| l_add_before(q->es, q->qs + e->level, old, e); |
| } |
| |
| static void q_del(struct queue *q, struct entry *e) |
| { |
| l_del(q->es, q->qs + e->level, e); |
| if (!e->sentinel) |
| q->nr_elts--; |
| } |
| |
| /* |
| * Return the oldest entry of the lowest populated level. |
| */ |
| static struct entry *q_peek(struct queue *q, unsigned max_level, bool can_cross_sentinel) |
| { |
| unsigned level; |
| struct entry *e; |
| |
| max_level = min(max_level, q->nr_levels); |
| |
| for (level = 0; level < max_level; level++) |
| for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) { |
| if (e->sentinel) { |
| if (can_cross_sentinel) |
| continue; |
| else |
| break; |
| } |
| |
| return e; |
| } |
| |
| return NULL; |
| } |
| |
| static struct entry *q_pop(struct queue *q) |
| { |
| struct entry *e = q_peek(q, q->nr_levels, true); |
| |
| if (e) |
| q_del(q, e); |
| |
| return e; |
| } |
| |
| /* |
| * Pops an entry from a level that is not past a sentinel. |
| */ |
| static struct entry *q_pop_old(struct queue *q, unsigned max_level) |
| { |
| struct entry *e = q_peek(q, max_level, false); |
| |
| if (e) |
| q_del(q, e); |
| |
| return e; |
| } |
| |
| /* |
| * This function assumes there is a non-sentinel entry to pop. It's only |
| * used by redistribute, so we know this is true. It also doesn't adjust |
| * the q->nr_elts count. |
| */ |
| static struct entry *__redist_pop_from(struct queue *q, unsigned level) |
| { |
| struct entry *e; |
| |
| for (; level < q->nr_levels; level++) |
| for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) |
| if (!e->sentinel) { |
| l_del(q->es, q->qs + e->level, e); |
| return e; |
| } |
| |
| return NULL; |
| } |
| |
| static void q_set_targets_subrange_(struct queue *q, unsigned nr_elts, unsigned lbegin, unsigned lend) |
| { |
| unsigned level, nr_levels, entries_per_level, remainder; |
| |
| BUG_ON(lbegin > lend); |
| BUG_ON(lend > q->nr_levels); |
| nr_levels = lend - lbegin; |
| entries_per_level = safe_div(nr_elts, nr_levels); |
| remainder = safe_mod(nr_elts, nr_levels); |
| |
| for (level = lbegin; level < lend; level++) |
| q->target_count[level] = |
| (level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level; |
| } |
| |
| /* |
| * Typically we have fewer elements in the top few levels which allows us |
| * to adjust the promote threshold nicely. |
| */ |
| static void q_set_targets(struct queue *q) |
| { |
| if (q->last_target_nr_elts == q->nr_elts) |
| return; |
| |
| q->last_target_nr_elts = q->nr_elts; |
| |
| if (q->nr_top_levels > q->nr_levels) |
| q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels); |
| |
| else { |
| q_set_targets_subrange_(q, q->nr_in_top_levels, |
| q->nr_levels - q->nr_top_levels, q->nr_levels); |
| |
| if (q->nr_in_top_levels < q->nr_elts) |
| q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels, |
| 0, q->nr_levels - q->nr_top_levels); |
| else |
| q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels); |
| } |
| } |
| |
| static void q_redistribute(struct queue *q) |
| { |
| unsigned target, level; |
| struct ilist *l, *l_above; |
| struct entry *e; |
| |
| q_set_targets(q); |
| |
| for (level = 0u; level < q->nr_levels - 1u; level++) { |
| l = q->qs + level; |
| target = q->target_count[level]; |
| |
| /* |
| * Pull down some entries from the level above. |
| */ |
| while (l->nr_elts < target) { |
| e = __redist_pop_from(q, level + 1u); |
| if (!e) { |
| /* bug in nr_elts */ |
| break; |
| } |
| |
| e->level = level; |
| l_add_tail(q->es, l, e); |
| } |
| |
| /* |
| * Push some entries up. |
| */ |
| l_above = q->qs + level + 1u; |
| while (l->nr_elts > target) { |
| e = l_pop_tail(q->es, l); |
| |
| if (!e) |
| /* bug in nr_elts */ |
| break; |
| |
| e->level = level + 1u; |
| l_add_head(q->es, l_above, e); |
| } |
| } |
| } |
| |
| static void q_requeue_before(struct queue *q, struct entry *dest, struct entry *e, unsigned extra_levels) |
| { |
| struct entry *de; |
| unsigned new_level; |
| |
| q_del(q, e); |
| |
| if (extra_levels && (e->level < q->nr_levels - 1u)) { |
| new_level = min(q->nr_levels - 1u, e->level + extra_levels); |
| for (de = l_head(q->es, q->qs + new_level); de; de = l_next(q->es, de)) { |
| if (de->sentinel) |
| continue; |
| |
| q_del(q, de); |
| de->level = e->level; |
| |
| if (dest) |
| q_push_before(q, dest, de); |
| else |
| q_push(q, de); |
| break; |
| } |
| |
| e->level = new_level; |
| } |
| |
| q_push(q, e); |
| } |
| |
| static void q_requeue(struct queue *q, struct entry *e, unsigned extra_levels) |
| { |
| q_requeue_before(q, NULL, e, extra_levels); |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| #define FP_SHIFT 8 |
| #define SIXTEENTH (1u << (FP_SHIFT - 4u)) |
| #define EIGHTH (1u << (FP_SHIFT - 3u)) |
| |
| struct stats { |
| unsigned hit_threshold; |
| unsigned hits; |
| unsigned misses; |
| }; |
| |
| enum performance { |
| Q_POOR, |
| Q_FAIR, |
| Q_WELL |
| }; |
| |
| static void stats_init(struct stats *s, unsigned nr_levels) |
| { |
| s->hit_threshold = (nr_levels * 3u) / 4u; |
| s->hits = 0u; |
| s->misses = 0u; |
| } |
| |
| static void stats_reset(struct stats *s) |
| { |
| s->hits = s->misses = 0u; |
| } |
| |
| static void stats_level_accessed(struct stats *s, unsigned level) |
| { |
| if (level >= s->hit_threshold) |
| s->hits++; |
| else |
| s->misses++; |
| } |
| |
| static void stats_miss(struct stats *s) |
| { |
| s->misses++; |
| } |
| |
| /* |
| * There are times when we don't have any confidence in the hotspot queue. |
| * Such as when a fresh cache is created and the blocks have been spread |
| * out across the levels, or if an io load changes. We detect this by |
| * seeing how often a lookup is in the top levels of the hotspot queue. |
| */ |
| static enum performance stats_assess(struct stats *s) |
| { |
| unsigned confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses); |
| |
| if (confidence < SIXTEENTH) |
| return Q_POOR; |
| |
| else if (confidence < EIGHTH) |
| return Q_FAIR; |
| |
| else |
| return Q_WELL; |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| struct hash_table { |
| struct entry_space *es; |
| unsigned long long hash_bits; |
| unsigned *buckets; |
| }; |
| |
| /* |
| * All cache entries are stored in a chained hash table. To save space we |
| * use indexing again, and only store indexes to the next entry. |
| */ |
| static int h_init(struct hash_table *ht, struct entry_space *es, unsigned nr_entries) |
| { |
| unsigned i, nr_buckets; |
| |
| ht->es = es; |
| nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u)); |
| ht->hash_bits = ffs(nr_buckets) - 1; |
| |
| ht->buckets = vmalloc(sizeof(*ht->buckets) * nr_buckets); |
| if (!ht->buckets) |
| return -ENOMEM; |
| |
| for (i = 0; i < nr_buckets; i++) |
| ht->buckets[i] = INDEXER_NULL; |
| |
| return 0; |
| } |
| |
| static void h_exit(struct hash_table *ht) |
| { |
| vfree(ht->buckets); |
| } |
| |
| static struct entry *h_head(struct hash_table *ht, unsigned bucket) |
| { |
| return to_entry(ht->es, ht->buckets[bucket]); |
| } |
| |
| static struct entry *h_next(struct hash_table *ht, struct entry *e) |
| { |
| return to_entry(ht->es, e->hash_next); |
| } |
| |
| static void __h_insert(struct hash_table *ht, unsigned bucket, struct entry *e) |
| { |
| e->hash_next = ht->buckets[bucket]; |
| ht->buckets[bucket] = to_index(ht->es, e); |
| } |
| |
| static void h_insert(struct hash_table *ht, struct entry *e) |
| { |
| unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits); |
| __h_insert(ht, h, e); |
| } |
| |
| static struct entry *__h_lookup(struct hash_table *ht, unsigned h, dm_oblock_t oblock, |
| struct entry **prev) |
| { |
| struct entry *e; |
| |
| *prev = NULL; |
| for (e = h_head(ht, h); e; e = h_next(ht, e)) { |
| if (e->oblock == oblock) |
| return e; |
| |
| *prev = e; |
| } |
| |
| return NULL; |
| } |
| |
| static void __h_unlink(struct hash_table *ht, unsigned h, |
| struct entry *e, struct entry *prev) |
| { |
| if (prev) |
| prev->hash_next = e->hash_next; |
| else |
| ht->buckets[h] = e->hash_next; |
| } |
| |
| /* |
| * Also moves each entry to the front of the bucket. |
| */ |
| static struct entry *h_lookup(struct hash_table *ht, dm_oblock_t oblock) |
| { |
| struct entry *e, *prev; |
| unsigned h = hash_64(from_oblock(oblock), ht->hash_bits); |
| |
| e = __h_lookup(ht, h, oblock, &prev); |
| if (e && prev) { |
| /* |
| * Move to the front because this entry is likely |
| * to be hit again. |
| */ |
| __h_unlink(ht, h, e, prev); |
| __h_insert(ht, h, e); |
| } |
| |
| return e; |
| } |
| |
| static void h_remove(struct hash_table *ht, struct entry *e) |
| { |
| unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits); |
| struct entry *prev; |
| |
| /* |
| * The down side of using a singly linked list is we have to |
| * iterate the bucket to remove an item. |
| */ |
| e = __h_lookup(ht, h, e->oblock, &prev); |
| if (e) |
| __h_unlink(ht, h, e, prev); |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| struct entry_alloc { |
| struct entry_space *es; |
| unsigned begin; |
| |
| unsigned nr_allocated; |
| struct ilist free; |
| }; |
| |
| static void init_allocator(struct entry_alloc *ea, struct entry_space *es, |
| unsigned begin, unsigned end) |
| { |
| unsigned i; |
| |
| ea->es = es; |
| ea->nr_allocated = 0u; |
| ea->begin = begin; |
| |
| l_init(&ea->free); |
| for (i = begin; i != end; i++) |
| l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i)); |
| } |
| |
| static void init_entry(struct entry *e) |
| { |
| /* |
| * We can't memset because that would clear the hotspot and |
| * sentinel bits which remain constant. |
| */ |
| e->hash_next = INDEXER_NULL; |
| e->next = INDEXER_NULL; |
| e->prev = INDEXER_NULL; |
| e->level = 0u; |
| e->allocated = true; |
| } |
| |
| static struct entry *alloc_entry(struct entry_alloc *ea) |
| { |
| struct entry *e; |
| |
| if (l_empty(&ea->free)) |
| return NULL; |
| |
| e = l_pop_tail(ea->es, &ea->free); |
| init_entry(e); |
| ea->nr_allocated++; |
| |
| return e; |
| } |
| |
| /* |
| * This assumes the cblock hasn't already been allocated. |
| */ |
| static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned i) |
| { |
| struct entry *e = __get_entry(ea->es, ea->begin + i); |
| |
| BUG_ON(e->allocated); |
| |
| l_del(ea->es, &ea->free, e); |
| init_entry(e); |
| ea->nr_allocated++; |
| |
| return e; |
| } |
| |
| static void free_entry(struct entry_alloc *ea, struct entry *e) |
| { |
| BUG_ON(!ea->nr_allocated); |
| BUG_ON(!e->allocated); |
| |
| ea->nr_allocated--; |
| e->allocated = false; |
| l_add_tail(ea->es, &ea->free, e); |
| } |
| |
| static bool allocator_empty(struct entry_alloc *ea) |
| { |
| return l_empty(&ea->free); |
| } |
| |
| static unsigned get_index(struct entry_alloc *ea, struct entry *e) |
| { |
| return to_index(ea->es, e) - ea->begin; |
| } |
| |
| static struct entry *get_entry(struct entry_alloc *ea, unsigned index) |
| { |
| return __get_entry(ea->es, ea->begin + index); |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| #define NR_HOTSPOT_LEVELS 64u |
| #define NR_CACHE_LEVELS 64u |
| |
| #define WRITEBACK_PERIOD (10 * HZ) |
| #define DEMOTE_PERIOD (60 * HZ) |
| |
| #define HOTSPOT_UPDATE_PERIOD (HZ) |
| #define CACHE_UPDATE_PERIOD (10u * HZ) |
| |
| struct smq_policy { |
| struct dm_cache_policy policy; |
| |
| /* protects everything */ |
| struct mutex lock; |
| dm_cblock_t cache_size; |
| sector_t cache_block_size; |
| |
| sector_t hotspot_block_size; |
| unsigned nr_hotspot_blocks; |
| unsigned cache_blocks_per_hotspot_block; |
| unsigned hotspot_level_jump; |
| |
| struct entry_space es; |
| struct entry_alloc writeback_sentinel_alloc; |
| struct entry_alloc demote_sentinel_alloc; |
| struct entry_alloc hotspot_alloc; |
| struct entry_alloc cache_alloc; |
| |
| unsigned long *hotspot_hit_bits; |
| unsigned long *cache_hit_bits; |
| |
| /* |
| * We maintain three queues of entries. The cache proper, |
| * consisting of a clean and dirty queue, containing the currently |
| * active mappings. The hotspot queue uses a larger block size to |
| * track blocks that are being hit frequently and potential |
| * candidates for promotion to the cache. |
| */ |
| struct queue hotspot; |
| struct queue clean; |
| struct queue dirty; |
| |
| struct stats hotspot_stats; |
| struct stats cache_stats; |
| |
| /* |
| * Keeps track of time, incremented by the core. We use this to |
| * avoid attributing multiple hits within the same tick. |
| * |
| * Access to tick_protected should be done with the spin lock held. |
| * It's copied to tick at the start of the map function (within the |
| * mutex). |
| */ |
| spinlock_t tick_lock; |
| unsigned tick_protected; |
| unsigned tick; |
| |
| /* |
| * The hash tables allows us to quickly find an entry by origin |
| * block. |
| */ |
| struct hash_table table; |
| struct hash_table hotspot_table; |
| |
| bool current_writeback_sentinels; |
| unsigned long next_writeback_period; |
| |
| bool current_demote_sentinels; |
| unsigned long next_demote_period; |
| |
| unsigned write_promote_level; |
| unsigned read_promote_level; |
| |
| unsigned long next_hotspot_period; |
| unsigned long next_cache_period; |
| }; |
| |
| /*----------------------------------------------------------------*/ |
| |
| static struct entry *get_sentinel(struct entry_alloc *ea, unsigned level, bool which) |
| { |
| return get_entry(ea, which ? level : NR_CACHE_LEVELS + level); |
| } |
| |
| static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned level) |
| { |
| return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels); |
| } |
| |
| static struct entry *demote_sentinel(struct smq_policy *mq, unsigned level) |
| { |
| return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels); |
| } |
| |
| static void __update_writeback_sentinels(struct smq_policy *mq) |
| { |
| unsigned level; |
| struct queue *q = &mq->dirty; |
| struct entry *sentinel; |
| |
| for (level = 0; level < q->nr_levels; level++) { |
| sentinel = writeback_sentinel(mq, level); |
| q_del(q, sentinel); |
| q_push(q, sentinel); |
| } |
| } |
| |
| static void __update_demote_sentinels(struct smq_policy *mq) |
| { |
| unsigned level; |
| struct queue *q = &mq->clean; |
| struct entry *sentinel; |
| |
| for (level = 0; level < q->nr_levels; level++) { |
| sentinel = demote_sentinel(mq, level); |
| q_del(q, sentinel); |
| q_push(q, sentinel); |
| } |
| } |
| |
| static void update_sentinels(struct smq_policy *mq) |
| { |
| if (time_after(jiffies, mq->next_writeback_period)) { |
| __update_writeback_sentinels(mq); |
| mq->next_writeback_period = jiffies + WRITEBACK_PERIOD; |
| mq->current_writeback_sentinels = !mq->current_writeback_sentinels; |
| } |
| |
| if (time_after(jiffies, mq->next_demote_period)) { |
| __update_demote_sentinels(mq); |
| mq->next_demote_period = jiffies + DEMOTE_PERIOD; |
| mq->current_demote_sentinels = !mq->current_demote_sentinels; |
| } |
| } |
| |
| static void __sentinels_init(struct smq_policy *mq) |
| { |
| unsigned level; |
| struct entry *sentinel; |
| |
| for (level = 0; level < NR_CACHE_LEVELS; level++) { |
| sentinel = writeback_sentinel(mq, level); |
| sentinel->level = level; |
| q_push(&mq->dirty, sentinel); |
| |
| sentinel = demote_sentinel(mq, level); |
| sentinel->level = level; |
| q_push(&mq->clean, sentinel); |
| } |
| } |
| |
| static void sentinels_init(struct smq_policy *mq) |
| { |
| mq->next_writeback_period = jiffies + WRITEBACK_PERIOD; |
| mq->next_demote_period = jiffies + DEMOTE_PERIOD; |
| |
| mq->current_writeback_sentinels = false; |
| mq->current_demote_sentinels = false; |
| __sentinels_init(mq); |
| |
| mq->current_writeback_sentinels = !mq->current_writeback_sentinels; |
| mq->current_demote_sentinels = !mq->current_demote_sentinels; |
| __sentinels_init(mq); |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* |
| * These methods tie together the dirty queue, clean queue and hash table. |
| */ |
| static void push_new(struct smq_policy *mq, struct entry *e) |
| { |
| struct queue *q = e->dirty ? &mq->dirty : &mq->clean; |
| h_insert(&mq->table, e); |
| q_push(q, e); |
| } |
| |
| static void push(struct smq_policy *mq, struct entry *e) |
| { |
| struct entry *sentinel; |
| |
| h_insert(&mq->table, e); |
| |
| /* |
| * Punch this into the queue just in front of the sentinel, to |
| * ensure it's cleaned straight away. |
| */ |
| if (e->dirty) { |
| sentinel = writeback_sentinel(mq, e->level); |
| q_push_before(&mq->dirty, sentinel, e); |
| } else { |
| sentinel = demote_sentinel(mq, e->level); |
| q_push_before(&mq->clean, sentinel, e); |
| } |
| } |
| |
| /* |
| * Removes an entry from cache. Removes from the hash table. |
| */ |
| static void __del(struct smq_policy *mq, struct queue *q, struct entry *e) |
| { |
| q_del(q, e); |
| h_remove(&mq->table, e); |
| } |
| |
| static void del(struct smq_policy *mq, struct entry *e) |
| { |
| __del(mq, e->dirty ? &mq->dirty : &mq->clean, e); |
| } |
| |
| static struct entry *pop_old(struct smq_policy *mq, struct queue *q, unsigned max_level) |
| { |
| struct entry *e = q_pop_old(q, max_level); |
| if (e) |
| h_remove(&mq->table, e); |
| return e; |
| } |
| |
| static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e) |
| { |
| return to_cblock(get_index(&mq->cache_alloc, e)); |
| } |
| |
| static void requeue(struct smq_policy *mq, struct entry *e) |
| { |
| struct entry *sentinel; |
| |
| if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) { |
| if (e->dirty) { |
| sentinel = writeback_sentinel(mq, e->level); |
| q_requeue_before(&mq->dirty, sentinel, e, 1u); |
| } else { |
| sentinel = demote_sentinel(mq, e->level); |
| q_requeue_before(&mq->clean, sentinel, e, 1u); |
| } |
| } |
| } |
| |
| static unsigned default_promote_level(struct smq_policy *mq) |
| { |
| /* |
| * The promote level depends on the current performance of the |
| * cache. |
| * |
| * If the cache is performing badly, then we can't afford |
| * to promote much without causing performance to drop below that |
| * of the origin device. |
| * |
| * If the cache is performing well, then we don't need to promote |
| * much. If it isn't broken, don't fix it. |
| * |
| * If the cache is middling then we promote more. |
| * |
| * This scheme reminds me of a graph of entropy vs probability of a |
| * binary variable. |
| */ |
| static unsigned table[] = {1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1}; |
| |
| unsigned hits = mq->cache_stats.hits; |
| unsigned misses = mq->cache_stats.misses; |
| unsigned index = safe_div(hits << 4u, hits + misses); |
| return table[index]; |
| } |
| |
| static void update_promote_levels(struct smq_policy *mq) |
| { |
| /* |
| * If there are unused cache entries then we want to be really |
| * eager to promote. |
| */ |
| unsigned threshold_level = allocator_empty(&mq->cache_alloc) ? |
| default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u); |
| |
| /* |
| * If the hotspot queue is performing badly then we have little |
| * confidence that we know which blocks to promote. So we cut down |
| * the amount of promotions. |
| */ |
| switch (stats_assess(&mq->hotspot_stats)) { |
| case Q_POOR: |
| threshold_level /= 4u; |
| break; |
| |
| case Q_FAIR: |
| threshold_level /= 2u; |
| break; |
| |
| case Q_WELL: |
| break; |
| } |
| |
| mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level; |
| mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level) + 2u; |
| } |
| |
| /* |
| * If the hotspot queue is performing badly, then we try and move entries |
| * around more quickly. |
| */ |
| static void update_level_jump(struct smq_policy *mq) |
| { |
| switch (stats_assess(&mq->hotspot_stats)) { |
| case Q_POOR: |
| mq->hotspot_level_jump = 4u; |
| break; |
| |
| case Q_FAIR: |
| mq->hotspot_level_jump = 2u; |
| break; |
| |
| case Q_WELL: |
| mq->hotspot_level_jump = 1u; |
| break; |
| } |
| } |
| |
| static void end_hotspot_period(struct smq_policy *mq) |
| { |
| clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks); |
| update_promote_levels(mq); |
| |
| if (time_after(jiffies, mq->next_hotspot_period)) { |
| update_level_jump(mq); |
| q_redistribute(&mq->hotspot); |
| stats_reset(&mq->hotspot_stats); |
| mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD; |
| } |
| } |
| |
| static void end_cache_period(struct smq_policy *mq) |
| { |
| if (time_after(jiffies, mq->next_cache_period)) { |
| clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size)); |
| |
| q_redistribute(&mq->dirty); |
| q_redistribute(&mq->clean); |
| stats_reset(&mq->cache_stats); |
| |
| mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD; |
| } |
| } |
| |
| static int demote_cblock(struct smq_policy *mq, |
| struct policy_locker *locker, |
| dm_oblock_t *oblock) |
| { |
| struct entry *demoted = q_peek(&mq->clean, mq->clean.nr_levels, false); |
| if (!demoted) |
| /* |
| * We could get a block from mq->dirty, but that |
| * would add extra latency to the triggering bio as it |
| * waits for the writeback. Better to not promote this |
| * time and hope there's a clean block next time this block |
| * is hit. |
| */ |
| return -ENOSPC; |
| |
| if (locker->fn(locker, demoted->oblock)) |
| /* |
| * We couldn't lock this block. |
| */ |
| return -EBUSY; |
| |
| del(mq, demoted); |
| *oblock = demoted->oblock; |
| free_entry(&mq->cache_alloc, demoted); |
| |
| return 0; |
| } |
| |
| enum promote_result { |
| PROMOTE_NOT, |
| PROMOTE_TEMPORARY, |
| PROMOTE_PERMANENT |
| }; |
| |
| /* |
| * Converts a boolean into a promote result. |
| */ |
| static enum promote_result maybe_promote(bool promote) |
| { |
| return promote ? PROMOTE_PERMANENT : PROMOTE_NOT; |
| } |
| |
| static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e, struct bio *bio, |
| bool fast_promote) |
| { |
| if (bio_data_dir(bio) == WRITE) { |
| if (!allocator_empty(&mq->cache_alloc) && fast_promote) |
| return PROMOTE_TEMPORARY; |
| |
| else |
| return maybe_promote(hs_e->level >= mq->write_promote_level); |
| } else |
| return maybe_promote(hs_e->level >= mq->read_promote_level); |
| } |
| |
| static void insert_in_cache(struct smq_policy *mq, dm_oblock_t oblock, |
| struct policy_locker *locker, |
| struct policy_result *result, enum promote_result pr) |
| { |
| int r; |
| struct entry *e; |
| |
| if (allocator_empty(&mq->cache_alloc)) { |
| result->op = POLICY_REPLACE; |
| r = demote_cblock(mq, locker, &result->old_oblock); |
| if (r) { |
| result->op = POLICY_MISS; |
| return; |
| } |
| |
| } else |
| result->op = POLICY_NEW; |
| |
| e = alloc_entry(&mq->cache_alloc); |
| BUG_ON(!e); |
| e->oblock = oblock; |
| |
| if (pr == PROMOTE_TEMPORARY) |
| push(mq, e); |
| else |
| push_new(mq, e); |
| |
| result->cblock = infer_cblock(mq, e); |
| } |
| |
| static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b) |
| { |
| sector_t r = from_oblock(b); |
| (void) sector_div(r, mq->cache_blocks_per_hotspot_block); |
| return to_oblock(r); |
| } |
| |
| static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b, struct bio *bio) |
| { |
| unsigned hi; |
| dm_oblock_t hb = to_hblock(mq, b); |
| struct entry *e = h_lookup(&mq->hotspot_table, hb); |
| |
| if (e) { |
| stats_level_accessed(&mq->hotspot_stats, e->level); |
| |
| hi = get_index(&mq->hotspot_alloc, e); |
| q_requeue(&mq->hotspot, e, |
| test_and_set_bit(hi, mq->hotspot_hit_bits) ? |
| 0u : mq->hotspot_level_jump); |
| |
| } else { |
| stats_miss(&mq->hotspot_stats); |
| |
| e = alloc_entry(&mq->hotspot_alloc); |
| if (!e) { |
| e = q_pop(&mq->hotspot); |
| if (e) { |
| h_remove(&mq->hotspot_table, e); |
| hi = get_index(&mq->hotspot_alloc, e); |
| clear_bit(hi, mq->hotspot_hit_bits); |
| } |
| |
| } |
| |
| if (e) { |
| e->oblock = hb; |
| q_push(&mq->hotspot, e); |
| h_insert(&mq->hotspot_table, e); |
| } |
| } |
| |
| return e; |
| } |
| |
| /* |
| * Looks the oblock up in the hash table, then decides whether to put in |
| * pre_cache, or cache etc. |
| */ |
| static int map(struct smq_policy *mq, struct bio *bio, dm_oblock_t oblock, |
| bool can_migrate, bool fast_promote, |
| struct policy_locker *locker, struct policy_result *result) |
| { |
| struct entry *e, *hs_e; |
| enum promote_result pr; |
| |
| hs_e = update_hotspot_queue(mq, oblock, bio); |
| |
| e = h_lookup(&mq->table, oblock); |
| if (e) { |
| stats_level_accessed(&mq->cache_stats, e->level); |
| |
| requeue(mq, e); |
| result->op = POLICY_HIT; |
| result->cblock = infer_cblock(mq, e); |
| |
| } else { |
| stats_miss(&mq->cache_stats); |
| |
| pr = should_promote(mq, hs_e, bio, fast_promote); |
| if (pr == PROMOTE_NOT) |
| result->op = POLICY_MISS; |
| |
| else { |
| if (!can_migrate) { |
| result->op = POLICY_MISS; |
| return -EWOULDBLOCK; |
| } |
| |
| insert_in_cache(mq, oblock, locker, result, pr); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* |
| * Public interface, via the policy struct. See dm-cache-policy.h for a |
| * description of these. |
| */ |
| |
| static struct smq_policy *to_smq_policy(struct dm_cache_policy *p) |
| { |
| return container_of(p, struct smq_policy, policy); |
| } |
| |
| static void smq_destroy(struct dm_cache_policy *p) |
| { |
| struct smq_policy *mq = to_smq_policy(p); |
| |
| h_exit(&mq->hotspot_table); |
| h_exit(&mq->table); |
| free_bitset(mq->hotspot_hit_bits); |
| free_bitset(mq->cache_hit_bits); |
| space_exit(&mq->es); |
| kfree(mq); |
| } |
| |
| static void copy_tick(struct smq_policy *mq) |
| { |
| unsigned long flags, tick; |
| |
| spin_lock_irqsave(&mq->tick_lock, flags); |
| tick = mq->tick_protected; |
| if (tick != mq->tick) { |
| update_sentinels(mq); |
| end_hotspot_period(mq); |
| end_cache_period(mq); |
| mq->tick = tick; |
| } |
| spin_unlock_irqrestore(&mq->tick_lock, flags); |
| } |
| |
| static bool maybe_lock(struct smq_policy *mq, bool can_block) |
| { |
| if (can_block) { |
| mutex_lock(&mq->lock); |
| return true; |
| } else |
| return mutex_trylock(&mq->lock); |
| } |
| |
| static int smq_map(struct dm_cache_policy *p, dm_oblock_t oblock, |
| bool can_block, bool can_migrate, bool fast_promote, |
| struct bio *bio, struct policy_locker *locker, |
| struct policy_result *result) |
| { |
| int r; |
| struct smq_policy *mq = to_smq_policy(p); |
| |
| result->op = POLICY_MISS; |
| |
| if (!maybe_lock(mq, can_block)) |
| return -EWOULDBLOCK; |
| |
| copy_tick(mq); |
| r = map(mq, bio, oblock, can_migrate, fast_promote, locker, result); |
| mutex_unlock(&mq->lock); |
| |
| return r; |
| } |
| |
| static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock) |
| { |
| int r; |
| struct smq_policy *mq = to_smq_policy(p); |
| struct entry *e; |
| |
| if (!mutex_trylock(&mq->lock)) |
| return -EWOULDBLOCK; |
| |
| e = h_lookup(&mq->table, oblock); |
| if (e) { |
| *cblock = infer_cblock(mq, e); |
| r = 0; |
| } else |
| r = -ENOENT; |
| |
| mutex_unlock(&mq->lock); |
| |
| return r; |
| } |
| |
| static void __smq_set_clear_dirty(struct smq_policy *mq, dm_oblock_t oblock, bool set) |
| { |
| struct entry *e; |
| |
| e = h_lookup(&mq->table, oblock); |
| BUG_ON(!e); |
| |
| del(mq, e); |
| e->dirty = set; |
| push(mq, e); |
| } |
| |
| static void smq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock) |
| { |
| struct smq_policy *mq = to_smq_policy(p); |
| |
| mutex_lock(&mq->lock); |
| __smq_set_clear_dirty(mq, oblock, true); |
| mutex_unlock(&mq->lock); |
| } |
| |
| static void smq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock) |
| { |
| struct smq_policy *mq = to_smq_policy(p); |
| |
| mutex_lock(&mq->lock); |
| __smq_set_clear_dirty(mq, oblock, false); |
| mutex_unlock(&mq->lock); |
| } |
| |
| static int smq_load_mapping(struct dm_cache_policy *p, |
| dm_oblock_t oblock, dm_cblock_t cblock, |
| uint32_t hint, bool hint_valid) |
| { |
| struct smq_policy *mq = to_smq_policy(p); |
| struct entry *e; |
| |
| e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock)); |
| e->oblock = oblock; |
| e->dirty = false; /* this gets corrected in a minute */ |
| e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : 1; |
| push(mq, e); |
| |
| return 0; |
| } |
| |
| static int smq_save_hints(struct smq_policy *mq, struct queue *q, |
| policy_walk_fn fn, void *context) |
| { |
| int r; |
| unsigned level; |
| struct entry *e; |
| |
| for (level = 0; level < q->nr_levels; level++) |
| for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) { |
| if (!e->sentinel) { |
| r = fn(context, infer_cblock(mq, e), |
| e->oblock, e->level); |
| if (r) |
| return r; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int smq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn, |
| void *context) |
| { |
| struct smq_policy *mq = to_smq_policy(p); |
| int r = 0; |
| |
| mutex_lock(&mq->lock); |
| |
| r = smq_save_hints(mq, &mq->clean, fn, context); |
| if (!r) |
| r = smq_save_hints(mq, &mq->dirty, fn, context); |
| |
| mutex_unlock(&mq->lock); |
| |
| return r; |
| } |
| |
| static void __remove_mapping(struct smq_policy *mq, dm_oblock_t oblock) |
| { |
| struct entry *e; |
| |
| e = h_lookup(&mq->table, oblock); |
| BUG_ON(!e); |
| |
| del(mq, e); |
| free_entry(&mq->cache_alloc, e); |
| } |
| |
| static void smq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock) |
| { |
| struct smq_policy *mq = to_smq_policy(p); |
| |
| mutex_lock(&mq->lock); |
| __remove_mapping(mq, oblock); |
| mutex_unlock(&mq->lock); |
| } |
| |
| static int __remove_cblock(struct smq_policy *mq, dm_cblock_t cblock) |
| { |
| struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock)); |
| |
| if (!e || !e->allocated) |
| return -ENODATA; |
| |
| del(mq, e); |
| free_entry(&mq->cache_alloc, e); |
| |
| return 0; |
| } |
| |
| static int smq_remove_cblock(struct dm_cache_policy *p, dm_cblock_t cblock) |
| { |
| int r; |
| struct smq_policy *mq = to_smq_policy(p); |
| |
| mutex_lock(&mq->lock); |
| r = __remove_cblock(mq, cblock); |
| mutex_unlock(&mq->lock); |
| |
| return r; |
| } |
| |
| |
| #define CLEAN_TARGET_CRITICAL 5u /* percent */ |
| |
| static bool clean_target_met(struct smq_policy *mq, bool critical) |
| { |
| if (critical) { |
| /* |
| * Cache entries may not be populated. So we're cannot rely on the |
| * size of the clean queue. |
| */ |
| unsigned nr_clean = from_cblock(mq->cache_size) - q_size(&mq->dirty); |
| unsigned target = from_cblock(mq->cache_size) * CLEAN_TARGET_CRITICAL / 100u; |
| |
| return nr_clean >= target; |
| } else |
| return !q_size(&mq->dirty); |
| } |
| |
| static int __smq_writeback_work(struct smq_policy *mq, dm_oblock_t *oblock, |
| dm_cblock_t *cblock, bool critical_only) |
| { |
| struct entry *e = NULL; |
| bool target_met = clean_target_met(mq, critical_only); |
| |
| if (critical_only) |
| /* |
| * Always try and keep the bottom level clean. |
| */ |
| e = pop_old(mq, &mq->dirty, target_met ? 1u : mq->dirty.nr_levels); |
| |
| else |
| e = pop_old(mq, &mq->dirty, mq->dirty.nr_levels); |
| |
| if (!e) |
| return -ENODATA; |
| |
| *oblock = e->oblock; |
| *cblock = infer_cblock(mq, e); |
| e->dirty = false; |
| push_new(mq, e); |
| |
| return 0; |
| } |
| |
| static int smq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock, |
| dm_cblock_t *cblock, bool critical_only) |
| { |
| int r; |
| struct smq_policy *mq = to_smq_policy(p); |
| |
| mutex_lock(&mq->lock); |
| r = __smq_writeback_work(mq, oblock, cblock, critical_only); |
| mutex_unlock(&mq->lock); |
| |
| return r; |
| } |
| |
| static void __force_mapping(struct smq_policy *mq, |
| dm_oblock_t current_oblock, dm_oblock_t new_oblock) |
| { |
| struct entry *e = h_lookup(&mq->table, current_oblock); |
| |
| if (e) { |
| del(mq, e); |
| e->oblock = new_oblock; |
| e->dirty = true; |
| push(mq, e); |
| } |
| } |
| |
| static void smq_force_mapping(struct dm_cache_policy *p, |
| dm_oblock_t current_oblock, dm_oblock_t new_oblock) |
| { |
| struct smq_policy *mq = to_smq_policy(p); |
| |
| mutex_lock(&mq->lock); |
| __force_mapping(mq, current_oblock, new_oblock); |
| mutex_unlock(&mq->lock); |
| } |
| |
| static dm_cblock_t smq_residency(struct dm_cache_policy *p) |
| { |
| dm_cblock_t r; |
| struct smq_policy *mq = to_smq_policy(p); |
| |
| mutex_lock(&mq->lock); |
| r = to_cblock(mq->cache_alloc.nr_allocated); |
| mutex_unlock(&mq->lock); |
| |
| return r; |
| } |
| |
| static void smq_tick(struct dm_cache_policy *p, bool can_block) |
| { |
| struct smq_policy *mq = to_smq_policy(p); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&mq->tick_lock, flags); |
| mq->tick_protected++; |
| spin_unlock_irqrestore(&mq->tick_lock, flags); |
| |
| if (can_block) { |
| mutex_lock(&mq->lock); |
| copy_tick(mq); |
| mutex_unlock(&mq->lock); |
| } |
| } |
| |
| /* Init the policy plugin interface function pointers. */ |
| static void init_policy_functions(struct smq_policy *mq) |
| { |
| mq->policy.destroy = smq_destroy; |
| mq->policy.map = smq_map; |
| mq->policy.lookup = smq_lookup; |
| mq->policy.set_dirty = smq_set_dirty; |
| mq->policy.clear_dirty = smq_clear_dirty; |
| mq->policy.load_mapping = smq_load_mapping; |
| mq->policy.walk_mappings = smq_walk_mappings; |
| mq->policy.remove_mapping = smq_remove_mapping; |
| mq->policy.remove_cblock = smq_remove_cblock; |
| mq->policy.writeback_work = smq_writeback_work; |
| mq->policy.force_mapping = smq_force_mapping; |
| mq->policy.residency = smq_residency; |
| mq->policy.tick = smq_tick; |
| } |
| |
| static bool too_many_hotspot_blocks(sector_t origin_size, |
| sector_t hotspot_block_size, |
| unsigned nr_hotspot_blocks) |
| { |
| return (hotspot_block_size * nr_hotspot_blocks) > origin_size; |
| } |
| |
| static void calc_hotspot_params(sector_t origin_size, |
| sector_t cache_block_size, |
| unsigned nr_cache_blocks, |
| sector_t *hotspot_block_size, |
| unsigned *nr_hotspot_blocks) |
| { |
| *hotspot_block_size = cache_block_size * 16u; |
| *nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u); |
| |
| while ((*hotspot_block_size > cache_block_size) && |
| too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks)) |
| *hotspot_block_size /= 2u; |
| } |
| |
| static struct dm_cache_policy *smq_create(dm_cblock_t cache_size, |
| sector_t origin_size, |
| sector_t cache_block_size) |
| { |
| unsigned i; |
| unsigned nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS; |
| unsigned total_sentinels = 2u * nr_sentinels_per_queue; |
| struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL); |
| |
| if (!mq) |
| return NULL; |
| |
| init_policy_functions(mq); |
| mq->cache_size = cache_size; |
| mq->cache_block_size = cache_block_size; |
| |
| calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size), |
| &mq->hotspot_block_size, &mq->nr_hotspot_blocks); |
| |
| mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size); |
| mq->hotspot_level_jump = 1u; |
| if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) { |
| DMERR("couldn't initialize entry space"); |
| goto bad_pool_init; |
| } |
| |
| init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue); |
| for (i = 0; i < nr_sentinels_per_queue; i++) |
| get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true; |
| |
| init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels); |
| for (i = 0; i < nr_sentinels_per_queue; i++) |
| get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true; |
| |
| init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels, |
| total_sentinels + mq->nr_hotspot_blocks); |
| |
| init_allocator(&mq->cache_alloc, &mq->es, |
| total_sentinels + mq->nr_hotspot_blocks, |
| total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size)); |
| |
| mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks); |
| if (!mq->hotspot_hit_bits) { |
| DMERR("couldn't allocate hotspot hit bitset"); |
| goto bad_hotspot_hit_bits; |
| } |
| clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks); |
| |
| if (from_cblock(cache_size)) { |
| mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size)); |
| if (!mq->cache_hit_bits && mq->cache_hit_bits) { |
| DMERR("couldn't allocate cache hit bitset"); |
| goto bad_cache_hit_bits; |
| } |
| clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size)); |
| } else |
| mq->cache_hit_bits = NULL; |
| |
| mq->tick_protected = 0; |
| mq->tick = 0; |
| mutex_init(&mq->lock); |
| spin_lock_init(&mq->tick_lock); |
| |
| q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS); |
| mq->hotspot.nr_top_levels = 8; |
| mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS, |
| from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block); |
| |
| q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS); |
| q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS); |
| |
| stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS); |
| stats_init(&mq->cache_stats, NR_CACHE_LEVELS); |
| |
| if (h_init(&mq->table, &mq->es, from_cblock(cache_size))) |
| goto bad_alloc_table; |
| |
| if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks)) |
| goto bad_alloc_hotspot_table; |
| |
| sentinels_init(mq); |
| mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS; |
| |
| mq->next_hotspot_period = jiffies; |
| mq->next_cache_period = jiffies; |
| |
| return &mq->policy; |
| |
| bad_alloc_hotspot_table: |
| h_exit(&mq->table); |
| bad_alloc_table: |
| free_bitset(mq->cache_hit_bits); |
| bad_cache_hit_bits: |
| free_bitset(mq->hotspot_hit_bits); |
| bad_hotspot_hit_bits: |
| space_exit(&mq->es); |
| bad_pool_init: |
| kfree(mq); |
| |
| return NULL; |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| static struct dm_cache_policy_type smq_policy_type = { |
| .name = "smq", |
| .version = {1, 0, 0}, |
| .hint_size = 4, |
| .owner = THIS_MODULE, |
| .create = smq_create |
| }; |
| |
| static struct dm_cache_policy_type default_policy_type = { |
| .name = "default", |
| .version = {1, 4, 0}, |
| .hint_size = 4, |
| .owner = THIS_MODULE, |
| .create = smq_create, |
| .real = &smq_policy_type |
| }; |
| |
| static int __init smq_init(void) |
| { |
| int r; |
| |
| r = dm_cache_policy_register(&smq_policy_type); |
| if (r) { |
| DMERR("register failed %d", r); |
| return -ENOMEM; |
| } |
| |
| r = dm_cache_policy_register(&default_policy_type); |
| if (r) { |
| DMERR("register failed (as default) %d", r); |
| dm_cache_policy_unregister(&smq_policy_type); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void __exit smq_exit(void) |
| { |
| dm_cache_policy_unregister(&smq_policy_type); |
| dm_cache_policy_unregister(&default_policy_type); |
| } |
| |
| module_init(smq_init); |
| module_exit(smq_exit); |
| |
| MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("smq cache policy"); |