| /* |
| * Xen mmu operations |
| * |
| * This file contains the various mmu fetch and update operations. |
| * The most important job they must perform is the mapping between the |
| * domain's pfn and the overall machine mfns. |
| * |
| * Xen allows guests to directly update the pagetable, in a controlled |
| * fashion. In other words, the guest modifies the same pagetable |
| * that the CPU actually uses, which eliminates the overhead of having |
| * a separate shadow pagetable. |
| * |
| * In order to allow this, it falls on the guest domain to map its |
| * notion of a "physical" pfn - which is just a domain-local linear |
| * address - into a real "machine address" which the CPU's MMU can |
| * use. |
| * |
| * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be |
| * inserted directly into the pagetable. When creating a new |
| * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, |
| * when reading the content back with __(pgd|pmd|pte)_val, it converts |
| * the mfn back into a pfn. |
| * |
| * The other constraint is that all pages which make up a pagetable |
| * must be mapped read-only in the guest. This prevents uncontrolled |
| * guest updates to the pagetable. Xen strictly enforces this, and |
| * will disallow any pagetable update which will end up mapping a |
| * pagetable page RW, and will disallow using any writable page as a |
| * pagetable. |
| * |
| * Naively, when loading %cr3 with the base of a new pagetable, Xen |
| * would need to validate the whole pagetable before going on. |
| * Naturally, this is quite slow. The solution is to "pin" a |
| * pagetable, which enforces all the constraints on the pagetable even |
| * when it is not actively in use. This menas that Xen can be assured |
| * that it is still valid when you do load it into %cr3, and doesn't |
| * need to revalidate it. |
| * |
| * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 |
| */ |
| #include <linux/sched.h> |
| #include <linux/highmem.h> |
| #include <linux/debugfs.h> |
| #include <linux/bug.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/tlbflush.h> |
| #include <asm/fixmap.h> |
| #include <asm/mmu_context.h> |
| #include <asm/paravirt.h> |
| #include <asm/linkage.h> |
| |
| #include <asm/xen/hypercall.h> |
| #include <asm/xen/hypervisor.h> |
| |
| #include <xen/page.h> |
| #include <xen/interface/xen.h> |
| |
| #include "multicalls.h" |
| #include "mmu.h" |
| #include "debugfs.h" |
| |
| #define MMU_UPDATE_HISTO 30 |
| |
| #ifdef CONFIG_XEN_DEBUG_FS |
| |
| static struct { |
| u32 pgd_update; |
| u32 pgd_update_pinned; |
| u32 pgd_update_batched; |
| |
| u32 pud_update; |
| u32 pud_update_pinned; |
| u32 pud_update_batched; |
| |
| u32 pmd_update; |
| u32 pmd_update_pinned; |
| u32 pmd_update_batched; |
| |
| u32 pte_update; |
| u32 pte_update_pinned; |
| u32 pte_update_batched; |
| |
| u32 mmu_update; |
| u32 mmu_update_extended; |
| u32 mmu_update_histo[MMU_UPDATE_HISTO]; |
| |
| u32 prot_commit; |
| u32 prot_commit_batched; |
| |
| u32 set_pte_at; |
| u32 set_pte_at_batched; |
| u32 set_pte_at_pinned; |
| u32 set_pte_at_current; |
| u32 set_pte_at_kernel; |
| } mmu_stats; |
| |
| static u8 zero_stats; |
| |
| static inline void check_zero(void) |
| { |
| if (unlikely(zero_stats)) { |
| memset(&mmu_stats, 0, sizeof(mmu_stats)); |
| zero_stats = 0; |
| } |
| } |
| |
| #define ADD_STATS(elem, val) \ |
| do { check_zero(); mmu_stats.elem += (val); } while(0) |
| |
| #else /* !CONFIG_XEN_DEBUG_FS */ |
| |
| #define ADD_STATS(elem, val) do { (void)(val); } while(0) |
| |
| #endif /* CONFIG_XEN_DEBUG_FS */ |
| |
| /* |
| * Just beyond the highest usermode address. STACK_TOP_MAX has a |
| * redzone above it, so round it up to a PGD boundary. |
| */ |
| #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) |
| |
| |
| #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long)) |
| #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE) |
| |
| /* Placeholder for holes in the address space */ |
| static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data = |
| { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL }; |
| |
| /* Array of pointers to pages containing p2m entries */ |
| static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data = |
| { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] }; |
| |
| /* Arrays of p2m arrays expressed in mfns used for save/restore */ |
| static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss; |
| |
| static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE] |
| __page_aligned_bss; |
| |
| static inline unsigned p2m_top_index(unsigned long pfn) |
| { |
| BUG_ON(pfn >= MAX_DOMAIN_PAGES); |
| return pfn / P2M_ENTRIES_PER_PAGE; |
| } |
| |
| static inline unsigned p2m_index(unsigned long pfn) |
| { |
| return pfn % P2M_ENTRIES_PER_PAGE; |
| } |
| |
| /* Build the parallel p2m_top_mfn structures */ |
| void xen_setup_mfn_list_list(void) |
| { |
| unsigned pfn, idx; |
| |
| for(pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) { |
| unsigned topidx = p2m_top_index(pfn); |
| |
| p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]); |
| } |
| |
| for(idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) { |
| unsigned topidx = idx * P2M_ENTRIES_PER_PAGE; |
| p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]); |
| } |
| |
| BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info); |
| |
| HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list = |
| virt_to_mfn(p2m_top_mfn_list); |
| HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages; |
| } |
| |
| /* Set up p2m_top to point to the domain-builder provided p2m pages */ |
| void __init xen_build_dynamic_phys_to_machine(void) |
| { |
| unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list; |
| unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages); |
| unsigned pfn; |
| |
| for(pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) { |
| unsigned topidx = p2m_top_index(pfn); |
| |
| p2m_top[topidx] = &mfn_list[pfn]; |
| } |
| } |
| |
| unsigned long get_phys_to_machine(unsigned long pfn) |
| { |
| unsigned topidx, idx; |
| |
| if (unlikely(pfn >= MAX_DOMAIN_PAGES)) |
| return INVALID_P2M_ENTRY; |
| |
| topidx = p2m_top_index(pfn); |
| idx = p2m_index(pfn); |
| return p2m_top[topidx][idx]; |
| } |
| EXPORT_SYMBOL_GPL(get_phys_to_machine); |
| |
| static void alloc_p2m(unsigned long **pp, unsigned long *mfnp) |
| { |
| unsigned long *p; |
| unsigned i; |
| |
| p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL); |
| BUG_ON(p == NULL); |
| |
| for(i = 0; i < P2M_ENTRIES_PER_PAGE; i++) |
| p[i] = INVALID_P2M_ENTRY; |
| |
| if (cmpxchg(pp, p2m_missing, p) != p2m_missing) |
| free_page((unsigned long)p); |
| else |
| *mfnp = virt_to_mfn(p); |
| } |
| |
| void set_phys_to_machine(unsigned long pfn, unsigned long mfn) |
| { |
| unsigned topidx, idx; |
| |
| if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) { |
| BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY); |
| return; |
| } |
| |
| if (unlikely(pfn >= MAX_DOMAIN_PAGES)) { |
| BUG_ON(mfn != INVALID_P2M_ENTRY); |
| return; |
| } |
| |
| topidx = p2m_top_index(pfn); |
| if (p2m_top[topidx] == p2m_missing) { |
| /* no need to allocate a page to store an invalid entry */ |
| if (mfn == INVALID_P2M_ENTRY) |
| return; |
| alloc_p2m(&p2m_top[topidx], &p2m_top_mfn[topidx]); |
| } |
| |
| idx = p2m_index(pfn); |
| p2m_top[topidx][idx] = mfn; |
| } |
| |
| xmaddr_t arbitrary_virt_to_machine(void *vaddr) |
| { |
| unsigned long address = (unsigned long)vaddr; |
| unsigned int level; |
| pte_t *pte; |
| unsigned offset; |
| |
| /* |
| * if the PFN is in the linear mapped vaddr range, we can just use |
| * the (quick) virt_to_machine() p2m lookup |
| */ |
| if (virt_addr_valid(vaddr)) |
| return virt_to_machine(vaddr); |
| |
| /* otherwise we have to do a (slower) full page-table walk */ |
| |
| pte = lookup_address(address, &level); |
| BUG_ON(pte == NULL); |
| offset = address & ~PAGE_MASK; |
| return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset); |
| } |
| |
| void make_lowmem_page_readonly(void *vaddr) |
| { |
| pte_t *pte, ptev; |
| unsigned long address = (unsigned long)vaddr; |
| unsigned int level; |
| |
| pte = lookup_address(address, &level); |
| BUG_ON(pte == NULL); |
| |
| ptev = pte_wrprotect(*pte); |
| |
| if (HYPERVISOR_update_va_mapping(address, ptev, 0)) |
| BUG(); |
| } |
| |
| void make_lowmem_page_readwrite(void *vaddr) |
| { |
| pte_t *pte, ptev; |
| unsigned long address = (unsigned long)vaddr; |
| unsigned int level; |
| |
| pte = lookup_address(address, &level); |
| BUG_ON(pte == NULL); |
| |
| ptev = pte_mkwrite(*pte); |
| |
| if (HYPERVISOR_update_va_mapping(address, ptev, 0)) |
| BUG(); |
| } |
| |
| |
| static bool xen_page_pinned(void *ptr) |
| { |
| struct page *page = virt_to_page(ptr); |
| |
| return PagePinned(page); |
| } |
| |
| static void xen_extend_mmu_update(const struct mmu_update *update) |
| { |
| struct multicall_space mcs; |
| struct mmu_update *u; |
| |
| mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); |
| |
| if (mcs.mc != NULL) { |
| ADD_STATS(mmu_update_extended, 1); |
| ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1); |
| |
| mcs.mc->args[1]++; |
| |
| if (mcs.mc->args[1] < MMU_UPDATE_HISTO) |
| ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1); |
| else |
| ADD_STATS(mmu_update_histo[0], 1); |
| } else { |
| ADD_STATS(mmu_update, 1); |
| mcs = __xen_mc_entry(sizeof(*u)); |
| MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); |
| ADD_STATS(mmu_update_histo[1], 1); |
| } |
| |
| u = mcs.args; |
| *u = *update; |
| } |
| |
| void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) |
| { |
| struct mmu_update u; |
| |
| preempt_disable(); |
| |
| xen_mc_batch(); |
| |
| /* ptr may be ioremapped for 64-bit pagetable setup */ |
| u.ptr = arbitrary_virt_to_machine(ptr).maddr; |
| u.val = pmd_val_ma(val); |
| xen_extend_mmu_update(&u); |
| |
| ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU); |
| |
| xen_mc_issue(PARAVIRT_LAZY_MMU); |
| |
| preempt_enable(); |
| } |
| |
| void xen_set_pmd(pmd_t *ptr, pmd_t val) |
| { |
| ADD_STATS(pmd_update, 1); |
| |
| /* If page is not pinned, we can just update the entry |
| directly */ |
| if (!xen_page_pinned(ptr)) { |
| *ptr = val; |
| return; |
| } |
| |
| ADD_STATS(pmd_update_pinned, 1); |
| |
| xen_set_pmd_hyper(ptr, val); |
| } |
| |
| /* |
| * Associate a virtual page frame with a given physical page frame |
| * and protection flags for that frame. |
| */ |
| void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) |
| { |
| set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); |
| } |
| |
| void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pteval) |
| { |
| /* updates to init_mm may be done without lock */ |
| if (mm == &init_mm) |
| preempt_disable(); |
| |
| ADD_STATS(set_pte_at, 1); |
| // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep)); |
| ADD_STATS(set_pte_at_current, mm == current->mm); |
| ADD_STATS(set_pte_at_kernel, mm == &init_mm); |
| |
| if (mm == current->mm || mm == &init_mm) { |
| if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) { |
| struct multicall_space mcs; |
| mcs = xen_mc_entry(0); |
| |
| MULTI_update_va_mapping(mcs.mc, addr, pteval, 0); |
| ADD_STATS(set_pte_at_batched, 1); |
| xen_mc_issue(PARAVIRT_LAZY_MMU); |
| goto out; |
| } else |
| if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0) |
| goto out; |
| } |
| xen_set_pte(ptep, pteval); |
| |
| out: |
| if (mm == &init_mm) |
| preempt_enable(); |
| } |
| |
| pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| { |
| /* Just return the pte as-is. We preserve the bits on commit */ |
| return *ptep; |
| } |
| |
| void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte) |
| { |
| struct mmu_update u; |
| |
| xen_mc_batch(); |
| |
| u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; |
| u.val = pte_val_ma(pte); |
| xen_extend_mmu_update(&u); |
| |
| ADD_STATS(prot_commit, 1); |
| ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU); |
| |
| xen_mc_issue(PARAVIRT_LAZY_MMU); |
| } |
| |
| /* Assume pteval_t is equivalent to all the other *val_t types. */ |
| static pteval_t pte_mfn_to_pfn(pteval_t val) |
| { |
| if (val & _PAGE_PRESENT) { |
| unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; |
| pteval_t flags = val & PTE_FLAGS_MASK; |
| val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags; |
| } |
| |
| return val; |
| } |
| |
| static pteval_t pte_pfn_to_mfn(pteval_t val) |
| { |
| if (val & _PAGE_PRESENT) { |
| unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; |
| pteval_t flags = val & PTE_FLAGS_MASK; |
| val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags; |
| } |
| |
| return val; |
| } |
| |
| pteval_t xen_pte_val(pte_t pte) |
| { |
| return pte_mfn_to_pfn(pte.pte); |
| } |
| |
| pgdval_t xen_pgd_val(pgd_t pgd) |
| { |
| return pte_mfn_to_pfn(pgd.pgd); |
| } |
| |
| pte_t xen_make_pte(pteval_t pte) |
| { |
| pte = pte_pfn_to_mfn(pte); |
| return native_make_pte(pte); |
| } |
| |
| pgd_t xen_make_pgd(pgdval_t pgd) |
| { |
| pgd = pte_pfn_to_mfn(pgd); |
| return native_make_pgd(pgd); |
| } |
| |
| pmdval_t xen_pmd_val(pmd_t pmd) |
| { |
| return pte_mfn_to_pfn(pmd.pmd); |
| } |
| |
| void xen_set_pud_hyper(pud_t *ptr, pud_t val) |
| { |
| struct mmu_update u; |
| |
| preempt_disable(); |
| |
| xen_mc_batch(); |
| |
| /* ptr may be ioremapped for 64-bit pagetable setup */ |
| u.ptr = arbitrary_virt_to_machine(ptr).maddr; |
| u.val = pud_val_ma(val); |
| xen_extend_mmu_update(&u); |
| |
| ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU); |
| |
| xen_mc_issue(PARAVIRT_LAZY_MMU); |
| |
| preempt_enable(); |
| } |
| |
| void xen_set_pud(pud_t *ptr, pud_t val) |
| { |
| ADD_STATS(pud_update, 1); |
| |
| /* If page is not pinned, we can just update the entry |
| directly */ |
| if (!xen_page_pinned(ptr)) { |
| *ptr = val; |
| return; |
| } |
| |
| ADD_STATS(pud_update_pinned, 1); |
| |
| xen_set_pud_hyper(ptr, val); |
| } |
| |
| void xen_set_pte(pte_t *ptep, pte_t pte) |
| { |
| ADD_STATS(pte_update, 1); |
| // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep)); |
| ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU); |
| |
| #ifdef CONFIG_X86_PAE |
| ptep->pte_high = pte.pte_high; |
| smp_wmb(); |
| ptep->pte_low = pte.pte_low; |
| #else |
| *ptep = pte; |
| #endif |
| } |
| |
| #ifdef CONFIG_X86_PAE |
| void xen_set_pte_atomic(pte_t *ptep, pte_t pte) |
| { |
| set_64bit((u64 *)ptep, native_pte_val(pte)); |
| } |
| |
| void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| { |
| ptep->pte_low = 0; |
| smp_wmb(); /* make sure low gets written first */ |
| ptep->pte_high = 0; |
| } |
| |
| void xen_pmd_clear(pmd_t *pmdp) |
| { |
| set_pmd(pmdp, __pmd(0)); |
| } |
| #endif /* CONFIG_X86_PAE */ |
| |
| pmd_t xen_make_pmd(pmdval_t pmd) |
| { |
| pmd = pte_pfn_to_mfn(pmd); |
| return native_make_pmd(pmd); |
| } |
| |
| #if PAGETABLE_LEVELS == 4 |
| pudval_t xen_pud_val(pud_t pud) |
| { |
| return pte_mfn_to_pfn(pud.pud); |
| } |
| |
| pud_t xen_make_pud(pudval_t pud) |
| { |
| pud = pte_pfn_to_mfn(pud); |
| |
| return native_make_pud(pud); |
| } |
| |
| pgd_t *xen_get_user_pgd(pgd_t *pgd) |
| { |
| pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); |
| unsigned offset = pgd - pgd_page; |
| pgd_t *user_ptr = NULL; |
| |
| if (offset < pgd_index(USER_LIMIT)) { |
| struct page *page = virt_to_page(pgd_page); |
| user_ptr = (pgd_t *)page->private; |
| if (user_ptr) |
| user_ptr += offset; |
| } |
| |
| return user_ptr; |
| } |
| |
| static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) |
| { |
| struct mmu_update u; |
| |
| u.ptr = virt_to_machine(ptr).maddr; |
| u.val = pgd_val_ma(val); |
| xen_extend_mmu_update(&u); |
| } |
| |
| /* |
| * Raw hypercall-based set_pgd, intended for in early boot before |
| * there's a page structure. This implies: |
| * 1. The only existing pagetable is the kernel's |
| * 2. It is always pinned |
| * 3. It has no user pagetable attached to it |
| */ |
| void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) |
| { |
| preempt_disable(); |
| |
| xen_mc_batch(); |
| |
| __xen_set_pgd_hyper(ptr, val); |
| |
| xen_mc_issue(PARAVIRT_LAZY_MMU); |
| |
| preempt_enable(); |
| } |
| |
| void xen_set_pgd(pgd_t *ptr, pgd_t val) |
| { |
| pgd_t *user_ptr = xen_get_user_pgd(ptr); |
| |
| ADD_STATS(pgd_update, 1); |
| |
| /* If page is not pinned, we can just update the entry |
| directly */ |
| if (!xen_page_pinned(ptr)) { |
| *ptr = val; |
| if (user_ptr) { |
| WARN_ON(xen_page_pinned(user_ptr)); |
| *user_ptr = val; |
| } |
| return; |
| } |
| |
| ADD_STATS(pgd_update_pinned, 1); |
| ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU); |
| |
| /* If it's pinned, then we can at least batch the kernel and |
| user updates together. */ |
| xen_mc_batch(); |
| |
| __xen_set_pgd_hyper(ptr, val); |
| if (user_ptr) |
| __xen_set_pgd_hyper(user_ptr, val); |
| |
| xen_mc_issue(PARAVIRT_LAZY_MMU); |
| } |
| #endif /* PAGETABLE_LEVELS == 4 */ |
| |
| /* |
| * (Yet another) pagetable walker. This one is intended for pinning a |
| * pagetable. This means that it walks a pagetable and calls the |
| * callback function on each page it finds making up the page table, |
| * at every level. It walks the entire pagetable, but it only bothers |
| * pinning pte pages which are below limit. In the normal case this |
| * will be STACK_TOP_MAX, but at boot we need to pin up to |
| * FIXADDR_TOP. |
| * |
| * For 32-bit the important bit is that we don't pin beyond there, |
| * because then we start getting into Xen's ptes. |
| * |
| * For 64-bit, we must skip the Xen hole in the middle of the address |
| * space, just after the big x86-64 virtual hole. |
| */ |
| static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, |
| int (*func)(struct mm_struct *mm, struct page *, |
| enum pt_level), |
| unsigned long limit) |
| { |
| int flush = 0; |
| unsigned hole_low, hole_high; |
| unsigned pgdidx_limit, pudidx_limit, pmdidx_limit; |
| unsigned pgdidx, pudidx, pmdidx; |
| |
| /* The limit is the last byte to be touched */ |
| limit--; |
| BUG_ON(limit >= FIXADDR_TOP); |
| |
| if (xen_feature(XENFEAT_auto_translated_physmap)) |
| return 0; |
| |
| /* |
| * 64-bit has a great big hole in the middle of the address |
| * space, which contains the Xen mappings. On 32-bit these |
| * will end up making a zero-sized hole and so is a no-op. |
| */ |
| hole_low = pgd_index(USER_LIMIT); |
| hole_high = pgd_index(PAGE_OFFSET); |
| |
| pgdidx_limit = pgd_index(limit); |
| #if PTRS_PER_PUD > 1 |
| pudidx_limit = pud_index(limit); |
| #else |
| pudidx_limit = 0; |
| #endif |
| #if PTRS_PER_PMD > 1 |
| pmdidx_limit = pmd_index(limit); |
| #else |
| pmdidx_limit = 0; |
| #endif |
| |
| for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) { |
| pud_t *pud; |
| |
| if (pgdidx >= hole_low && pgdidx < hole_high) |
| continue; |
| |
| if (!pgd_val(pgd[pgdidx])) |
| continue; |
| |
| pud = pud_offset(&pgd[pgdidx], 0); |
| |
| if (PTRS_PER_PUD > 1) /* not folded */ |
| flush |= (*func)(mm, virt_to_page(pud), PT_PUD); |
| |
| for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) { |
| pmd_t *pmd; |
| |
| if (pgdidx == pgdidx_limit && |
| pudidx > pudidx_limit) |
| goto out; |
| |
| if (pud_none(pud[pudidx])) |
| continue; |
| |
| pmd = pmd_offset(&pud[pudidx], 0); |
| |
| if (PTRS_PER_PMD > 1) /* not folded */ |
| flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); |
| |
| for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) { |
| struct page *pte; |
| |
| if (pgdidx == pgdidx_limit && |
| pudidx == pudidx_limit && |
| pmdidx > pmdidx_limit) |
| goto out; |
| |
| if (pmd_none(pmd[pmdidx])) |
| continue; |
| |
| pte = pmd_page(pmd[pmdidx]); |
| flush |= (*func)(mm, pte, PT_PTE); |
| } |
| } |
| } |
| |
| out: |
| /* Do the top level last, so that the callbacks can use it as |
| a cue to do final things like tlb flushes. */ |
| flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); |
| |
| return flush; |
| } |
| |
| static int xen_pgd_walk(struct mm_struct *mm, |
| int (*func)(struct mm_struct *mm, struct page *, |
| enum pt_level), |
| unsigned long limit) |
| { |
| return __xen_pgd_walk(mm, mm->pgd, func, limit); |
| } |
| |
| /* If we're using split pte locks, then take the page's lock and |
| return a pointer to it. Otherwise return NULL. */ |
| static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) |
| { |
| spinlock_t *ptl = NULL; |
| |
| #if USE_SPLIT_PTLOCKS |
| ptl = __pte_lockptr(page); |
| spin_lock_nest_lock(ptl, &mm->page_table_lock); |
| #endif |
| |
| return ptl; |
| } |
| |
| static void xen_pte_unlock(void *v) |
| { |
| spinlock_t *ptl = v; |
| spin_unlock(ptl); |
| } |
| |
| static void xen_do_pin(unsigned level, unsigned long pfn) |
| { |
| struct mmuext_op *op; |
| struct multicall_space mcs; |
| |
| mcs = __xen_mc_entry(sizeof(*op)); |
| op = mcs.args; |
| op->cmd = level; |
| op->arg1.mfn = pfn_to_mfn(pfn); |
| MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); |
| } |
| |
| static int xen_pin_page(struct mm_struct *mm, struct page *page, |
| enum pt_level level) |
| { |
| unsigned pgfl = TestSetPagePinned(page); |
| int flush; |
| |
| if (pgfl) |
| flush = 0; /* already pinned */ |
| else if (PageHighMem(page)) |
| /* kmaps need flushing if we found an unpinned |
| highpage */ |
| flush = 1; |
| else { |
| void *pt = lowmem_page_address(page); |
| unsigned long pfn = page_to_pfn(page); |
| struct multicall_space mcs = __xen_mc_entry(0); |
| spinlock_t *ptl; |
| |
| flush = 0; |
| |
| /* |
| * We need to hold the pagetable lock between the time |
| * we make the pagetable RO and when we actually pin |
| * it. If we don't, then other users may come in and |
| * attempt to update the pagetable by writing it, |
| * which will fail because the memory is RO but not |
| * pinned, so Xen won't do the trap'n'emulate. |
| * |
| * If we're using split pte locks, we can't hold the |
| * entire pagetable's worth of locks during the |
| * traverse, because we may wrap the preempt count (8 |
| * bits). The solution is to mark RO and pin each PTE |
| * page while holding the lock. This means the number |
| * of locks we end up holding is never more than a |
| * batch size (~32 entries, at present). |
| * |
| * If we're not using split pte locks, we needn't pin |
| * the PTE pages independently, because we're |
| * protected by the overall pagetable lock. |
| */ |
| ptl = NULL; |
| if (level == PT_PTE) |
| ptl = xen_pte_lock(page, mm); |
| |
| MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, |
| pfn_pte(pfn, PAGE_KERNEL_RO), |
| level == PT_PGD ? UVMF_TLB_FLUSH : 0); |
| |
| if (ptl) { |
| xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); |
| |
| /* Queue a deferred unlock for when this batch |
| is completed. */ |
| xen_mc_callback(xen_pte_unlock, ptl); |
| } |
| } |
| |
| return flush; |
| } |
| |
| /* This is called just after a mm has been created, but it has not |
| been used yet. We need to make sure that its pagetable is all |
| read-only, and can be pinned. */ |
| static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) |
| { |
| vm_unmap_aliases(); |
| |
| xen_mc_batch(); |
| |
| if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { |
| /* re-enable interrupts for flushing */ |
| xen_mc_issue(0); |
| |
| kmap_flush_unused(); |
| |
| xen_mc_batch(); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| { |
| pgd_t *user_pgd = xen_get_user_pgd(pgd); |
| |
| xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); |
| |
| if (user_pgd) { |
| xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); |
| xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(user_pgd))); |
| } |
| } |
| #else /* CONFIG_X86_32 */ |
| #ifdef CONFIG_X86_PAE |
| /* Need to make sure unshared kernel PMD is pinnable */ |
| xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), |
| PT_PMD); |
| #endif |
| xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); |
| #endif /* CONFIG_X86_64 */ |
| xen_mc_issue(0); |
| } |
| |
| static void xen_pgd_pin(struct mm_struct *mm) |
| { |
| __xen_pgd_pin(mm, mm->pgd); |
| } |
| |
| /* |
| * On save, we need to pin all pagetables to make sure they get their |
| * mfns turned into pfns. Search the list for any unpinned pgds and pin |
| * them (unpinned pgds are not currently in use, probably because the |
| * process is under construction or destruction). |
| * |
| * Expected to be called in stop_machine() ("equivalent to taking |
| * every spinlock in the system"), so the locking doesn't really |
| * matter all that much. |
| */ |
| void xen_mm_pin_all(void) |
| { |
| unsigned long flags; |
| struct page *page; |
| |
| spin_lock_irqsave(&pgd_lock, flags); |
| |
| list_for_each_entry(page, &pgd_list, lru) { |
| if (!PagePinned(page)) { |
| __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); |
| SetPageSavePinned(page); |
| } |
| } |
| |
| spin_unlock_irqrestore(&pgd_lock, flags); |
| } |
| |
| /* |
| * The init_mm pagetable is really pinned as soon as its created, but |
| * that's before we have page structures to store the bits. So do all |
| * the book-keeping now. |
| */ |
| static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page, |
| enum pt_level level) |
| { |
| SetPagePinned(page); |
| return 0; |
| } |
| |
| void __init xen_mark_init_mm_pinned(void) |
| { |
| xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); |
| } |
| |
| static int xen_unpin_page(struct mm_struct *mm, struct page *page, |
| enum pt_level level) |
| { |
| unsigned pgfl = TestClearPagePinned(page); |
| |
| if (pgfl && !PageHighMem(page)) { |
| void *pt = lowmem_page_address(page); |
| unsigned long pfn = page_to_pfn(page); |
| spinlock_t *ptl = NULL; |
| struct multicall_space mcs; |
| |
| /* |
| * Do the converse to pin_page. If we're using split |
| * pte locks, we must be holding the lock for while |
| * the pte page is unpinned but still RO to prevent |
| * concurrent updates from seeing it in this |
| * partially-pinned state. |
| */ |
| if (level == PT_PTE) { |
| ptl = xen_pte_lock(page, mm); |
| |
| if (ptl) |
| xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); |
| } |
| |
| mcs = __xen_mc_entry(0); |
| |
| MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, |
| pfn_pte(pfn, PAGE_KERNEL), |
| level == PT_PGD ? UVMF_TLB_FLUSH : 0); |
| |
| if (ptl) { |
| /* unlock when batch completed */ |
| xen_mc_callback(xen_pte_unlock, ptl); |
| } |
| } |
| |
| return 0; /* never need to flush on unpin */ |
| } |
| |
| /* Release a pagetables pages back as normal RW */ |
| static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) |
| { |
| xen_mc_batch(); |
| |
| xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); |
| |
| #ifdef CONFIG_X86_64 |
| { |
| pgd_t *user_pgd = xen_get_user_pgd(pgd); |
| |
| if (user_pgd) { |
| xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(user_pgd))); |
| xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); |
| } |
| } |
| #endif |
| |
| #ifdef CONFIG_X86_PAE |
| /* Need to make sure unshared kernel PMD is unpinned */ |
| xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), |
| PT_PMD); |
| #endif |
| |
| __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); |
| |
| xen_mc_issue(0); |
| } |
| |
| static void xen_pgd_unpin(struct mm_struct *mm) |
| { |
| __xen_pgd_unpin(mm, mm->pgd); |
| } |
| |
| /* |
| * On resume, undo any pinning done at save, so that the rest of the |
| * kernel doesn't see any unexpected pinned pagetables. |
| */ |
| void xen_mm_unpin_all(void) |
| { |
| unsigned long flags; |
| struct page *page; |
| |
| spin_lock_irqsave(&pgd_lock, flags); |
| |
| list_for_each_entry(page, &pgd_list, lru) { |
| if (PageSavePinned(page)) { |
| BUG_ON(!PagePinned(page)); |
| __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); |
| ClearPageSavePinned(page); |
| } |
| } |
| |
| spin_unlock_irqrestore(&pgd_lock, flags); |
| } |
| |
| void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) |
| { |
| spin_lock(&next->page_table_lock); |
| xen_pgd_pin(next); |
| spin_unlock(&next->page_table_lock); |
| } |
| |
| void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) |
| { |
| spin_lock(&mm->page_table_lock); |
| xen_pgd_pin(mm); |
| spin_unlock(&mm->page_table_lock); |
| } |
| |
| |
| #ifdef CONFIG_SMP |
| /* Another cpu may still have their %cr3 pointing at the pagetable, so |
| we need to repoint it somewhere else before we can unpin it. */ |
| static void drop_other_mm_ref(void *info) |
| { |
| struct mm_struct *mm = info; |
| struct mm_struct *active_mm; |
| |
| #ifdef CONFIG_X86_64 |
| active_mm = read_pda(active_mm); |
| #else |
| active_mm = __get_cpu_var(cpu_tlbstate).active_mm; |
| #endif |
| |
| if (active_mm == mm) |
| leave_mm(smp_processor_id()); |
| |
| /* If this cpu still has a stale cr3 reference, then make sure |
| it has been flushed. */ |
| if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) { |
| load_cr3(swapper_pg_dir); |
| arch_flush_lazy_cpu_mode(); |
| } |
| } |
| |
| static void xen_drop_mm_ref(struct mm_struct *mm) |
| { |
| cpumask_t mask; |
| unsigned cpu; |
| |
| if (current->active_mm == mm) { |
| if (current->mm == mm) |
| load_cr3(swapper_pg_dir); |
| else |
| leave_mm(smp_processor_id()); |
| arch_flush_lazy_cpu_mode(); |
| } |
| |
| /* Get the "official" set of cpus referring to our pagetable. */ |
| mask = mm->cpu_vm_mask; |
| |
| /* It's possible that a vcpu may have a stale reference to our |
| cr3, because its in lazy mode, and it hasn't yet flushed |
| its set of pending hypercalls yet. In this case, we can |
| look at its actual current cr3 value, and force it to flush |
| if needed. */ |
| for_each_online_cpu(cpu) { |
| if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) |
| cpu_set(cpu, mask); |
| } |
| |
| if (!cpus_empty(mask)) |
| smp_call_function_mask(mask, drop_other_mm_ref, mm, 1); |
| } |
| #else |
| static void xen_drop_mm_ref(struct mm_struct *mm) |
| { |
| if (current->active_mm == mm) |
| load_cr3(swapper_pg_dir); |
| } |
| #endif |
| |
| /* |
| * While a process runs, Xen pins its pagetables, which means that the |
| * hypervisor forces it to be read-only, and it controls all updates |
| * to it. This means that all pagetable updates have to go via the |
| * hypervisor, which is moderately expensive. |
| * |
| * Since we're pulling the pagetable down, we switch to use init_mm, |
| * unpin old process pagetable and mark it all read-write, which |
| * allows further operations on it to be simple memory accesses. |
| * |
| * The only subtle point is that another CPU may be still using the |
| * pagetable because of lazy tlb flushing. This means we need need to |
| * switch all CPUs off this pagetable before we can unpin it. |
| */ |
| void xen_exit_mmap(struct mm_struct *mm) |
| { |
| get_cpu(); /* make sure we don't move around */ |
| xen_drop_mm_ref(mm); |
| put_cpu(); |
| |
| spin_lock(&mm->page_table_lock); |
| |
| /* pgd may not be pinned in the error exit path of execve */ |
| if (xen_page_pinned(mm->pgd)) |
| xen_pgd_unpin(mm); |
| |
| spin_unlock(&mm->page_table_lock); |
| } |
| |
| #ifdef CONFIG_XEN_DEBUG_FS |
| |
| static struct dentry *d_mmu_debug; |
| |
| static int __init xen_mmu_debugfs(void) |
| { |
| struct dentry *d_xen = xen_init_debugfs(); |
| |
| if (d_xen == NULL) |
| return -ENOMEM; |
| |
| d_mmu_debug = debugfs_create_dir("mmu", d_xen); |
| |
| debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats); |
| |
| debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update); |
| debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug, |
| &mmu_stats.pgd_update_pinned); |
| debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug, |
| &mmu_stats.pgd_update_pinned); |
| |
| debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update); |
| debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug, |
| &mmu_stats.pud_update_pinned); |
| debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug, |
| &mmu_stats.pud_update_pinned); |
| |
| debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update); |
| debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug, |
| &mmu_stats.pmd_update_pinned); |
| debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug, |
| &mmu_stats.pmd_update_pinned); |
| |
| debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update); |
| // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug, |
| // &mmu_stats.pte_update_pinned); |
| debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug, |
| &mmu_stats.pte_update_pinned); |
| |
| debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update); |
| debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug, |
| &mmu_stats.mmu_update_extended); |
| xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug, |
| mmu_stats.mmu_update_histo, 20); |
| |
| debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at); |
| debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug, |
| &mmu_stats.set_pte_at_batched); |
| debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug, |
| &mmu_stats.set_pte_at_current); |
| debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug, |
| &mmu_stats.set_pte_at_kernel); |
| |
| debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit); |
| debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug, |
| &mmu_stats.prot_commit_batched); |
| |
| return 0; |
| } |
| fs_initcall(xen_mmu_debugfs); |
| |
| #endif /* CONFIG_XEN_DEBUG_FS */ |