| /* |
| * Copyright (c) 2000-2002 Silicon Graphics, Inc. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| * |
| * Further, this software is distributed without any warranty that it is |
| * free of the rightful claim of any third person regarding infringement |
| * or the like. Any license provided herein, whether implied or |
| * otherwise, applies only to this software file. Patent licenses, if |
| * any, provided herein do not apply to combinations of this program with |
| * other software, or any other product whatsoever. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write the Free Software Foundation, Inc., 59 |
| * Temple Place - Suite 330, Boston MA 02111-1307, USA. |
| * |
| * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, |
| * Mountain View, CA 94043, or: |
| * |
| * http://www.sgi.com |
| * |
| * For further information regarding this notice, see: |
| * |
| * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ |
| */ |
| |
| /* |
| * This file contains the implementation of the xfs_inode_log_item. |
| * It contains the item operations used to manipulate the inode log |
| * items as well as utility routines used by the inode specific |
| * transaction routines. |
| */ |
| #include "xfs.h" |
| #include "xfs_macros.h" |
| #include "xfs_types.h" |
| #include "xfs_inum.h" |
| #include "xfs_log.h" |
| #include "xfs_trans.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_sb.h" |
| #include "xfs_dir.h" |
| #include "xfs_dir2.h" |
| #include "xfs_dmapi.h" |
| #include "xfs_mount.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_ag.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_btree.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_attr_sf.h" |
| #include "xfs_dir_sf.h" |
| #include "xfs_dir2_sf.h" |
| #include "xfs_dinode.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_inode.h" |
| #include "xfs_rw.h" |
| |
| |
| kmem_zone_t *xfs_ili_zone; /* inode log item zone */ |
| |
| /* |
| * This returns the number of iovecs needed to log the given inode item. |
| * |
| * We need one iovec for the inode log format structure, one for the |
| * inode core, and possibly one for the inode data/extents/b-tree root |
| * and one for the inode attribute data/extents/b-tree root. |
| */ |
| STATIC uint |
| xfs_inode_item_size( |
| xfs_inode_log_item_t *iip) |
| { |
| uint nvecs; |
| xfs_inode_t *ip; |
| |
| ip = iip->ili_inode; |
| nvecs = 2; |
| |
| /* |
| * Only log the data/extents/b-tree root if there is something |
| * left to log. |
| */ |
| iip->ili_format.ilf_fields |= XFS_ILOG_CORE; |
| |
| switch (ip->i_d.di_format) { |
| case XFS_DINODE_FMT_EXTENTS: |
| iip->ili_format.ilf_fields &= |
| ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | |
| XFS_ILOG_DEV | XFS_ILOG_UUID); |
| if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) && |
| (ip->i_d.di_nextents > 0) && |
| (ip->i_df.if_bytes > 0)) { |
| ASSERT(ip->i_df.if_u1.if_extents != NULL); |
| nvecs++; |
| } else { |
| iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT; |
| } |
| break; |
| |
| case XFS_DINODE_FMT_BTREE: |
| ASSERT(ip->i_df.if_ext_max == |
| XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t)); |
| iip->ili_format.ilf_fields &= |
| ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | |
| XFS_ILOG_DEV | XFS_ILOG_UUID); |
| if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) && |
| (ip->i_df.if_broot_bytes > 0)) { |
| ASSERT(ip->i_df.if_broot != NULL); |
| nvecs++; |
| } else { |
| ASSERT(!(iip->ili_format.ilf_fields & |
| XFS_ILOG_DBROOT)); |
| #ifdef XFS_TRANS_DEBUG |
| if (iip->ili_root_size > 0) { |
| ASSERT(iip->ili_root_size == |
| ip->i_df.if_broot_bytes); |
| ASSERT(memcmp(iip->ili_orig_root, |
| ip->i_df.if_broot, |
| iip->ili_root_size) == 0); |
| } else { |
| ASSERT(ip->i_df.if_broot_bytes == 0); |
| } |
| #endif |
| iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT; |
| } |
| break; |
| |
| case XFS_DINODE_FMT_LOCAL: |
| iip->ili_format.ilf_fields &= |
| ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | |
| XFS_ILOG_DEV | XFS_ILOG_UUID); |
| if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) && |
| (ip->i_df.if_bytes > 0)) { |
| ASSERT(ip->i_df.if_u1.if_data != NULL); |
| ASSERT(ip->i_d.di_size > 0); |
| nvecs++; |
| } else { |
| iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA; |
| } |
| break; |
| |
| case XFS_DINODE_FMT_DEV: |
| iip->ili_format.ilf_fields &= |
| ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | |
| XFS_ILOG_DEXT | XFS_ILOG_UUID); |
| break; |
| |
| case XFS_DINODE_FMT_UUID: |
| iip->ili_format.ilf_fields &= |
| ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | |
| XFS_ILOG_DEXT | XFS_ILOG_DEV); |
| break; |
| |
| default: |
| ASSERT(0); |
| break; |
| } |
| |
| /* |
| * If there are no attributes associated with this file, |
| * then there cannot be anything more to log. |
| * Clear all attribute-related log flags. |
| */ |
| if (!XFS_IFORK_Q(ip)) { |
| iip->ili_format.ilf_fields &= |
| ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); |
| return nvecs; |
| } |
| |
| /* |
| * Log any necessary attribute data. |
| */ |
| switch (ip->i_d.di_aformat) { |
| case XFS_DINODE_FMT_EXTENTS: |
| iip->ili_format.ilf_fields &= |
| ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); |
| if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) && |
| (ip->i_d.di_anextents > 0) && |
| (ip->i_afp->if_bytes > 0)) { |
| ASSERT(ip->i_afp->if_u1.if_extents != NULL); |
| nvecs++; |
| } else { |
| iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT; |
| } |
| break; |
| |
| case XFS_DINODE_FMT_BTREE: |
| iip->ili_format.ilf_fields &= |
| ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); |
| if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) && |
| (ip->i_afp->if_broot_bytes > 0)) { |
| ASSERT(ip->i_afp->if_broot != NULL); |
| nvecs++; |
| } else { |
| iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT; |
| } |
| break; |
| |
| case XFS_DINODE_FMT_LOCAL: |
| iip->ili_format.ilf_fields &= |
| ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); |
| if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) && |
| (ip->i_afp->if_bytes > 0)) { |
| ASSERT(ip->i_afp->if_u1.if_data != NULL); |
| nvecs++; |
| } else { |
| iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA; |
| } |
| break; |
| |
| default: |
| ASSERT(0); |
| break; |
| } |
| |
| return nvecs; |
| } |
| |
| /* |
| * This is called to fill in the vector of log iovecs for the |
| * given inode log item. It fills the first item with an inode |
| * log format structure, the second with the on-disk inode structure, |
| * and a possible third and/or fourth with the inode data/extents/b-tree |
| * root and inode attributes data/extents/b-tree root. |
| */ |
| STATIC void |
| xfs_inode_item_format( |
| xfs_inode_log_item_t *iip, |
| xfs_log_iovec_t *log_vector) |
| { |
| uint nvecs; |
| xfs_log_iovec_t *vecp; |
| xfs_inode_t *ip; |
| size_t data_bytes; |
| xfs_bmbt_rec_t *ext_buffer; |
| int nrecs; |
| xfs_mount_t *mp; |
| |
| ip = iip->ili_inode; |
| vecp = log_vector; |
| |
| vecp->i_addr = (xfs_caddr_t)&iip->ili_format; |
| vecp->i_len = sizeof(xfs_inode_log_format_t); |
| vecp++; |
| nvecs = 1; |
| |
| /* |
| * Clear i_update_core if the timestamps (or any other |
| * non-transactional modification) need flushing/logging |
| * and we're about to log them with the rest of the core. |
| * |
| * This is the same logic as xfs_iflush() but this code can't |
| * run at the same time as xfs_iflush because we're in commit |
| * processing here and so we have the inode lock held in |
| * exclusive mode. Although it doesn't really matter |
| * for the timestamps if both routines were to grab the |
| * timestamps or not. That would be ok. |
| * |
| * We clear i_update_core before copying out the data. |
| * This is for coordination with our timestamp updates |
| * that don't hold the inode lock. They will always |
| * update the timestamps BEFORE setting i_update_core, |
| * so if we clear i_update_core after they set it we |
| * are guaranteed to see their updates to the timestamps |
| * either here. Likewise, if they set it after we clear it |
| * here, we'll see it either on the next commit of this |
| * inode or the next time the inode gets flushed via |
| * xfs_iflush(). This depends on strongly ordered memory |
| * semantics, but we have that. We use the SYNCHRONIZE |
| * macro to make sure that the compiler does not reorder |
| * the i_update_core access below the data copy below. |
| */ |
| if (ip->i_update_core) { |
| ip->i_update_core = 0; |
| SYNCHRONIZE(); |
| } |
| |
| /* |
| * We don't have to worry about re-ordering here because |
| * the update_size field is protected by the inode lock |
| * and we have that held in exclusive mode. |
| */ |
| if (ip->i_update_size) |
| ip->i_update_size = 0; |
| |
| vecp->i_addr = (xfs_caddr_t)&ip->i_d; |
| vecp->i_len = sizeof(xfs_dinode_core_t); |
| vecp++; |
| nvecs++; |
| iip->ili_format.ilf_fields |= XFS_ILOG_CORE; |
| |
| /* |
| * If this is really an old format inode, then we need to |
| * log it as such. This means that we have to copy the link |
| * count from the new field to the old. We don't have to worry |
| * about the new fields, because nothing trusts them as long as |
| * the old inode version number is there. If the superblock already |
| * has a new version number, then we don't bother converting back. |
| */ |
| mp = ip->i_mount; |
| ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || |
| XFS_SB_VERSION_HASNLINK(&mp->m_sb)); |
| if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { |
| if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { |
| /* |
| * Convert it back. |
| */ |
| ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); |
| ip->i_d.di_onlink = ip->i_d.di_nlink; |
| } else { |
| /* |
| * The superblock version has already been bumped, |
| * so just make the conversion to the new inode |
| * format permanent. |
| */ |
| ip->i_d.di_version = XFS_DINODE_VERSION_2; |
| ip->i_d.di_onlink = 0; |
| memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); |
| } |
| } |
| |
| switch (ip->i_d.di_format) { |
| case XFS_DINODE_FMT_EXTENTS: |
| ASSERT(!(iip->ili_format.ilf_fields & |
| (XFS_ILOG_DDATA | XFS_ILOG_DBROOT | |
| XFS_ILOG_DEV | XFS_ILOG_UUID))); |
| if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) { |
| ASSERT(ip->i_df.if_bytes > 0); |
| ASSERT(ip->i_df.if_u1.if_extents != NULL); |
| ASSERT(ip->i_d.di_nextents > 0); |
| ASSERT(iip->ili_extents_buf == NULL); |
| nrecs = ip->i_df.if_bytes / |
| (uint)sizeof(xfs_bmbt_rec_t); |
| ASSERT(nrecs > 0); |
| #if __BYTE_ORDER == __BIG_ENDIAN |
| if (nrecs == ip->i_d.di_nextents) { |
| /* |
| * There are no delayed allocation |
| * extents, so just point to the |
| * real extents array. |
| */ |
| vecp->i_addr = |
| (char *)(ip->i_df.if_u1.if_extents); |
| vecp->i_len = ip->i_df.if_bytes; |
| } else |
| #endif |
| { |
| /* |
| * There are delayed allocation extents |
| * in the inode, or we need to convert |
| * the extents to on disk format. |
| * Use xfs_iextents_copy() |
| * to copy only the real extents into |
| * a separate buffer. We'll free the |
| * buffer in the unlock routine. |
| */ |
| ext_buffer = kmem_alloc(ip->i_df.if_bytes, |
| KM_SLEEP); |
| iip->ili_extents_buf = ext_buffer; |
| vecp->i_addr = (xfs_caddr_t)ext_buffer; |
| vecp->i_len = xfs_iextents_copy(ip, ext_buffer, |
| XFS_DATA_FORK); |
| } |
| ASSERT(vecp->i_len <= ip->i_df.if_bytes); |
| iip->ili_format.ilf_dsize = vecp->i_len; |
| vecp++; |
| nvecs++; |
| } |
| break; |
| |
| case XFS_DINODE_FMT_BTREE: |
| ASSERT(!(iip->ili_format.ilf_fields & |
| (XFS_ILOG_DDATA | XFS_ILOG_DEXT | |
| XFS_ILOG_DEV | XFS_ILOG_UUID))); |
| if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) { |
| ASSERT(ip->i_df.if_broot_bytes > 0); |
| ASSERT(ip->i_df.if_broot != NULL); |
| vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot; |
| vecp->i_len = ip->i_df.if_broot_bytes; |
| vecp++; |
| nvecs++; |
| iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes; |
| } |
| break; |
| |
| case XFS_DINODE_FMT_LOCAL: |
| ASSERT(!(iip->ili_format.ilf_fields & |
| (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | |
| XFS_ILOG_DEV | XFS_ILOG_UUID))); |
| if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) { |
| ASSERT(ip->i_df.if_bytes > 0); |
| ASSERT(ip->i_df.if_u1.if_data != NULL); |
| ASSERT(ip->i_d.di_size > 0); |
| |
| vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data; |
| /* |
| * Round i_bytes up to a word boundary. |
| * The underlying memory is guaranteed to |
| * to be there by xfs_idata_realloc(). |
| */ |
| data_bytes = roundup(ip->i_df.if_bytes, 4); |
| ASSERT((ip->i_df.if_real_bytes == 0) || |
| (ip->i_df.if_real_bytes == data_bytes)); |
| vecp->i_len = (int)data_bytes; |
| vecp++; |
| nvecs++; |
| iip->ili_format.ilf_dsize = (unsigned)data_bytes; |
| } |
| break; |
| |
| case XFS_DINODE_FMT_DEV: |
| ASSERT(!(iip->ili_format.ilf_fields & |
| (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | |
| XFS_ILOG_DDATA | XFS_ILOG_UUID))); |
| if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { |
| iip->ili_format.ilf_u.ilfu_rdev = |
| ip->i_df.if_u2.if_rdev; |
| } |
| break; |
| |
| case XFS_DINODE_FMT_UUID: |
| ASSERT(!(iip->ili_format.ilf_fields & |
| (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | |
| XFS_ILOG_DDATA | XFS_ILOG_DEV))); |
| if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { |
| iip->ili_format.ilf_u.ilfu_uuid = |
| ip->i_df.if_u2.if_uuid; |
| } |
| break; |
| |
| default: |
| ASSERT(0); |
| break; |
| } |
| |
| /* |
| * If there are no attributes associated with the file, |
| * then we're done. |
| * Assert that no attribute-related log flags are set. |
| */ |
| if (!XFS_IFORK_Q(ip)) { |
| ASSERT(nvecs == iip->ili_item.li_desc->lid_size); |
| iip->ili_format.ilf_size = nvecs; |
| ASSERT(!(iip->ili_format.ilf_fields & |
| (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); |
| return; |
| } |
| |
| switch (ip->i_d.di_aformat) { |
| case XFS_DINODE_FMT_EXTENTS: |
| ASSERT(!(iip->ili_format.ilf_fields & |
| (XFS_ILOG_ADATA | XFS_ILOG_ABROOT))); |
| if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) { |
| ASSERT(ip->i_afp->if_bytes > 0); |
| ASSERT(ip->i_afp->if_u1.if_extents != NULL); |
| ASSERT(ip->i_d.di_anextents > 0); |
| #ifdef DEBUG |
| nrecs = ip->i_afp->if_bytes / |
| (uint)sizeof(xfs_bmbt_rec_t); |
| #endif |
| ASSERT(nrecs > 0); |
| ASSERT(nrecs == ip->i_d.di_anextents); |
| #if __BYTE_ORDER == __BIG_ENDIAN |
| /* |
| * There are not delayed allocation extents |
| * for attributes, so just point at the array. |
| */ |
| vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents); |
| vecp->i_len = ip->i_afp->if_bytes; |
| #else |
| ASSERT(iip->ili_aextents_buf == NULL); |
| /* |
| * Need to endian flip before logging |
| */ |
| ext_buffer = kmem_alloc(ip->i_afp->if_bytes, |
| KM_SLEEP); |
| iip->ili_aextents_buf = ext_buffer; |
| vecp->i_addr = (xfs_caddr_t)ext_buffer; |
| vecp->i_len = xfs_iextents_copy(ip, ext_buffer, |
| XFS_ATTR_FORK); |
| #endif |
| iip->ili_format.ilf_asize = vecp->i_len; |
| vecp++; |
| nvecs++; |
| } |
| break; |
| |
| case XFS_DINODE_FMT_BTREE: |
| ASSERT(!(iip->ili_format.ilf_fields & |
| (XFS_ILOG_ADATA | XFS_ILOG_AEXT))); |
| if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) { |
| ASSERT(ip->i_afp->if_broot_bytes > 0); |
| ASSERT(ip->i_afp->if_broot != NULL); |
| vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot; |
| vecp->i_len = ip->i_afp->if_broot_bytes; |
| vecp++; |
| nvecs++; |
| iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes; |
| } |
| break; |
| |
| case XFS_DINODE_FMT_LOCAL: |
| ASSERT(!(iip->ili_format.ilf_fields & |
| (XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); |
| if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) { |
| ASSERT(ip->i_afp->if_bytes > 0); |
| ASSERT(ip->i_afp->if_u1.if_data != NULL); |
| |
| vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data; |
| /* |
| * Round i_bytes up to a word boundary. |
| * The underlying memory is guaranteed to |
| * to be there by xfs_idata_realloc(). |
| */ |
| data_bytes = roundup(ip->i_afp->if_bytes, 4); |
| ASSERT((ip->i_afp->if_real_bytes == 0) || |
| (ip->i_afp->if_real_bytes == data_bytes)); |
| vecp->i_len = (int)data_bytes; |
| vecp++; |
| nvecs++; |
| iip->ili_format.ilf_asize = (unsigned)data_bytes; |
| } |
| break; |
| |
| default: |
| ASSERT(0); |
| break; |
| } |
| |
| ASSERT(nvecs == iip->ili_item.li_desc->lid_size); |
| iip->ili_format.ilf_size = nvecs; |
| } |
| |
| |
| /* |
| * This is called to pin the inode associated with the inode log |
| * item in memory so it cannot be written out. Do this by calling |
| * xfs_ipin() to bump the pin count in the inode while holding the |
| * inode pin lock. |
| */ |
| STATIC void |
| xfs_inode_item_pin( |
| xfs_inode_log_item_t *iip) |
| { |
| ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE)); |
| xfs_ipin(iip->ili_inode); |
| } |
| |
| |
| /* |
| * This is called to unpin the inode associated with the inode log |
| * item which was previously pinned with a call to xfs_inode_item_pin(). |
| * Just call xfs_iunpin() on the inode to do this. |
| */ |
| /* ARGSUSED */ |
| STATIC void |
| xfs_inode_item_unpin( |
| xfs_inode_log_item_t *iip, |
| int stale) |
| { |
| xfs_iunpin(iip->ili_inode); |
| } |
| |
| /* ARGSUSED */ |
| STATIC void |
| xfs_inode_item_unpin_remove( |
| xfs_inode_log_item_t *iip, |
| xfs_trans_t *tp) |
| { |
| xfs_iunpin(iip->ili_inode); |
| } |
| |
| /* |
| * This is called to attempt to lock the inode associated with this |
| * inode log item, in preparation for the push routine which does the actual |
| * iflush. Don't sleep on the inode lock or the flush lock. |
| * |
| * If the flush lock is already held, indicating that the inode has |
| * been or is in the process of being flushed, then (ideally) we'd like to |
| * see if the inode's buffer is still incore, and if so give it a nudge. |
| * We delay doing so until the pushbuf routine, though, to avoid holding |
| * the AIL lock across a call to the blackhole which is the buffercache. |
| * Also we don't want to sleep in any device strategy routines, which can happen |
| * if we do the subsequent bawrite in here. |
| */ |
| STATIC uint |
| xfs_inode_item_trylock( |
| xfs_inode_log_item_t *iip) |
| { |
| register xfs_inode_t *ip; |
| |
| ip = iip->ili_inode; |
| |
| if (xfs_ipincount(ip) > 0) { |
| return XFS_ITEM_PINNED; |
| } |
| |
| if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { |
| return XFS_ITEM_LOCKED; |
| } |
| |
| if (!xfs_iflock_nowait(ip)) { |
| /* |
| * If someone else isn't already trying to push the inode |
| * buffer, we get to do it. |
| */ |
| if (iip->ili_pushbuf_flag == 0) { |
| iip->ili_pushbuf_flag = 1; |
| #ifdef DEBUG |
| iip->ili_push_owner = get_thread_id(); |
| #endif |
| /* |
| * Inode is left locked in shared mode. |
| * Pushbuf routine gets to unlock it. |
| */ |
| return XFS_ITEM_PUSHBUF; |
| } else { |
| /* |
| * We hold the AIL_LOCK, so we must specify the |
| * NONOTIFY flag so that we won't double trip. |
| */ |
| xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); |
| return XFS_ITEM_FLUSHING; |
| } |
| /* NOTREACHED */ |
| } |
| |
| /* Stale items should force out the iclog */ |
| if (ip->i_flags & XFS_ISTALE) { |
| xfs_ifunlock(ip); |
| xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); |
| return XFS_ITEM_PINNED; |
| } |
| |
| #ifdef DEBUG |
| if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { |
| ASSERT(iip->ili_format.ilf_fields != 0); |
| ASSERT(iip->ili_logged == 0); |
| ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL); |
| } |
| #endif |
| return XFS_ITEM_SUCCESS; |
| } |
| |
| /* |
| * Unlock the inode associated with the inode log item. |
| * Clear the fields of the inode and inode log item that |
| * are specific to the current transaction. If the |
| * hold flags is set, do not unlock the inode. |
| */ |
| STATIC void |
| xfs_inode_item_unlock( |
| xfs_inode_log_item_t *iip) |
| { |
| uint hold; |
| uint iolocked; |
| uint lock_flags; |
| xfs_inode_t *ip; |
| |
| ASSERT(iip != NULL); |
| ASSERT(iip->ili_inode->i_itemp != NULL); |
| ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE)); |
| ASSERT((!(iip->ili_inode->i_itemp->ili_flags & |
| XFS_ILI_IOLOCKED_EXCL)) || |
| ismrlocked(&(iip->ili_inode->i_iolock), MR_UPDATE)); |
| ASSERT((!(iip->ili_inode->i_itemp->ili_flags & |
| XFS_ILI_IOLOCKED_SHARED)) || |
| ismrlocked(&(iip->ili_inode->i_iolock), MR_ACCESS)); |
| /* |
| * Clear the transaction pointer in the inode. |
| */ |
| ip = iip->ili_inode; |
| ip->i_transp = NULL; |
| |
| /* |
| * If the inode needed a separate buffer with which to log |
| * its extents, then free it now. |
| */ |
| if (iip->ili_extents_buf != NULL) { |
| ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS); |
| ASSERT(ip->i_d.di_nextents > 0); |
| ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT); |
| ASSERT(ip->i_df.if_bytes > 0); |
| kmem_free(iip->ili_extents_buf, ip->i_df.if_bytes); |
| iip->ili_extents_buf = NULL; |
| } |
| if (iip->ili_aextents_buf != NULL) { |
| ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS); |
| ASSERT(ip->i_d.di_anextents > 0); |
| ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT); |
| ASSERT(ip->i_afp->if_bytes > 0); |
| kmem_free(iip->ili_aextents_buf, ip->i_afp->if_bytes); |
| iip->ili_aextents_buf = NULL; |
| } |
| |
| /* |
| * Figure out if we should unlock the inode or not. |
| */ |
| hold = iip->ili_flags & XFS_ILI_HOLD; |
| |
| /* |
| * Before clearing out the flags, remember whether we |
| * are holding the inode's IO lock. |
| */ |
| iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY; |
| |
| /* |
| * Clear out the fields of the inode log item particular |
| * to the current transaction. |
| */ |
| iip->ili_ilock_recur = 0; |
| iip->ili_iolock_recur = 0; |
| iip->ili_flags = 0; |
| |
| /* |
| * Unlock the inode if XFS_ILI_HOLD was not set. |
| */ |
| if (!hold) { |
| lock_flags = XFS_ILOCK_EXCL; |
| if (iolocked & XFS_ILI_IOLOCKED_EXCL) { |
| lock_flags |= XFS_IOLOCK_EXCL; |
| } else if (iolocked & XFS_ILI_IOLOCKED_SHARED) { |
| lock_flags |= XFS_IOLOCK_SHARED; |
| } |
| xfs_iput(iip->ili_inode, lock_flags); |
| } |
| } |
| |
| /* |
| * This is called to find out where the oldest active copy of the |
| * inode log item in the on disk log resides now that the last log |
| * write of it completed at the given lsn. Since we always re-log |
| * all dirty data in an inode, the latest copy in the on disk log |
| * is the only one that matters. Therefore, simply return the |
| * given lsn. |
| */ |
| /*ARGSUSED*/ |
| STATIC xfs_lsn_t |
| xfs_inode_item_committed( |
| xfs_inode_log_item_t *iip, |
| xfs_lsn_t lsn) |
| { |
| return (lsn); |
| } |
| |
| /* |
| * The transaction with the inode locked has aborted. The inode |
| * must not be dirty within the transaction (unless we're forcibly |
| * shutting down). We simply unlock just as if the transaction |
| * had been cancelled. |
| */ |
| STATIC void |
| xfs_inode_item_abort( |
| xfs_inode_log_item_t *iip) |
| { |
| xfs_inode_item_unlock(iip); |
| return; |
| } |
| |
| |
| /* |
| * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK |
| * failed to get the inode flush lock but did get the inode locked SHARED. |
| * Here we're trying to see if the inode buffer is incore, and if so whether it's |
| * marked delayed write. If that's the case, we'll initiate a bawrite on that |
| * buffer to expedite the process. |
| * |
| * We aren't holding the AIL_LOCK (or the flush lock) when this gets called, |
| * so it is inherently race-y. |
| */ |
| STATIC void |
| xfs_inode_item_pushbuf( |
| xfs_inode_log_item_t *iip) |
| { |
| xfs_inode_t *ip; |
| xfs_mount_t *mp; |
| xfs_buf_t *bp; |
| uint dopush; |
| |
| ip = iip->ili_inode; |
| |
| ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS)); |
| |
| /* |
| * The ili_pushbuf_flag keeps others from |
| * trying to duplicate our effort. |
| */ |
| ASSERT(iip->ili_pushbuf_flag != 0); |
| ASSERT(iip->ili_push_owner == get_thread_id()); |
| |
| /* |
| * If flushlock isn't locked anymore, chances are that the |
| * inode flush completed and the inode was taken off the AIL. |
| * So, just get out. |
| */ |
| if ((valusema(&(ip->i_flock)) > 0) || |
| ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) { |
| iip->ili_pushbuf_flag = 0; |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| return; |
| } |
| |
| mp = ip->i_mount; |
| bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno, |
| iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK); |
| |
| if (bp != NULL) { |
| if (XFS_BUF_ISDELAYWRITE(bp)) { |
| /* |
| * We were racing with iflush because we don't hold |
| * the AIL_LOCK or the flush lock. However, at this point, |
| * we have the buffer, and we know that it's dirty. |
| * So, it's possible that iflush raced with us, and |
| * this item is already taken off the AIL. |
| * If not, we can flush it async. |
| */ |
| dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) && |
| (valusema(&(ip->i_flock)) <= 0)); |
| iip->ili_pushbuf_flag = 0; |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| xfs_buftrace("INODE ITEM PUSH", bp); |
| if (XFS_BUF_ISPINNED(bp)) { |
| xfs_log_force(mp, (xfs_lsn_t)0, |
| XFS_LOG_FORCE); |
| } |
| if (dopush) { |
| xfs_bawrite(mp, bp); |
| } else { |
| xfs_buf_relse(bp); |
| } |
| } else { |
| iip->ili_pushbuf_flag = 0; |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| xfs_buf_relse(bp); |
| } |
| return; |
| } |
| /* |
| * We have to be careful about resetting pushbuf flag too early (above). |
| * Even though in theory we can do it as soon as we have the buflock, |
| * we don't want others to be doing work needlessly. They'll come to |
| * this function thinking that pushing the buffer is their |
| * responsibility only to find that the buffer is still locked by |
| * another doing the same thing |
| */ |
| iip->ili_pushbuf_flag = 0; |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| return; |
| } |
| |
| |
| /* |
| * This is called to asynchronously write the inode associated with this |
| * inode log item out to disk. The inode will already have been locked by |
| * a successful call to xfs_inode_item_trylock(). |
| */ |
| STATIC void |
| xfs_inode_item_push( |
| xfs_inode_log_item_t *iip) |
| { |
| xfs_inode_t *ip; |
| |
| ip = iip->ili_inode; |
| |
| ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS)); |
| ASSERT(valusema(&(ip->i_flock)) <= 0); |
| /* |
| * Since we were able to lock the inode's flush lock and |
| * we found it on the AIL, the inode must be dirty. This |
| * is because the inode is removed from the AIL while still |
| * holding the flush lock in xfs_iflush_done(). Thus, if |
| * we found it in the AIL and were able to obtain the flush |
| * lock without sleeping, then there must not have been |
| * anyone in the process of flushing the inode. |
| */ |
| ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || |
| iip->ili_format.ilf_fields != 0); |
| |
| /* |
| * Write out the inode. The completion routine ('iflush_done') will |
| * pull it from the AIL, mark it clean, unlock the flush lock. |
| */ |
| (void) xfs_iflush(ip, XFS_IFLUSH_ASYNC); |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| |
| return; |
| } |
| |
| /* |
| * XXX rcc - this one really has to do something. Probably needs |
| * to stamp in a new field in the incore inode. |
| */ |
| /* ARGSUSED */ |
| STATIC void |
| xfs_inode_item_committing( |
| xfs_inode_log_item_t *iip, |
| xfs_lsn_t lsn) |
| { |
| iip->ili_last_lsn = lsn; |
| return; |
| } |
| |
| /* |
| * This is the ops vector shared by all buf log items. |
| */ |
| struct xfs_item_ops xfs_inode_item_ops = { |
| .iop_size = (uint(*)(xfs_log_item_t*))xfs_inode_item_size, |
| .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) |
| xfs_inode_item_format, |
| .iop_pin = (void(*)(xfs_log_item_t*))xfs_inode_item_pin, |
| .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin, |
| .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*)) |
| xfs_inode_item_unpin_remove, |
| .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock, |
| .iop_unlock = (void(*)(xfs_log_item_t*))xfs_inode_item_unlock, |
| .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) |
| xfs_inode_item_committed, |
| .iop_push = (void(*)(xfs_log_item_t*))xfs_inode_item_push, |
| .iop_abort = (void(*)(xfs_log_item_t*))xfs_inode_item_abort, |
| .iop_pushbuf = (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf, |
| .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) |
| xfs_inode_item_committing |
| }; |
| |
| |
| /* |
| * Initialize the inode log item for a newly allocated (in-core) inode. |
| */ |
| void |
| xfs_inode_item_init( |
| xfs_inode_t *ip, |
| xfs_mount_t *mp) |
| { |
| xfs_inode_log_item_t *iip; |
| |
| ASSERT(ip->i_itemp == NULL); |
| iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); |
| |
| iip->ili_item.li_type = XFS_LI_INODE; |
| iip->ili_item.li_ops = &xfs_inode_item_ops; |
| iip->ili_item.li_mountp = mp; |
| iip->ili_inode = ip; |
| |
| /* |
| We have zeroed memory. No need ... |
| iip->ili_extents_buf = NULL; |
| iip->ili_pushbuf_flag = 0; |
| */ |
| |
| iip->ili_format.ilf_type = XFS_LI_INODE; |
| iip->ili_format.ilf_ino = ip->i_ino; |
| iip->ili_format.ilf_blkno = ip->i_blkno; |
| iip->ili_format.ilf_len = ip->i_len; |
| iip->ili_format.ilf_boffset = ip->i_boffset; |
| } |
| |
| /* |
| * Free the inode log item and any memory hanging off of it. |
| */ |
| void |
| xfs_inode_item_destroy( |
| xfs_inode_t *ip) |
| { |
| #ifdef XFS_TRANS_DEBUG |
| if (ip->i_itemp->ili_root_size != 0) { |
| kmem_free(ip->i_itemp->ili_orig_root, |
| ip->i_itemp->ili_root_size); |
| } |
| #endif |
| kmem_zone_free(xfs_ili_zone, ip->i_itemp); |
| } |
| |
| |
| /* |
| * This is the inode flushing I/O completion routine. It is called |
| * from interrupt level when the buffer containing the inode is |
| * flushed to disk. It is responsible for removing the inode item |
| * from the AIL if it has not been re-logged, and unlocking the inode's |
| * flush lock. |
| */ |
| /*ARGSUSED*/ |
| void |
| xfs_iflush_done( |
| xfs_buf_t *bp, |
| xfs_inode_log_item_t *iip) |
| { |
| xfs_inode_t *ip; |
| SPLDECL(s); |
| |
| ip = iip->ili_inode; |
| |
| /* |
| * We only want to pull the item from the AIL if it is |
| * actually there and its location in the log has not |
| * changed since we started the flush. Thus, we only bother |
| * if the ili_logged flag is set and the inode's lsn has not |
| * changed. First we check the lsn outside |
| * the lock since it's cheaper, and then we recheck while |
| * holding the lock before removing the inode from the AIL. |
| */ |
| if (iip->ili_logged && |
| (iip->ili_item.li_lsn == iip->ili_flush_lsn)) { |
| AIL_LOCK(ip->i_mount, s); |
| if (iip->ili_item.li_lsn == iip->ili_flush_lsn) { |
| /* |
| * xfs_trans_delete_ail() drops the AIL lock. |
| */ |
| xfs_trans_delete_ail(ip->i_mount, |
| (xfs_log_item_t*)iip, s); |
| } else { |
| AIL_UNLOCK(ip->i_mount, s); |
| } |
| } |
| |
| iip->ili_logged = 0; |
| |
| /* |
| * Clear the ili_last_fields bits now that we know that the |
| * data corresponding to them is safely on disk. |
| */ |
| iip->ili_last_fields = 0; |
| |
| /* |
| * Release the inode's flush lock since we're done with it. |
| */ |
| xfs_ifunlock(ip); |
| |
| return; |
| } |
| |
| /* |
| * This is the inode flushing abort routine. It is called |
| * from xfs_iflush when the filesystem is shutting down to clean |
| * up the inode state. |
| * It is responsible for removing the inode item |
| * from the AIL if it has not been re-logged, and unlocking the inode's |
| * flush lock. |
| */ |
| void |
| xfs_iflush_abort( |
| xfs_inode_t *ip) |
| { |
| xfs_inode_log_item_t *iip; |
| xfs_mount_t *mp; |
| SPLDECL(s); |
| |
| iip = ip->i_itemp; |
| mp = ip->i_mount; |
| if (iip) { |
| if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { |
| AIL_LOCK(mp, s); |
| if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { |
| /* |
| * xfs_trans_delete_ail() drops the AIL lock. |
| */ |
| xfs_trans_delete_ail(mp, (xfs_log_item_t *)iip, |
| s); |
| } else |
| AIL_UNLOCK(mp, s); |
| } |
| iip->ili_logged = 0; |
| /* |
| * Clear the ili_last_fields bits now that we know that the |
| * data corresponding to them is safely on disk. |
| */ |
| iip->ili_last_fields = 0; |
| /* |
| * Clear the inode logging fields so no more flushes are |
| * attempted. |
| */ |
| iip->ili_format.ilf_fields = 0; |
| } |
| /* |
| * Release the inode's flush lock since we're done with it. |
| */ |
| xfs_ifunlock(ip); |
| } |
| |
| void |
| xfs_istale_done( |
| xfs_buf_t *bp, |
| xfs_inode_log_item_t *iip) |
| { |
| xfs_iflush_abort(iip->ili_inode); |
| } |