blob: 7290205a85cda224c9ddba10f8c2b143b62d8020 [file] [log] [blame]
/*
* Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#include <linux/delay.h>
#include "mdss-dsi-pll.h"
#include "mdss-pll.h"
#include <dt-bindings/clock/mdss-10nm-pll-clk.h>
#define CREATE_TRACE_POINTS
#include "mdss_pll_trace.h"
#define VCO_DELAY_USEC 1
#define MHZ_250 250000000UL
#define MHZ_500 500000000UL
#define MHZ_1000 1000000000UL
#define MHZ_1100 1100000000UL
#define MHZ_1900 1900000000UL
#define MHZ_3000 3000000000UL
/* Register Offsets from PLL base address */
#define PLL_ANALOG_CONTROLS_ONE 0x000
#define PLL_ANALOG_CONTROLS_TWO 0x004
#define PLL_INT_LOOP_SETTINGS 0x008
#define PLL_INT_LOOP_SETTINGS_TWO 0x00c
#define PLL_ANALOG_CONTROLS_THREE 0x010
#define PLL_ANALOG_CONTROLS_FOUR 0x014
#define PLL_INT_LOOP_CONTROLS 0x018
#define PLL_DSM_DIVIDER 0x01c
#define PLL_FEEDBACK_DIVIDER 0x020
#define PLL_SYSTEM_MUXES 0x024
#define PLL_FREQ_UPDATE_CONTROL_OVERRIDES 0x028
#define PLL_CMODE 0x02c
#define PLL_CALIBRATION_SETTINGS 0x030
#define PLL_BAND_SEL_CAL_TIMER_LOW 0x034
#define PLL_BAND_SEL_CAL_TIMER_HIGH 0x038
#define PLL_BAND_SEL_CAL_SETTINGS 0x03c
#define PLL_BAND_SEL_MIN 0x040
#define PLL_BAND_SEL_MAX 0x044
#define PLL_BAND_SEL_PFILT 0x048
#define PLL_BAND_SEL_IFILT 0x04c
#define PLL_BAND_SEL_CAL_SETTINGS_TWO 0x050
#define PLL_BAND_SEL_CAL_SETTINGS_THREE 0x054
#define PLL_BAND_SEL_CAL_SETTINGS_FOUR 0x058
#define PLL_BAND_SEL_ICODE_HIGH 0x05c
#define PLL_BAND_SEL_ICODE_LOW 0x060
#define PLL_FREQ_DETECT_SETTINGS_ONE 0x064
#define PLL_PFILT 0x07c
#define PLL_IFILT 0x080
#define PLL_GAIN 0x084
#define PLL_ICODE_LOW 0x088
#define PLL_ICODE_HIGH 0x08c
#define PLL_LOCKDET 0x090
#define PLL_OUTDIV 0x094
#define PLL_FASTLOCK_CONTROL 0x098
#define PLL_PASS_OUT_OVERRIDE_ONE 0x09c
#define PLL_PASS_OUT_OVERRIDE_TWO 0x0a0
#define PLL_CORE_OVERRIDE 0x0a4
#define PLL_CORE_INPUT_OVERRIDE 0x0a8
#define PLL_RATE_CHANGE 0x0ac
#define PLL_PLL_DIGITAL_TIMERS 0x0b0
#define PLL_PLL_DIGITAL_TIMERS_TWO 0x0b4
#define PLL_DEC_FRAC_MUXES 0x0c8
#define PLL_DECIMAL_DIV_START_1 0x0cc
#define PLL_FRAC_DIV_START_LOW_1 0x0d0
#define PLL_FRAC_DIV_START_MID_1 0x0d4
#define PLL_FRAC_DIV_START_HIGH_1 0x0d8
#define PLL_MASH_CONTROL 0x0ec
#define PLL_SSC_MUX_CONTROL 0x108
#define PLL_SSC_STEPSIZE_LOW_1 0x10c
#define PLL_SSC_STEPSIZE_HIGH_1 0x110
#define PLL_SSC_DIV_PER_LOW_1 0x114
#define PLL_SSC_DIV_PER_HIGH_1 0x118
#define PLL_SSC_DIV_ADJPER_LOW_1 0x11c
#define PLL_SSC_DIV_ADJPER_HIGH_1 0x120
#define PLL_SSC_CONTROL 0x13c
#define PLL_PLL_OUTDIV_RATE 0x140
#define PLL_PLL_LOCKDET_RATE_1 0x144
#define PLL_PLL_PROP_GAIN_RATE_1 0x14c
#define PLL_PLL_BAND_SET_RATE_1 0x154
#define PLL_PLL_INT_GAIN_IFILT_BAND_1 0x15c
#define PLL_PLL_FL_INT_GAIN_PFILT_BAND_1 0x164
#define PLL_FASTLOCK_EN_BAND 0x16c
#define PLL_FREQ_TUNE_ACCUM_INIT_MUX 0x17c
#define PLL_PLL_LOCK_OVERRIDE 0x180
#define PLL_PLL_LOCK_DELAY 0x184
#define PLL_PLL_LOCK_MIN_DELAY 0x188
#define PLL_CLOCK_INVERTERS 0x18c
#define PLL_SPARE_AND_JPC_OVERRIDES 0x190
#define PLL_BIAS_CONTROL_1 0x194
#define PLL_BIAS_CONTROL_2 0x198
#define PLL_ALOG_OBSV_BUS_CTRL_1 0x19c
#define PLL_COMMON_STATUS_ONE 0x1a0
/* Register Offsets from PHY base address */
#define PHY_CMN_CLK_CFG0 0x010
#define PHY_CMN_CLK_CFG1 0x014
#define PHY_CMN_RBUF_CTRL 0x01c
#define PHY_CMN_PLL_CNTRL 0x038
#define PHY_CMN_CTRL_0 0x024
/* Bit definition of SSC control registers */
#define SSC_CENTER BIT(0)
#define SSC_EN BIT(1)
#define SSC_FREQ_UPDATE BIT(2)
#define SSC_FREQ_UPDATE_MUX BIT(3)
#define SSC_UPDATE_SSC BIT(4)
#define SSC_UPDATE_SSC_MUX BIT(5)
#define SSC_START BIT(6)
#define SSC_START_MUX BIT(7)
enum {
DSI_PLL_0,
DSI_PLL_1,
DSI_PLL_MAX
};
struct dsi_pll_regs {
u32 pll_prop_gain_rate;
u32 pll_lockdet_rate;
u32 decimal_div_start;
u32 frac_div_start_low;
u32 frac_div_start_mid;
u32 frac_div_start_high;
u32 pll_clock_inverters;
u32 ssc_stepsize_low;
u32 ssc_stepsize_high;
u32 ssc_div_per_low;
u32 ssc_div_per_high;
u32 ssc_adjper_low;
u32 ssc_adjper_high;
u32 ssc_control;
};
struct dsi_pll_config {
u32 ref_freq;
bool div_override;
u32 output_div;
bool ignore_frac;
bool disable_prescaler;
bool enable_ssc;
bool ssc_center;
u32 dec_bits;
u32 frac_bits;
u32 lock_timer;
u32 ssc_freq;
u32 ssc_offset;
u32 ssc_adj_per;
u32 thresh_cycles;
u32 refclk_cycles;
};
struct dsi_pll_10nm {
struct mdss_pll_resources *rsc;
struct dsi_pll_config pll_configuration;
struct dsi_pll_regs reg_setup;
};
static inline int pll_reg_read(void *context, unsigned int reg,
unsigned int *val)
{
int rc = 0;
struct mdss_pll_resources *rsc = context;
rc = mdss_pll_resource_enable(rsc, true);
if (rc) {
pr_err("Failed to enable dsi pll resources, rc=%d\n", rc);
return rc;
}
*val = MDSS_PLL_REG_R(rsc->pll_base, reg);
(void)mdss_pll_resource_enable(rsc, false);
return rc;
}
static inline int pll_reg_write(void *context, unsigned int reg,
unsigned int val)
{
int rc = 0;
struct mdss_pll_resources *rsc = context;
rc = mdss_pll_resource_enable(rsc, true);
if (rc) {
pr_err("Failed to enable dsi pll resources, rc=%d\n", rc);
return rc;
}
MDSS_PLL_REG_W(rsc->pll_base, reg, val);
(void)mdss_pll_resource_enable(rsc, false);
return rc;
}
static inline int phy_reg_read(void *context, unsigned int reg,
unsigned int *val)
{
int rc = 0;
struct mdss_pll_resources *rsc = context;
rc = mdss_pll_resource_enable(rsc, true);
if (rc) {
pr_err("Failed to enable dsi pll resources, rc=%d\n", rc);
return rc;
}
*val = MDSS_PLL_REG_R(rsc->phy_base, reg);
(void)mdss_pll_resource_enable(rsc, false);
return rc;
}
static inline int phy_reg_write(void *context, unsigned int reg,
unsigned int val)
{
int rc = 0;
struct mdss_pll_resources *rsc = context;
rc = mdss_pll_resource_enable(rsc, true);
if (rc) {
pr_err("Failed to enable dsi pll resources, rc=%d\n", rc);
return rc;
}
MDSS_PLL_REG_W(rsc->phy_base, reg, val);
(void)mdss_pll_resource_enable(rsc, false);
return rc;
}
static inline int phy_reg_update_bits_sub(struct mdss_pll_resources *rsc,
unsigned int reg, unsigned int mask, unsigned int val)
{
u32 reg_val;
int rc = 0;
reg_val = MDSS_PLL_REG_R(rsc->phy_base, reg);
reg_val &= ~mask;
reg_val |= (val & mask);
MDSS_PLL_REG_W(rsc->phy_base, reg, reg_val);
return rc;
}
static inline int phy_reg_update_bits(void *context, unsigned int reg,
unsigned int mask, unsigned int val)
{
int rc = 0;
struct mdss_pll_resources *rsc = context;
rc = mdss_pll_resource_enable(rsc, true);
if (rc) {
pr_err("Failed to enable dsi pll resources, rc=%d\n", rc);
return rc;
}
rc = phy_reg_update_bits_sub(rsc, reg, mask, val);
if (!rc && rsc->slave)
rc = phy_reg_update_bits_sub(rsc->slave, reg, mask, val);
(void)mdss_pll_resource_enable(rsc, false);
return rc;
}
static inline int pclk_mux_read_sel(void *context, unsigned int reg,
unsigned int *val)
{
int rc = 0;
struct mdss_pll_resources *rsc = context;
rc = mdss_pll_resource_enable(rsc, true);
if (rc)
pr_err("Failed to enable dsi pll resources, rc=%d\n", rc);
else
*val = (MDSS_PLL_REG_R(rsc->phy_base, reg) & 0x3);
(void)mdss_pll_resource_enable(rsc, false);
return rc;
}
static inline int pclk_mux_write_sel_sub(struct mdss_pll_resources *rsc,
unsigned int reg, unsigned int val)
{
u32 reg_val;
int rc = 0;
reg_val = MDSS_PLL_REG_R(rsc->phy_base, reg);
reg_val &= ~0x03;
reg_val |= val;
MDSS_PLL_REG_W(rsc->phy_base, reg, reg_val);
return rc;
}
static inline int pclk_mux_write_sel(void *context, unsigned int reg,
unsigned int val)
{
int rc = 0;
struct mdss_pll_resources *rsc = context;
rc = mdss_pll_resource_enable(rsc, true);
if (rc) {
pr_err("Failed to enable dsi pll resources, rc=%d\n", rc);
return rc;
}
rc = pclk_mux_write_sel_sub(rsc, reg, val);
if (!rc && rsc->slave)
rc = pclk_mux_write_sel_sub(rsc->slave, reg, val);
(void)mdss_pll_resource_enable(rsc, false);
/*
* cache the current parent index for cases where parent
* is not changing but rate is changing. In that case
* clock framework won't call parent_set and hence dsiclk_sel
* bit won't be programmed. e.g. dfps update use case.
*/
rsc->cached_cfg1 = val;
return rc;
}
static struct mdss_pll_resources *pll_rsc_db[DSI_PLL_MAX];
static struct dsi_pll_10nm plls[DSI_PLL_MAX];
static void dsi_pll_config_slave(struct mdss_pll_resources *rsc)
{
u32 reg;
struct mdss_pll_resources *orsc = pll_rsc_db[DSI_PLL_1];
if (!rsc)
return;
/* Only DSI PLL0 can act as a master */
if (rsc->index != DSI_PLL_0)
return;
/* default configuration: source is either internal or ref clock */
rsc->slave = NULL;
if (!orsc) {
pr_warn("slave PLL unavilable, assuming standalone config\n");
return;
}
/* check to see if the source of DSI1 PLL bitclk is set to external */
reg = MDSS_PLL_REG_R(orsc->phy_base, PHY_CMN_CLK_CFG1);
reg &= (BIT(2) | BIT(3));
if (reg == 0x04)
rsc->slave = pll_rsc_db[DSI_PLL_1]; /* external source */
pr_debug("Slave PLL %s\n", rsc->slave ? "configured" : "absent");
}
static void dsi_pll_setup_config(struct dsi_pll_10nm *pll,
struct mdss_pll_resources *rsc)
{
struct dsi_pll_config *config = &pll->pll_configuration;
config->ref_freq = 19200000;
config->output_div = 1;
config->dec_bits = 8;
config->frac_bits = 18;
config->lock_timer = 64;
config->ssc_freq = 31500;
config->ssc_offset = 5000;
config->ssc_adj_per = 2;
config->thresh_cycles = 32;
config->refclk_cycles = 256;
config->div_override = false;
config->ignore_frac = false;
config->disable_prescaler = false;
config->enable_ssc = rsc->ssc_en;
config->ssc_center = rsc->ssc_center;
if (config->enable_ssc) {
if (rsc->ssc_freq)
config->ssc_freq = rsc->ssc_freq;
if (rsc->ssc_ppm)
config->ssc_offset = rsc->ssc_ppm;
}
dsi_pll_config_slave(rsc);
}
static void dsi_pll_calc_dec_frac(struct dsi_pll_10nm *pll,
struct mdss_pll_resources *rsc)
{
struct dsi_pll_config *config = &pll->pll_configuration;
struct dsi_pll_regs *regs = &pll->reg_setup;
u64 fref = rsc->vco_ref_clk_rate;
u64 pll_freq;
u64 divider;
u64 dec, dec_multiple;
u32 frac;
u64 multiplier;
pll_freq = rsc->vco_current_rate;
if (config->disable_prescaler)
divider = fref;
else
divider = fref * 2;
multiplier = 1 << config->frac_bits;
dec_multiple = div_u64(pll_freq * multiplier, divider);
div_u64_rem(dec_multiple, multiplier, &frac);
dec = div_u64(dec_multiple, multiplier);
if (pll_freq <= MHZ_1900)
regs->pll_prop_gain_rate = 8;
else if (pll_freq <= MHZ_3000)
regs->pll_prop_gain_rate = 10;
else
regs->pll_prop_gain_rate = 12;
if (pll_freq < MHZ_1100)
regs->pll_clock_inverters = 8;
else
regs->pll_clock_inverters = 0;
regs->pll_lockdet_rate = config->lock_timer;
regs->decimal_div_start = dec;
regs->frac_div_start_low = (frac & 0xff);
regs->frac_div_start_mid = (frac & 0xff00) >> 8;
regs->frac_div_start_high = (frac & 0x30000) >> 16;
}
static void dsi_pll_calc_ssc(struct dsi_pll_10nm *pll,
struct mdss_pll_resources *rsc)
{
struct dsi_pll_config *config = &pll->pll_configuration;
struct dsi_pll_regs *regs = &pll->reg_setup;
u32 ssc_per;
u32 ssc_mod;
u64 ssc_step_size;
u64 frac;
if (!config->enable_ssc) {
pr_debug("SSC not enabled\n");
return;
}
ssc_per = DIV_ROUND_CLOSEST(config->ref_freq, config->ssc_freq) / 2 - 1;
ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
ssc_per -= ssc_mod;
frac = regs->frac_div_start_low |
(regs->frac_div_start_mid << 8) |
(regs->frac_div_start_high << 16);
ssc_step_size = regs->decimal_div_start;
ssc_step_size *= (1 << config->frac_bits);
ssc_step_size += frac;
ssc_step_size *= config->ssc_offset;
ssc_step_size *= (config->ssc_adj_per + 1);
ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
regs->ssc_div_per_low = ssc_per & 0xFF;
regs->ssc_div_per_high = (ssc_per & 0xFF00) >> 8;
regs->ssc_stepsize_low = (u32)(ssc_step_size & 0xFF);
regs->ssc_stepsize_high = (u32)((ssc_step_size & 0xFF00) >> 8);
regs->ssc_adjper_low = config->ssc_adj_per & 0xFF;
regs->ssc_adjper_high = (config->ssc_adj_per & 0xFF00) >> 8;
regs->ssc_control = config->ssc_center ? SSC_CENTER : 0;
pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
regs->decimal_div_start, frac, config->frac_bits);
pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
}
static void dsi_pll_ssc_commit(struct dsi_pll_10nm *pll,
struct mdss_pll_resources *rsc)
{
void __iomem *pll_base = rsc->pll_base;
struct dsi_pll_regs *regs = &pll->reg_setup;
if (pll->pll_configuration.enable_ssc) {
pr_debug("SSC is enabled\n");
MDSS_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_LOW_1,
regs->ssc_stepsize_low);
MDSS_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_HIGH_1,
regs->ssc_stepsize_high);
MDSS_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_LOW_1,
regs->ssc_div_per_low);
MDSS_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_HIGH_1,
regs->ssc_div_per_high);
MDSS_PLL_REG_W(pll_base, PLL_SSC_DIV_ADJPER_LOW_1,
regs->ssc_adjper_low);
MDSS_PLL_REG_W(pll_base, PLL_SSC_DIV_ADJPER_HIGH_1,
regs->ssc_adjper_high);
MDSS_PLL_REG_W(pll_base, PLL_SSC_CONTROL,
SSC_EN | regs->ssc_control);
}
}
static void dsi_pll_config_hzindep_reg(struct dsi_pll_10nm *pll,
struct mdss_pll_resources *rsc)
{
void __iomem *pll_base = rsc->pll_base;
MDSS_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_ONE, 0x80);
MDSS_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_TWO, 0x03);
MDSS_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_THREE, 0x00);
MDSS_PLL_REG_W(pll_base, PLL_DSM_DIVIDER, 0x00);
MDSS_PLL_REG_W(pll_base, PLL_FEEDBACK_DIVIDER, 0x4e);
MDSS_PLL_REG_W(pll_base, PLL_CALIBRATION_SETTINGS, 0x40);
MDSS_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS_THREE, 0xba);
MDSS_PLL_REG_W(pll_base, PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c);
MDSS_PLL_REG_W(pll_base, PLL_OUTDIV, 0x00);
MDSS_PLL_REG_W(pll_base, PLL_CORE_OVERRIDE, 0x00);
MDSS_PLL_REG_W(pll_base, PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
MDSS_PLL_REG_W(pll_base, PLL_PLL_PROP_GAIN_RATE_1, 0x08);
MDSS_PLL_REG_W(pll_base, PLL_PLL_BAND_SET_RATE_1, 0xc0);
MDSS_PLL_REG_W(pll_base, PLL_PLL_INT_GAIN_IFILT_BAND_1, 0xfa);
MDSS_PLL_REG_W(pll_base, PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x4c);
MDSS_PLL_REG_W(pll_base, PLL_PLL_LOCK_OVERRIDE, 0x80);
MDSS_PLL_REG_W(pll_base, PLL_PFILT, 0x29);
MDSS_PLL_REG_W(pll_base, PLL_IFILT, 0x3f);
}
static void dsi_pll_init_val(struct mdss_pll_resources *rsc)
{
void __iomem *pll_base = rsc->pll_base;
MDSS_PLL_REG_W(pll_base, PLL_CORE_INPUT_OVERRIDE, 0x10);
MDSS_PLL_REG_W(pll_base, PLL_INT_LOOP_SETTINGS, 0x3f);
MDSS_PLL_REG_W(pll_base, PLL_INT_LOOP_SETTINGS_TWO, 0x0);
MDSS_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_FOUR, 0x0);
MDSS_PLL_REG_W(pll_base, PLL_INT_LOOP_CONTROLS, 0x80);
MDSS_PLL_REG_W(pll_base, PLL_FREQ_UPDATE_CONTROL_OVERRIDES, 0x0);
MDSS_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_TIMER_LOW, 0x0);
MDSS_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_TIMER_HIGH, 0x02);
MDSS_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS, 0x82);
MDSS_PLL_REG_W(pll_base, PLL_BAND_SEL_MIN, 0x00);
MDSS_PLL_REG_W(pll_base, PLL_BAND_SEL_MAX, 0xff);
MDSS_PLL_REG_W(pll_base, PLL_BAND_SEL_PFILT, 0x00);
MDSS_PLL_REG_W(pll_base, PLL_BAND_SEL_IFILT, 0x00);
MDSS_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS_TWO, 0x25);
MDSS_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS_FOUR, 0x4f);
MDSS_PLL_REG_W(pll_base, PLL_BAND_SEL_ICODE_HIGH, 0x0a);
MDSS_PLL_REG_W(pll_base, PLL_BAND_SEL_ICODE_LOW, 0x0);
MDSS_PLL_REG_W(pll_base, PLL_GAIN, 0x42);
MDSS_PLL_REG_W(pll_base, PLL_ICODE_LOW, 0x00);
MDSS_PLL_REG_W(pll_base, PLL_ICODE_HIGH, 0x00);
MDSS_PLL_REG_W(pll_base, PLL_LOCKDET, 0x30);
MDSS_PLL_REG_W(pll_base, PLL_FASTLOCK_CONTROL, 0x04);
MDSS_PLL_REG_W(pll_base, PLL_PASS_OUT_OVERRIDE_ONE, 0x00);
MDSS_PLL_REG_W(pll_base, PLL_PASS_OUT_OVERRIDE_TWO, 0x00);
MDSS_PLL_REG_W(pll_base, PLL_RATE_CHANGE, 0x01);
MDSS_PLL_REG_W(pll_base, PLL_PLL_DIGITAL_TIMERS, 0x08);
MDSS_PLL_REG_W(pll_base, PLL_DEC_FRAC_MUXES, 0x00);
MDSS_PLL_REG_W(pll_base, PLL_MASH_CONTROL, 0x03);
MDSS_PLL_REG_W(pll_base, PLL_SSC_MUX_CONTROL, 0x0);
MDSS_PLL_REG_W(pll_base, PLL_SSC_CONTROL, 0x0);
MDSS_PLL_REG_W(pll_base, PLL_FASTLOCK_EN_BAND, 0x03);
MDSS_PLL_REG_W(pll_base, PLL_FREQ_TUNE_ACCUM_INIT_MUX, 0x0);
MDSS_PLL_REG_W(pll_base, PLL_PLL_LOCK_MIN_DELAY, 0x19);
MDSS_PLL_REG_W(pll_base, PLL_SPARE_AND_JPC_OVERRIDES, 0x0);
MDSS_PLL_REG_W(pll_base, PLL_BIAS_CONTROL_1, 0x40);
MDSS_PLL_REG_W(pll_base, PLL_BIAS_CONTROL_2, 0x20);
MDSS_PLL_REG_W(pll_base, PLL_ALOG_OBSV_BUS_CTRL_1, 0x0);
}
static void dsi_pll_commit(struct dsi_pll_10nm *pll,
struct mdss_pll_resources *rsc)
{
void __iomem *pll_base = rsc->pll_base;
struct dsi_pll_regs *reg = &pll->reg_setup;
MDSS_PLL_REG_W(pll_base, PLL_CORE_INPUT_OVERRIDE, 0x12);
MDSS_PLL_REG_W(pll_base, PLL_DECIMAL_DIV_START_1,
reg->decimal_div_start);
MDSS_PLL_REG_W(pll_base, PLL_FRAC_DIV_START_LOW_1,
reg->frac_div_start_low);
MDSS_PLL_REG_W(pll_base, PLL_FRAC_DIV_START_MID_1,
reg->frac_div_start_mid);
MDSS_PLL_REG_W(pll_base, PLL_FRAC_DIV_START_HIGH_1,
reg->frac_div_start_high);
MDSS_PLL_REG_W(pll_base, PLL_PLL_LOCKDET_RATE_1, 0x40);
MDSS_PLL_REG_W(pll_base, PLL_PLL_LOCK_DELAY, 0x06);
MDSS_PLL_REG_W(pll_base, PLL_CMODE, 0x10);
MDSS_PLL_REG_W(pll_base, PLL_CLOCK_INVERTERS, reg->pll_clock_inverters);
}
static int vco_10nm_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
int rc;
struct dsi_pll_vco_clk *vco = to_vco_clk_hw(hw);
struct mdss_pll_resources *rsc = vco->priv;
struct dsi_pll_10nm *pll;
if (!rsc) {
pr_err("pll resource not found\n");
return -EINVAL;
}
if (rsc->pll_on)
return 0;
pll = rsc->priv;
if (!pll) {
pr_err("pll configuration not found\n");
return -EINVAL;
}
pr_debug("ndx=%d, rate=%lu\n", rsc->index, rate);
rsc->vco_current_rate = rate;
rsc->vco_ref_clk_rate = vco->ref_clk_rate;
rc = mdss_pll_resource_enable(rsc, true);
if (rc) {
pr_err("failed to enable mdss dsi pll(%d), rc=%d\n",
rsc->index, rc);
return rc;
}
dsi_pll_init_val(rsc);
dsi_pll_setup_config(pll, rsc);
dsi_pll_calc_dec_frac(pll, rsc);
dsi_pll_calc_ssc(pll, rsc);
dsi_pll_commit(pll, rsc);
dsi_pll_config_hzindep_reg(pll, rsc);
dsi_pll_ssc_commit(pll, rsc);
/* flush, ensure all register writes are done*/
wmb();
mdss_pll_resource_enable(rsc, false);
return 0;
}
static int dsi_pll_10nm_lock_status(struct mdss_pll_resources *pll)
{
int rc;
u32 status;
u32 const delay_us = 100;
u32 const timeout_us = 5000;
rc = readl_poll_timeout_atomic(pll->pll_base + PLL_COMMON_STATUS_ONE,
status,
((status & BIT(0)) > 0),
delay_us,
timeout_us);
if (rc)
pr_err("DSI PLL(%d) lock failed, status=0x%08x\n",
pll->index, status);
return rc;
}
static void dsi_pll_disable_pll_bias(struct mdss_pll_resources *rsc)
{
u32 data = MDSS_PLL_REG_R(rsc->phy_base, PHY_CMN_CTRL_0);
MDSS_PLL_REG_W(rsc->pll_base, PLL_SYSTEM_MUXES, 0);
MDSS_PLL_REG_W(rsc->phy_base, PHY_CMN_CTRL_0, data & ~BIT(5));
ndelay(250);
}
static void dsi_pll_enable_pll_bias(struct mdss_pll_resources *rsc)
{
u32 data = MDSS_PLL_REG_R(rsc->phy_base, PHY_CMN_CTRL_0);
MDSS_PLL_REG_W(rsc->phy_base, PHY_CMN_CTRL_0, data | BIT(5));
MDSS_PLL_REG_W(rsc->pll_base, PLL_SYSTEM_MUXES, 0xc0);
ndelay(250);
}
static void dsi_pll_disable_global_clk(struct mdss_pll_resources *rsc)
{
u32 data;
data = MDSS_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG1);
MDSS_PLL_REG_W(rsc->phy_base, PHY_CMN_CLK_CFG1, (data & ~BIT(5)));
}
static void dsi_pll_enable_global_clk(struct mdss_pll_resources *rsc)
{
u32 data;
data = MDSS_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG1);
MDSS_PLL_REG_W(rsc->phy_base, PHY_CMN_CLK_CFG1, (data | BIT(5)));
}
static int dsi_pll_enable(struct dsi_pll_vco_clk *vco)
{
int rc;
struct mdss_pll_resources *rsc = vco->priv;
dsi_pll_enable_pll_bias(rsc);
if (rsc->slave)
dsi_pll_enable_pll_bias(rsc->slave);
phy_reg_update_bits_sub(rsc, PHY_CMN_CLK_CFG1, 0x03, rsc->cached_cfg1);
if (rsc->slave)
phy_reg_update_bits_sub(rsc->slave, PHY_CMN_CLK_CFG1,
0x03, rsc->cached_cfg1);
wmb(); /* ensure dsiclk_sel is always programmed before pll start */
/* Start PLL */
MDSS_PLL_REG_W(rsc->phy_base, PHY_CMN_PLL_CNTRL, 0x01);
/*
* ensure all PLL configurations are written prior to checking
* for PLL lock.
*/
wmb();
/* Check for PLL lock */
rc = dsi_pll_10nm_lock_status(rsc);
if (rc) {
pr_err("PLL(%d) lock failed\n", rsc->index);
goto error;
}
rsc->pll_on = true;
dsi_pll_enable_global_clk(rsc);
if (rsc->slave)
dsi_pll_enable_global_clk(rsc->slave);
MDSS_PLL_REG_W(rsc->phy_base, PHY_CMN_RBUF_CTRL, 0x01);
if (rsc->slave)
MDSS_PLL_REG_W(rsc->slave->phy_base, PHY_CMN_RBUF_CTRL, 0x01);
error:
return rc;
}
static void dsi_pll_disable_sub(struct mdss_pll_resources *rsc)
{
MDSS_PLL_REG_W(rsc->phy_base, PHY_CMN_RBUF_CTRL, 0);
dsi_pll_disable_pll_bias(rsc);
}
static void dsi_pll_disable(struct dsi_pll_vco_clk *vco)
{
struct mdss_pll_resources *rsc = vco->priv;
if (!rsc->pll_on &&
mdss_pll_resource_enable(rsc, true)) {
pr_err("failed to enable pll (%d) resources\n", rsc->index);
return;
}
rsc->handoff_resources = false;
pr_debug("stop PLL (%d)\n", rsc->index);
/*
* To avoid any stray glitches while
* abruptly powering down the PLL
* make sure to gate the clock using
* the clock enable bit before powering
* down the PLL
*/
dsi_pll_disable_global_clk(rsc);
MDSS_PLL_REG_W(rsc->phy_base, PHY_CMN_PLL_CNTRL, 0);
dsi_pll_disable_sub(rsc);
if (rsc->slave) {
dsi_pll_disable_global_clk(rsc->slave);
dsi_pll_disable_sub(rsc->slave);
}
/* flush, ensure all register writes are done*/
wmb();
rsc->pll_on = false;
}
long vco_10nm_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
unsigned long rrate = rate;
struct dsi_pll_vco_clk *vco = to_vco_clk_hw(hw);
if (rate < vco->min_rate)
rrate = vco->min_rate;
if (rate > vco->max_rate)
rrate = vco->max_rate;
*parent_rate = rrate;
return rrate;
}
static void vco_10nm_unprepare(struct clk_hw *hw)
{
struct dsi_pll_vco_clk *vco = to_vco_clk_hw(hw);
struct mdss_pll_resources *pll = vco->priv;
if (!pll) {
pr_err("dsi pll resources not available\n");
return;
}
/*
* During unprepare in continuous splash use case we want driver
* to pick all dividers instead of retaining bootloader configurations.
*/
if (!pll->handoff_resources) {
pll->cached_cfg0 = MDSS_PLL_REG_R(pll->phy_base,
PHY_CMN_CLK_CFG0);
pll->cached_outdiv = MDSS_PLL_REG_R(pll->pll_base,
PLL_PLL_OUTDIV_RATE);
pr_debug("cfg0=%d,cfg1=%d, outdiv=%d\n", pll->cached_cfg0,
pll->cached_cfg1, pll->cached_outdiv);
pll->vco_cached_rate = clk_hw_get_rate(hw);
}
/*
* When continuous splash screen feature is enabled, we need to cache
* the mux configuration for the pixel_clk_src mux clock. The clock
* framework does not call back to re-configure the mux value if it is
* does not change.For such usecases, we need to ensure that the cached
* value is programmed prior to PLL being locked
*/
if (pll->handoff_resources)
pll->cached_cfg1 = MDSS_PLL_REG_R(pll->phy_base,
PHY_CMN_CLK_CFG1);
dsi_pll_disable(vco);
mdss_pll_resource_enable(pll, false);
}
static int vco_10nm_prepare(struct clk_hw *hw)
{
int rc = 0;
struct dsi_pll_vco_clk *vco = to_vco_clk_hw(hw);
struct mdss_pll_resources *pll = vco->priv;
if (!pll) {
pr_err("dsi pll resources are not available\n");
return -EINVAL;
}
/* Skip vco recalculation for continuous splash use case */
if (pll->handoff_resources == true)
return 0;
rc = mdss_pll_resource_enable(pll, true);
if (rc) {
pr_err("failed to enable pll (%d) resource, rc=%d\n",
pll->index, rc);
return rc;
}
if ((pll->vco_cached_rate != 0) &&
(pll->vco_cached_rate == clk_hw_get_rate(hw))) {
rc = hw->init->ops->set_rate(hw, pll->vco_cached_rate,
pll->vco_cached_rate);
if (rc) {
pr_err("pll(%d) set_rate failed, rc=%d\n",
pll->index, rc);
mdss_pll_resource_enable(pll, false);
return rc;
}
pr_debug("cfg0=%d, cfg1=%d\n", pll->cached_cfg0,
pll->cached_cfg1);
MDSS_PLL_REG_W(pll->phy_base, PHY_CMN_CLK_CFG0,
pll->cached_cfg0);
MDSS_PLL_REG_W(pll->pll_base, PLL_PLL_OUTDIV_RATE,
pll->cached_outdiv);
}
MDSS_PLL_ATRACE_BEGIN("pll_lock");
trace_mdss_pll_lock_start((u64)pll->vco_cached_rate,
pll->vco_current_rate,
pll->cached_cfg0, pll->cached_cfg1,
pll->cached_outdiv, pll->resource_ref_cnt);
rc = dsi_pll_enable(vco);
MDSS_PLL_ATRACE_END("pll_lock");
if (rc) {
mdss_pll_resource_enable(pll, false);
pr_err("pll(%d) enable failed, rc=%d\n", pll->index, rc);
return rc;
}
return rc;
}
static unsigned long vco_10nm_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct dsi_pll_vco_clk *vco = to_vco_clk_hw(hw);
struct mdss_pll_resources *pll = vco->priv;
int rc;
u64 ref_clk = vco->ref_clk_rate;
u64 vco_rate;
u64 multiplier;
u32 frac;
u32 dec;
u32 outdiv;
u64 pll_freq, tmp64;
if (!vco->priv)
pr_err("vco priv is null\n");
/*
* Calculate the vco rate from HW registers only for handoff cases.
* For other cases where a vco_10nm_set_rate() has already been
* called, just return the rate that was set earlier. This is due
* to the fact that recalculating VCO rate requires us to read the
* correct value of the pll_out_div divider clock, which is only set
* afterwards.
*/
if (pll->vco_current_rate != 0) {
pr_debug("returning vco rate = %lld\n", pll->vco_current_rate);
return pll->vco_current_rate;
}
rc = mdss_pll_resource_enable(pll, true);
if (rc) {
pr_err("failed to enable pll(%d) resource, rc=%d\n",
pll->index, rc);
return 0;
}
if (!dsi_pll_10nm_lock_status(pll))
pll->handoff_resources = true;
dec = MDSS_PLL_REG_R(pll->pll_base, PLL_DECIMAL_DIV_START_1);
dec &= 0xFF;
frac = MDSS_PLL_REG_R(pll->pll_base, PLL_FRAC_DIV_START_LOW_1);
frac |= ((MDSS_PLL_REG_R(pll->pll_base, PLL_FRAC_DIV_START_MID_1) &
0xFF) <<
8);
frac |= ((MDSS_PLL_REG_R(pll->pll_base, PLL_FRAC_DIV_START_HIGH_1) &
0x3) <<
16);
/* OUTDIV_1:0 field is (log(outdiv, 2)) */
outdiv = MDSS_PLL_REG_R(pll->pll_base, PLL_PLL_OUTDIV_RATE);
outdiv &= 0x3;
outdiv = 1 << outdiv;
/*
* TODO:
* 1. Assumes prescaler is disabled
* 2. Multiplier is 2^18. it should be 2^(num_of_frac_bits)
**/
multiplier = 1 << 18;
pll_freq = dec * (ref_clk * 2);
tmp64 = (ref_clk * 2 * frac);
pll_freq += div_u64(tmp64, multiplier);
vco_rate = div_u64(pll_freq, outdiv);
pr_debug("dec=0x%x, frac=0x%x, outdiv=%d, vco=%llu\n",
dec, frac, outdiv, vco_rate);
(void)mdss_pll_resource_enable(pll, false);
return (unsigned long)vco_rate;
}
static int pixel_clk_get_div(void *context, unsigned int reg, unsigned int *div)
{
int rc;
struct mdss_pll_resources *pll = context;
u32 reg_val;
rc = mdss_pll_resource_enable(pll, true);
if (rc) {
pr_err("Failed to enable dsi pll resources, rc=%d\n", rc);
return rc;
}
reg_val = MDSS_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
*div = (reg_val & 0xF0) >> 4;
/**
* Common clock framework the divider value is interpreted as one less
* hence we return one less for all dividers except when zero
*/
if (*div != 0)
*div -= 1;
(void)mdss_pll_resource_enable(pll, false);
return rc;
}
static void pixel_clk_set_div_sub(struct mdss_pll_resources *pll, int div)
{
u32 reg_val;
reg_val = MDSS_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
reg_val &= ~0xF0;
reg_val |= (div << 4);
MDSS_PLL_REG_W(pll->phy_base, PHY_CMN_CLK_CFG0, reg_val);
}
static int pixel_clk_set_div(void *context, unsigned int reg, unsigned int div)
{
int rc;
struct mdss_pll_resources *pll = context;
rc = mdss_pll_resource_enable(pll, true);
if (rc) {
pr_err("Failed to enable dsi pll resources, rc=%d\n", rc);
return rc;
}
/**
* In common clock framework the divider value provided is one less and
* and hence adjusting the divider value by one prior to writing it to
* hardware
*/
div++;
pixel_clk_set_div_sub(pll, div);
if (pll->slave)
pixel_clk_set_div_sub(pll->slave, div);
(void)mdss_pll_resource_enable(pll, false);
return 0;
}
static int bit_clk_get_div(void *context, unsigned int reg, unsigned int *div)
{
int rc;
struct mdss_pll_resources *pll = context;
u32 reg_val;
rc = mdss_pll_resource_enable(pll, true);
if (rc) {
pr_err("Failed to enable dsi pll resources, rc=%d\n", rc);
return rc;
}
reg_val = MDSS_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
*div = (reg_val & 0x0F);
/**
*Common clock framework the divider value is interpreted as one less
* hence we return one less for all dividers except when zero
*/
if (*div != 0)
*div -= 1;
(void)mdss_pll_resource_enable(pll, false);
return rc;
}
static void bit_clk_set_div_sub(struct mdss_pll_resources *rsc, int div)
{
u32 reg_val;
reg_val = MDSS_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG0);
reg_val &= ~0x0F;
reg_val |= div;
MDSS_PLL_REG_W(rsc->phy_base, PHY_CMN_CLK_CFG0, reg_val);
}
static int bit_clk_set_div(void *context, unsigned int reg, unsigned int div)
{
int rc;
struct mdss_pll_resources *rsc = context;
struct dsi_pll_8998 *pll;
if (!rsc) {
pr_err("pll resource not found\n");
return -EINVAL;
}
pll = rsc->priv;
if (!pll) {
pr_err("pll configuration not found\n");
return -EINVAL;
}
rc = mdss_pll_resource_enable(rsc, true);
if (rc) {
pr_err("Failed to enable dsi pll resources, rc=%d\n", rc);
return rc;
}
/**
* In common clock framework the divider value provided is one less and
* and hence adjusting the divider value by one prior to writing it to
* hardware
*/
div++;
bit_clk_set_div_sub(rsc, div);
/* For slave PLL, this divider always should be set to 1 */
if (rsc->slave)
bit_clk_set_div_sub(rsc->slave, 1);
(void)mdss_pll_resource_enable(rsc, false);
return rc;
}
static struct regmap_config dsi_pll_10nm_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = 0x7c0,
};
static struct regmap_bus pll_regmap_bus = {
.reg_write = pll_reg_write,
.reg_read = pll_reg_read,
};
static struct regmap_bus pclk_src_mux_regmap_bus = {
.reg_read = pclk_mux_read_sel,
.reg_write = pclk_mux_write_sel,
};
static struct regmap_bus pclk_src_regmap_bus = {
.reg_write = pixel_clk_set_div,
.reg_read = pixel_clk_get_div,
};
static struct regmap_bus bitclk_src_regmap_bus = {
.reg_write = bit_clk_set_div,
.reg_read = bit_clk_get_div,
};
static const struct clk_ops clk_ops_vco_10nm = {
.recalc_rate = vco_10nm_recalc_rate,
.set_rate = vco_10nm_set_rate,
.round_rate = vco_10nm_round_rate,
.prepare = vco_10nm_prepare,
.unprepare = vco_10nm_unprepare,
};
static struct regmap_bus mdss_mux_regmap_bus = {
.reg_write = mdss_set_mux_sel,
.reg_read = mdss_get_mux_sel,
};
/*
* Clock tree for generating DSI byte and pixel clocks.
*
*
* +---------------+
* | vco_clk |
* +-------+-------+
* |
* |
* +---------------+
* | pll_out_div |
* | DIV(1,2,4,8) |
* +-------+-------+
* |
* +-----------------------------+--------+
* | | |
* +-------v-------+ | |
* | bitclk_src | | |
* | DIV(1..15) | | |
* +-------+-------+ | |
* | | |
* +----------+---------+ | |
* Shadow Path | | | | |
* + +-------v-------+ | +------v------+ | +------v-------+
* | | byteclk_src | | |post_bit_div | | |post_vco_div |
* | | DIV(8) | | |DIV (2) | | |DIV(4) |
* | +-------+-------+ | +------+------+ | +------+-------+
* | | | | | | |
* | | | +------+ | |
* | | +-------------+ | | +----+
* | +--------+ | | | |
* | | +-v--v-v---v------+
* +-v---------v----+ \ pclk_src_mux /
* \ byteclk_mux / \ /
* \ / +-----+-----+
* +----+-----+ | Shadow Path
* | | +
* v +-----v------+ |
* dsi_byte_clk | pclk_src | |
* | DIV(1..15) | |
* +-----+------+ |
* | |
* | |
* +--------+ |
* | |
* +---v----v----+
* \ pclk_mux /
* \ /
* +---+---+
* |
* |
* v
* dsi_pclk
*
*/
static struct dsi_pll_vco_clk dsi0pll_vco_clk = {
.ref_clk_rate = 19200000UL,
.min_rate = 1000000000UL,
.max_rate = 3500000000UL,
.hw.init = &(struct clk_init_data){
.name = "dsi0pll_vco_clk",
.parent_names = (const char *[]){"bi_tcxo"},
.num_parents = 1,
.ops = &clk_ops_vco_10nm,
.flags = CLK_GET_RATE_NOCACHE,
},
};
static struct dsi_pll_vco_clk dsi1pll_vco_clk = {
.ref_clk_rate = 19200000UL,
.min_rate = 1000000000UL,
.max_rate = 3500000000UL,
.hw.init = &(struct clk_init_data){
.name = "dsi1pll_vco_clk",
.parent_names = (const char *[]){"bi_tcxo"},
.num_parents = 1,
.ops = &clk_ops_vco_10nm,
.flags = CLK_GET_RATE_NOCACHE,
},
};
static struct clk_regmap_div dsi0pll_pll_out_div = {
.reg = PLL_PLL_OUTDIV_RATE,
.shift = 0,
.width = 2,
.flags = CLK_DIVIDER_POWER_OF_TWO,
.clkr = {
.hw.init = &(struct clk_init_data){
.name = "dsi0pll_pll_out_div",
.parent_names = (const char *[]){"dsi0pll_vco_clk"},
.num_parents = 1,
.flags = (CLK_GET_RATE_NOCACHE | CLK_SET_RATE_PARENT),
.ops = &clk_regmap_div_ops,
},
},
};
static struct clk_regmap_div dsi1pll_pll_out_div = {
.reg = PLL_PLL_OUTDIV_RATE,
.shift = 0,
.width = 2,
.flags = CLK_DIVIDER_POWER_OF_TWO,
.clkr = {
.hw.init = &(struct clk_init_data){
.name = "dsi1pll_pll_out_div",
.parent_names = (const char *[]){"dsi1pll_vco_clk"},
.num_parents = 1,
.flags = (CLK_GET_RATE_NOCACHE | CLK_SET_RATE_PARENT),
.ops = &clk_regmap_div_ops,
},
},
};
static struct clk_regmap_div dsi0pll_bitclk_src = {
.shift = 0,
.width = 4,
.clkr = {
.hw.init = &(struct clk_init_data){
.name = "dsi0pll_bitclk_src",
.parent_names = (const char *[]){"dsi0pll_pll_out_div"},
.num_parents = 1,
.flags = (CLK_GET_RATE_NOCACHE | CLK_SET_RATE_PARENT),
.ops = &clk_regmap_div_ops,
},
},
};
static struct clk_regmap_div dsi1pll_bitclk_src = {
.shift = 0,
.width = 4,
.clkr = {
.hw.init = &(struct clk_init_data){
.name = "dsi1pll_bitclk_src",
.parent_names = (const char *[]){"dsi1pll_pll_out_div"},
.num_parents = 1,
.flags = (CLK_GET_RATE_NOCACHE | CLK_SET_RATE_PARENT),
.ops = &clk_regmap_div_ops,
},
},
};
static struct clk_fixed_factor dsi0pll_post_vco_div = {
.div = 4,
.mult = 1,
.hw.init = &(struct clk_init_data){
.name = "dsi0pll_post_vco_div",
.parent_names = (const char *[]){"dsi0pll_pll_out_div"},
.num_parents = 1,
.flags = (CLK_GET_RATE_NOCACHE | CLK_SET_RATE_PARENT),
.ops = &clk_fixed_factor_ops,
},
};
static struct clk_fixed_factor dsi1pll_post_vco_div = {
.div = 4,
.mult = 1,
.hw.init = &(struct clk_init_data){
.name = "dsi1pll_post_vco_div",
.parent_names = (const char *[]){"dsi1pll_pll_out_div"},
.num_parents = 1,
.flags = (CLK_GET_RATE_NOCACHE | CLK_SET_RATE_PARENT),
.ops = &clk_fixed_factor_ops,
},
};
static struct clk_fixed_factor dsi0pll_byteclk_src = {
.div = 8,
.mult = 1,
.hw.init = &(struct clk_init_data){
.name = "dsi0pll_byteclk_src",
.parent_names = (const char *[]){"dsi0pll_bitclk_src"},
.num_parents = 1,
.flags = (CLK_GET_RATE_NOCACHE | CLK_SET_RATE_PARENT),
.ops = &clk_fixed_factor_ops,
},
};
static struct clk_fixed_factor dsi1pll_byteclk_src = {
.div = 8,
.mult = 1,
.hw.init = &(struct clk_init_data){
.name = "dsi1pll_byteclk_src",
.parent_names = (const char *[]){"dsi1pll_bitclk_src"},
.num_parents = 1,
.flags = (CLK_GET_RATE_NOCACHE | CLK_SET_RATE_PARENT),
.ops = &clk_fixed_factor_ops,
},
};
static struct clk_fixed_factor dsi0pll_post_bit_div = {
.div = 2,
.mult = 1,
.hw.init = &(struct clk_init_data){
.name = "dsi0pll_post_bit_div",
.parent_names = (const char *[]){"dsi0pll_bitclk_src"},
.num_parents = 1,
.flags = CLK_GET_RATE_NOCACHE,
.ops = &clk_fixed_factor_ops,
},
};
static struct clk_fixed_factor dsi1pll_post_bit_div = {
.div = 2,
.mult = 1,
.hw.init = &(struct clk_init_data){
.name = "dsi1pll_post_bit_div",
.parent_names = (const char *[]){"dsi1pll_bitclk_src"},
.num_parents = 1,
.flags = CLK_GET_RATE_NOCACHE,
.ops = &clk_fixed_factor_ops,
},
};
static struct clk_regmap_mux dsi0pll_byteclk_mux = {
.shift = 0,
.width = 1,
.clkr = {
.hw.init = &(struct clk_init_data){
.name = "dsi0_phy_pll_out_byteclk",
.parent_names = (const char *[]){"dsi0pll_byteclk_src"},
.num_parents = 1,
.flags = (CLK_GET_RATE_NOCACHE | CLK_SET_RATE_PARENT),
.ops = &clk_regmap_mux_closest_ops,
},
},
};
static struct clk_regmap_mux dsi1pll_byteclk_mux = {
.shift = 0,
.width = 1,
.clkr = {
.hw.init = &(struct clk_init_data){
.name = "dsi1_phy_pll_out_byteclk",
.parent_names = (const char *[]){"dsi1pll_byteclk_src"},
.num_parents = 1,
.flags = (CLK_GET_RATE_NOCACHE | CLK_SET_RATE_PARENT),
.ops = &clk_regmap_mux_closest_ops,
},
},
};
static struct clk_regmap_mux dsi0pll_pclk_src_mux = {
.reg = PHY_CMN_CLK_CFG1,
.shift = 0,
.width = 2,
.clkr = {
.hw.init = &(struct clk_init_data){
.name = "dsi0pll_pclk_src_mux",
.parent_names = (const char *[]){"dsi0pll_bitclk_src",
"dsi0pll_post_bit_div",
"dsi0pll_pll_out_div",
"dsi0pll_post_vco_div"},
.num_parents = 4,
.flags = CLK_GET_RATE_NOCACHE,
.ops = &clk_regmap_mux_closest_ops,
},
},
};
static struct clk_regmap_mux dsi1pll_pclk_src_mux = {
.reg = PHY_CMN_CLK_CFG1,
.shift = 0,
.width = 2,
.clkr = {
.hw.init = &(struct clk_init_data){
.name = "dsi1pll_pclk_src_mux",
.parent_names = (const char *[]){"dsi1pll_bitclk_src",
"dsi1pll_post_bit_div",
"dsi1pll_pll_out_div",
"dsi1pll_post_vco_div"},
.num_parents = 4,
.flags = CLK_GET_RATE_NOCACHE,
.ops = &clk_regmap_mux_closest_ops,
},
},
};
static struct clk_regmap_div dsi0pll_pclk_src = {
.shift = 0,
.width = 4,
.clkr = {
.hw.init = &(struct clk_init_data){
.name = "dsi0pll_pclk_src",
.parent_names = (const char *[]){
"dsi0pll_pclk_src_mux"},
.num_parents = 1,
.flags = (CLK_GET_RATE_NOCACHE | CLK_SET_RATE_PARENT),
.ops = &clk_regmap_div_ops,
},
},
};
static struct clk_regmap_div dsi1pll_pclk_src = {
.shift = 0,
.width = 4,
.clkr = {
.hw.init = &(struct clk_init_data){
.name = "dsi1pll_pclk_src",
.parent_names = (const char *[]){
"dsi1pll_pclk_src_mux"},
.num_parents = 1,
.flags = (CLK_GET_RATE_NOCACHE | CLK_SET_RATE_PARENT),
.ops = &clk_regmap_div_ops,
},
},
};
static struct clk_regmap_mux dsi0pll_pclk_mux = {
.shift = 0,
.width = 1,
.clkr = {
.hw.init = &(struct clk_init_data){
.name = "dsi0_phy_pll_out_dsiclk",
.parent_names = (const char *[]){"dsi0pll_pclk_src"},
.num_parents = 1,
.flags = (CLK_GET_RATE_NOCACHE | CLK_SET_RATE_PARENT),
.ops = &clk_regmap_mux_closest_ops,
},
},
};
static struct clk_regmap_mux dsi1pll_pclk_mux = {
.shift = 0,
.width = 1,
.clkr = {
.hw.init = &(struct clk_init_data){
.name = "dsi1_phy_pll_out_dsiclk",
.parent_names = (const char *[]){"dsi1pll_pclk_src"},
.num_parents = 1,
.flags = (CLK_GET_RATE_NOCACHE | CLK_SET_RATE_PARENT),
.ops = &clk_regmap_mux_closest_ops,
},
},
};
static struct clk_hw *mdss_dsi_pllcc_10nm[] = {
[VCO_CLK_0] = &dsi0pll_vco_clk.hw,
[PLL_OUT_DIV_0_CLK] = &dsi0pll_pll_out_div.clkr.hw,
[BITCLK_SRC_0_CLK] = &dsi0pll_bitclk_src.clkr.hw,
[BYTECLK_SRC_0_CLK] = &dsi0pll_byteclk_src.hw,
[POST_BIT_DIV_0_CLK] = &dsi0pll_post_bit_div.hw,
[POST_VCO_DIV_0_CLK] = &dsi0pll_post_vco_div.hw,
[BYTECLK_MUX_0_CLK] = &dsi0pll_byteclk_mux.clkr.hw,
[PCLK_SRC_MUX_0_CLK] = &dsi0pll_pclk_src_mux.clkr.hw,
[PCLK_SRC_0_CLK] = &dsi0pll_pclk_src.clkr.hw,
[PCLK_MUX_0_CLK] = &dsi0pll_pclk_mux.clkr.hw,
[VCO_CLK_1] = &dsi1pll_vco_clk.hw,
[PLL_OUT_DIV_1_CLK] = &dsi1pll_pll_out_div.clkr.hw,
[BITCLK_SRC_1_CLK] = &dsi1pll_bitclk_src.clkr.hw,
[BYTECLK_SRC_1_CLK] = &dsi1pll_byteclk_src.hw,
[POST_BIT_DIV_1_CLK] = &dsi1pll_post_bit_div.hw,
[POST_VCO_DIV_1_CLK] = &dsi1pll_post_vco_div.hw,
[BYTECLK_MUX_1_CLK] = &dsi1pll_byteclk_mux.clkr.hw,
[PCLK_SRC_MUX_1_CLK] = &dsi1pll_pclk_src_mux.clkr.hw,
[PCLK_SRC_1_CLK] = &dsi1pll_pclk_src.clkr.hw,
[PCLK_MUX_1_CLK] = &dsi1pll_pclk_mux.clkr.hw,
};
int dsi_pll_clock_register_10nm(struct platform_device *pdev,
struct mdss_pll_resources *pll_res)
{
int rc = 0, ndx, i;
struct clk *clk;
struct clk_onecell_data *clk_data;
int num_clks = ARRAY_SIZE(mdss_dsi_pllcc_10nm);
struct regmap *rmap;
if (!pdev || !pdev->dev.of_node ||
!pll_res || !pll_res->pll_base || !pll_res->phy_base) {
pr_err("Invalid params\n");
return -EINVAL;
}
ndx = pll_res->index;
if (ndx >= DSI_PLL_MAX) {
pr_err("pll index(%d) NOT supported\n", ndx);
return -EINVAL;
}
pll_rsc_db[ndx] = pll_res;
plls[ndx].rsc = pll_res;
pll_res->priv = &plls[ndx];
pll_res->vco_delay = VCO_DELAY_USEC;
clk_data = devm_kzalloc(&pdev->dev, sizeof(struct clk_onecell_data),
GFP_KERNEL);
if (!clk_data)
return -ENOMEM;
clk_data->clks = devm_kzalloc(&pdev->dev, (num_clks *
sizeof(struct clk *)), GFP_KERNEL);
if (!clk_data->clks) {
devm_kfree(&pdev->dev, clk_data);
return -ENOMEM;
}
clk_data->clk_num = num_clks;
/* Establish client data */
if (ndx == 0) {
rmap = devm_regmap_init(&pdev->dev, &pll_regmap_bus,
pll_res, &dsi_pll_10nm_config);
dsi0pll_pll_out_div.clkr.regmap = rmap;
rmap = devm_regmap_init(&pdev->dev, &bitclk_src_regmap_bus,
pll_res, &dsi_pll_10nm_config);
dsi0pll_bitclk_src.clkr.regmap = rmap;
rmap = devm_regmap_init(&pdev->dev, &pclk_src_regmap_bus,
pll_res, &dsi_pll_10nm_config);
dsi0pll_pclk_src.clkr.regmap = rmap;
rmap = devm_regmap_init(&pdev->dev, &mdss_mux_regmap_bus,
pll_res, &dsi_pll_10nm_config);
dsi0pll_pclk_mux.clkr.regmap = rmap;
rmap = devm_regmap_init(&pdev->dev, &pclk_src_mux_regmap_bus,
pll_res, &dsi_pll_10nm_config);
dsi0pll_pclk_src_mux.clkr.regmap = rmap;
rmap = devm_regmap_init(&pdev->dev, &mdss_mux_regmap_bus,
pll_res, &dsi_pll_10nm_config);
dsi0pll_byteclk_mux.clkr.regmap = rmap;
dsi0pll_vco_clk.priv = pll_res;
for (i = VCO_CLK_0; i <= PCLK_MUX_0_CLK; i++) {
clk = devm_clk_register(&pdev->dev,
mdss_dsi_pllcc_10nm[i]);
if (IS_ERR(clk)) {
pr_err("clk registration failed for DSI clock:%d\n",
pll_res->index);
rc = -EINVAL;
goto clk_register_fail;
}
clk_data->clks[i] = clk;
}
rc = of_clk_add_provider(pdev->dev.of_node,
of_clk_src_onecell_get, clk_data);
} else {
rmap = devm_regmap_init(&pdev->dev, &pll_regmap_bus,
pll_res, &dsi_pll_10nm_config);
dsi1pll_pll_out_div.clkr.regmap = rmap;
rmap = devm_regmap_init(&pdev->dev, &bitclk_src_regmap_bus,
pll_res, &dsi_pll_10nm_config);
dsi1pll_bitclk_src.clkr.regmap = rmap;
rmap = devm_regmap_init(&pdev->dev, &pclk_src_regmap_bus,
pll_res, &dsi_pll_10nm_config);
dsi1pll_pclk_src.clkr.regmap = rmap;
rmap = devm_regmap_init(&pdev->dev, &mdss_mux_regmap_bus,
pll_res, &dsi_pll_10nm_config);
dsi1pll_pclk_mux.clkr.regmap = rmap;
rmap = devm_regmap_init(&pdev->dev, &pclk_src_mux_regmap_bus,
pll_res, &dsi_pll_10nm_config);
dsi1pll_pclk_src_mux.clkr.regmap = rmap;
rmap = devm_regmap_init(&pdev->dev, &mdss_mux_regmap_bus,
pll_res, &dsi_pll_10nm_config);
dsi1pll_byteclk_mux.clkr.regmap = rmap;
dsi1pll_vco_clk.priv = pll_res;
for (i = VCO_CLK_1; i <= PCLK_MUX_1_CLK; i++) {
clk = devm_clk_register(&pdev->dev,
mdss_dsi_pllcc_10nm[i]);
if (IS_ERR(clk)) {
pr_err("clk registration failed for DSI clock:%d\n",
pll_res->index);
rc = -EINVAL;
goto clk_register_fail;
}
clk_data->clks[i] = clk;
}
rc = of_clk_add_provider(pdev->dev.of_node,
of_clk_src_onecell_get, clk_data);
}
if (!rc) {
pr_info("Registered DSI PLL ndx=%d, clocks successfully", ndx);
return rc;
}
clk_register_fail:
devm_kfree(&pdev->dev, clk_data->clks);
devm_kfree(&pdev->dev, clk_data);
return rc;
}