blob: a79e64f642085af4d4ef0b790cf49c0c2fd9c1b1 [file] [log] [blame]
/*
* fs/userfaultfd.c
*
* Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
* Copyright (C) 2008-2009 Red Hat, Inc.
* Copyright (C) 2015 Red Hat, Inc.
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Some part derived from fs/eventfd.c (anon inode setup) and
* mm/ksm.c (mm hashing).
*/
#include <linux/hashtable.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/poll.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/file.h>
#include <linux/bug.h>
#include <linux/anon_inodes.h>
#include <linux/syscalls.h>
#include <linux/userfaultfd_k.h>
#include <linux/mempolicy.h>
#include <linux/ioctl.h>
#include <linux/security.h>
static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
enum userfaultfd_state {
UFFD_STATE_WAIT_API,
UFFD_STATE_RUNNING,
};
/*
* Start with fault_pending_wqh and fault_wqh so they're more likely
* to be in the same cacheline.
*/
struct userfaultfd_ctx {
/* waitqueue head for the pending (i.e. not read) userfaults */
wait_queue_head_t fault_pending_wqh;
/* waitqueue head for the userfaults */
wait_queue_head_t fault_wqh;
/* waitqueue head for the pseudo fd to wakeup poll/read */
wait_queue_head_t fd_wqh;
/* a refile sequence protected by fault_pending_wqh lock */
struct seqcount refile_seq;
/* pseudo fd refcounting */
atomic_t refcount;
/* userfaultfd syscall flags */
unsigned int flags;
/* state machine */
enum userfaultfd_state state;
/* released */
bool released;
/* mm with one ore more vmas attached to this userfaultfd_ctx */
struct mm_struct *mm;
};
struct userfaultfd_wait_queue {
struct uffd_msg msg;
wait_queue_t wq;
struct userfaultfd_ctx *ctx;
bool waken;
};
struct userfaultfd_wake_range {
unsigned long start;
unsigned long len;
};
static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
int wake_flags, void *key)
{
struct userfaultfd_wake_range *range = key;
int ret;
struct userfaultfd_wait_queue *uwq;
unsigned long start, len;
uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
ret = 0;
/* len == 0 means wake all */
start = range->start;
len = range->len;
if (len && (start > uwq->msg.arg.pagefault.address ||
start + len <= uwq->msg.arg.pagefault.address))
goto out;
WRITE_ONCE(uwq->waken, true);
/*
* The implicit smp_mb__before_spinlock in try_to_wake_up()
* renders uwq->waken visible to other CPUs before the task is
* waken.
*/
ret = wake_up_state(wq->private, mode);
if (ret)
/*
* Wake only once, autoremove behavior.
*
* After the effect of list_del_init is visible to the
* other CPUs, the waitqueue may disappear from under
* us, see the !list_empty_careful() in
* handle_userfault(). try_to_wake_up() has an
* implicit smp_mb__before_spinlock, and the
* wq->private is read before calling the extern
* function "wake_up_state" (which in turns calls
* try_to_wake_up). While the spin_lock;spin_unlock;
* wouldn't be enough, the smp_mb__before_spinlock is
* enough to avoid an explicit smp_mb() here.
*/
list_del_init(&wq->task_list);
out:
return ret;
}
/**
* userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
* context.
* @ctx: [in] Pointer to the userfaultfd context.
*
* Returns: In case of success, returns not zero.
*/
static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
{
if (!atomic_inc_not_zero(&ctx->refcount))
BUG();
}
/**
* userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
* context.
* @ctx: [in] Pointer to userfaultfd context.
*
* The userfaultfd context reference must have been previously acquired either
* with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
*/
static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
{
if (atomic_dec_and_test(&ctx->refcount)) {
VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
mmdrop(ctx->mm);
kmem_cache_free(userfaultfd_ctx_cachep, ctx);
}
}
static inline void msg_init(struct uffd_msg *msg)
{
BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
/*
* Must use memset to zero out the paddings or kernel data is
* leaked to userland.
*/
memset(msg, 0, sizeof(struct uffd_msg));
}
static inline struct uffd_msg userfault_msg(unsigned long address,
unsigned int flags,
unsigned long reason)
{
struct uffd_msg msg;
msg_init(&msg);
msg.event = UFFD_EVENT_PAGEFAULT;
msg.arg.pagefault.address = address;
if (flags & FAULT_FLAG_WRITE)
/*
* If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the
* uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
* was not set in a UFFD_EVENT_PAGEFAULT, it means it
* was a read fault, otherwise if set it means it's
* a write fault.
*/
msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
if (reason & VM_UFFD_WP)
/*
* If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
* uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
* not set in a UFFD_EVENT_PAGEFAULT, it means it was
* a missing fault, otherwise if set it means it's a
* write protect fault.
*/
msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
return msg;
}
/*
* Verify the pagetables are still not ok after having reigstered into
* the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
* userfault that has already been resolved, if userfaultfd_read and
* UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
* threads.
*/
static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
unsigned long address,
unsigned long flags,
unsigned long reason)
{
struct mm_struct *mm = ctx->mm;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd, _pmd;
pte_t *pte;
bool ret = true;
VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
pgd = pgd_offset(mm, address);
if (!pgd_present(*pgd))
goto out;
pud = pud_offset(pgd, address);
if (!pud_present(*pud))
goto out;
pmd = pmd_offset(pud, address);
/*
* READ_ONCE must function as a barrier with narrower scope
* and it must be equivalent to:
* _pmd = *pmd; barrier();
*
* This is to deal with the instability (as in
* pmd_trans_unstable) of the pmd.
*/
_pmd = READ_ONCE(*pmd);
if (!pmd_present(_pmd))
goto out;
ret = false;
if (pmd_trans_huge(_pmd))
goto out;
/*
* the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
* and use the standard pte_offset_map() instead of parsing _pmd.
*/
pte = pte_offset_map(pmd, address);
/*
* Lockless access: we're in a wait_event so it's ok if it
* changes under us.
*/
if (pte_none(*pte))
ret = true;
pte_unmap(pte);
out:
return ret;
}
/*
* The locking rules involved in returning VM_FAULT_RETRY depending on
* FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
* FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
* recommendation in __lock_page_or_retry is not an understatement.
*
* If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
* before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
* not set.
*
* If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
* set, VM_FAULT_RETRY can still be returned if and only if there are
* fatal_signal_pending()s, and the mmap_sem must be released before
* returning it.
*/
int handle_userfault(struct fault_env *fe, unsigned long reason)
{
struct mm_struct *mm = fe->vma->vm_mm;
struct userfaultfd_ctx *ctx;
struct userfaultfd_wait_queue uwq;
int ret;
bool must_wait, return_to_userland;
long blocking_state;
BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
ret = VM_FAULT_SIGBUS;
ctx = fe->vma->vm_userfaultfd_ctx.ctx;
if (!ctx)
goto out;
BUG_ON(ctx->mm != mm);
VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
/*
* If it's already released don't get it. This avoids to loop
* in __get_user_pages if userfaultfd_release waits on the
* caller of handle_userfault to release the mmap_sem.
*/
if (unlikely(ACCESS_ONCE(ctx->released)))
goto out;
/*
* We don't do userfault handling for the final child pid update.
*/
if (current->flags & PF_EXITING)
goto out;
/*
* Check that we can return VM_FAULT_RETRY.
*
* NOTE: it should become possible to return VM_FAULT_RETRY
* even if FAULT_FLAG_TRIED is set without leading to gup()
* -EBUSY failures, if the userfaultfd is to be extended for
* VM_UFFD_WP tracking and we intend to arm the userfault
* without first stopping userland access to the memory. For
* VM_UFFD_MISSING userfaults this is enough for now.
*/
if (unlikely(!(fe->flags & FAULT_FLAG_ALLOW_RETRY))) {
/*
* Validate the invariant that nowait must allow retry
* to be sure not to return SIGBUS erroneously on
* nowait invocations.
*/
BUG_ON(fe->flags & FAULT_FLAG_RETRY_NOWAIT);
#ifdef CONFIG_DEBUG_VM
if (printk_ratelimit()) {
printk(KERN_WARNING
"FAULT_FLAG_ALLOW_RETRY missing %x\n", fe->flags);
dump_stack();
}
#endif
goto out;
}
/*
* Handle nowait, not much to do other than tell it to retry
* and wait.
*/
ret = VM_FAULT_RETRY;
if (fe->flags & FAULT_FLAG_RETRY_NOWAIT)
goto out;
/* take the reference before dropping the mmap_sem */
userfaultfd_ctx_get(ctx);
init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
uwq.wq.private = current;
uwq.msg = userfault_msg(fe->address, fe->flags, reason);
uwq.ctx = ctx;
uwq.waken = false;
return_to_userland =
(fe->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
TASK_KILLABLE;
spin_lock(&ctx->fault_pending_wqh.lock);
/*
* After the __add_wait_queue the uwq is visible to userland
* through poll/read().
*/
__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
/*
* The smp_mb() after __set_current_state prevents the reads
* following the spin_unlock to happen before the list_add in
* __add_wait_queue.
*/
set_current_state(blocking_state);
spin_unlock(&ctx->fault_pending_wqh.lock);
must_wait = userfaultfd_must_wait(ctx, fe->address, fe->flags, reason);
up_read(&mm->mmap_sem);
if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
(return_to_userland ? !signal_pending(current) :
!fatal_signal_pending(current)))) {
wake_up_poll(&ctx->fd_wqh, POLLIN);
schedule();
ret |= VM_FAULT_MAJOR;
/*
* False wakeups can orginate even from rwsem before
* up_read() however userfaults will wait either for a
* targeted wakeup on the specific uwq waitqueue from
* wake_userfault() or for signals or for uffd
* release.
*/
while (!READ_ONCE(uwq.waken)) {
/*
* This needs the full smp_store_mb()
* guarantee as the state write must be
* visible to other CPUs before reading
* uwq.waken from other CPUs.
*/
set_current_state(blocking_state);
if (READ_ONCE(uwq.waken) ||
READ_ONCE(ctx->released) ||
(return_to_userland ? signal_pending(current) :
fatal_signal_pending(current)))
break;
schedule();
}
}
__set_current_state(TASK_RUNNING);
if (return_to_userland) {
if (signal_pending(current) &&
!fatal_signal_pending(current)) {
/*
* If we got a SIGSTOP or SIGCONT and this is
* a normal userland page fault, just let
* userland return so the signal will be
* handled and gdb debugging works. The page
* fault code immediately after we return from
* this function is going to release the
* mmap_sem and it's not depending on it
* (unlike gup would if we were not to return
* VM_FAULT_RETRY).
*
* If a fatal signal is pending we still take
* the streamlined VM_FAULT_RETRY failure path
* and there's no need to retake the mmap_sem
* in such case.
*/
down_read(&mm->mmap_sem);
ret = VM_FAULT_NOPAGE;
}
}
/*
* Here we race with the list_del; list_add in
* userfaultfd_ctx_read(), however because we don't ever run
* list_del_init() to refile across the two lists, the prev
* and next pointers will never point to self. list_add also
* would never let any of the two pointers to point to
* self. So list_empty_careful won't risk to see both pointers
* pointing to self at any time during the list refile. The
* only case where list_del_init() is called is the full
* removal in the wake function and there we don't re-list_add
* and it's fine not to block on the spinlock. The uwq on this
* kernel stack can be released after the list_del_init.
*/
if (!list_empty_careful(&uwq.wq.task_list)) {
spin_lock(&ctx->fault_pending_wqh.lock);
/*
* No need of list_del_init(), the uwq on the stack
* will be freed shortly anyway.
*/
list_del(&uwq.wq.task_list);
spin_unlock(&ctx->fault_pending_wqh.lock);
}
/*
* ctx may go away after this if the userfault pseudo fd is
* already released.
*/
userfaultfd_ctx_put(ctx);
out:
return ret;
}
static int userfaultfd_release(struct inode *inode, struct file *file)
{
struct userfaultfd_ctx *ctx = file->private_data;
struct mm_struct *mm = ctx->mm;
struct vm_area_struct *vma, *prev;
/* len == 0 means wake all */
struct userfaultfd_wake_range range = { .len = 0, };
unsigned long new_flags;
bool still_valid;
ACCESS_ONCE(ctx->released) = true;
if (!mmget_not_zero(mm))
goto wakeup;
/*
* Flush page faults out of all CPUs. NOTE: all page faults
* must be retried without returning VM_FAULT_SIGBUS if
* userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
* changes while handle_userfault released the mmap_sem. So
* it's critical that released is set to true (above), before
* taking the mmap_sem for writing.
*/
down_write(&mm->mmap_sem);
still_valid = mmget_still_valid(mm);
prev = NULL;
for (vma = mm->mmap; vma; vma = vma->vm_next) {
cond_resched();
BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
!!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
if (vma->vm_userfaultfd_ctx.ctx != ctx) {
prev = vma;
continue;
}
new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
if (still_valid) {
prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
new_flags, vma->anon_vma,
vma->vm_file, vma->vm_pgoff,
vma_policy(vma),
NULL_VM_UFFD_CTX,
vma_get_anon_name(vma));
if (prev)
vma = prev;
else
prev = vma;
}
vm_write_begin(vma);
WRITE_ONCE(vma->vm_flags, new_flags);
vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
vm_write_end(vma);
}
up_write(&mm->mmap_sem);
mmput(mm);
wakeup:
/*
* After no new page faults can wait on this fault_*wqh, flush
* the last page faults that may have been already waiting on
* the fault_*wqh.
*/
spin_lock(&ctx->fault_pending_wqh.lock);
__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
spin_unlock(&ctx->fault_pending_wqh.lock);
wake_up_poll(&ctx->fd_wqh, POLLHUP);
userfaultfd_ctx_put(ctx);
return 0;
}
/* fault_pending_wqh.lock must be hold by the caller */
static inline struct userfaultfd_wait_queue *find_userfault(
struct userfaultfd_ctx *ctx)
{
wait_queue_t *wq;
struct userfaultfd_wait_queue *uwq;
VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock));
uwq = NULL;
if (!waitqueue_active(&ctx->fault_pending_wqh))
goto out;
/* walk in reverse to provide FIFO behavior to read userfaults */
wq = list_last_entry(&ctx->fault_pending_wqh.task_list,
typeof(*wq), task_list);
uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
out:
return uwq;
}
static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
{
struct userfaultfd_ctx *ctx = file->private_data;
unsigned int ret;
poll_wait(file, &ctx->fd_wqh, wait);
switch (ctx->state) {
case UFFD_STATE_WAIT_API:
return POLLERR;
case UFFD_STATE_RUNNING:
/*
* poll() never guarantees that read won't block.
* userfaults can be waken before they're read().
*/
if (unlikely(!(file->f_flags & O_NONBLOCK)))
return POLLERR;
/*
* lockless access to see if there are pending faults
* __pollwait last action is the add_wait_queue but
* the spin_unlock would allow the waitqueue_active to
* pass above the actual list_add inside
* add_wait_queue critical section. So use a full
* memory barrier to serialize the list_add write of
* add_wait_queue() with the waitqueue_active read
* below.
*/
ret = 0;
smp_mb();
if (waitqueue_active(&ctx->fault_pending_wqh))
ret = POLLIN;
return ret;
default:
BUG();
}
}
static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
struct uffd_msg *msg)
{
ssize_t ret;
DECLARE_WAITQUEUE(wait, current);
struct userfaultfd_wait_queue *uwq;
/* always take the fd_wqh lock before the fault_pending_wqh lock */
spin_lock(&ctx->fd_wqh.lock);
__add_wait_queue(&ctx->fd_wqh, &wait);
for (;;) {
set_current_state(TASK_INTERRUPTIBLE);
spin_lock(&ctx->fault_pending_wqh.lock);
uwq = find_userfault(ctx);
if (uwq) {
/*
* Use a seqcount to repeat the lockless check
* in wake_userfault() to avoid missing
* wakeups because during the refile both
* waitqueue could become empty if this is the
* only userfault.
*/
write_seqcount_begin(&ctx->refile_seq);
/*
* The fault_pending_wqh.lock prevents the uwq
* to disappear from under us.
*
* Refile this userfault from
* fault_pending_wqh to fault_wqh, it's not
* pending anymore after we read it.
*
* Use list_del() by hand (as
* userfaultfd_wake_function also uses
* list_del_init() by hand) to be sure nobody
* changes __remove_wait_queue() to use
* list_del_init() in turn breaking the
* !list_empty_careful() check in
* handle_userfault(). The uwq->wq.task_list
* must never be empty at any time during the
* refile, or the waitqueue could disappear
* from under us. The "wait_queue_head_t"
* parameter of __remove_wait_queue() is unused
* anyway.
*/
list_del(&uwq->wq.task_list);
__add_wait_queue(&ctx->fault_wqh, &uwq->wq);
write_seqcount_end(&ctx->refile_seq);
/* careful to always initialize msg if ret == 0 */
*msg = uwq->msg;
spin_unlock(&ctx->fault_pending_wqh.lock);
ret = 0;
break;
}
spin_unlock(&ctx->fault_pending_wqh.lock);
if (signal_pending(current)) {
ret = -ERESTARTSYS;
break;
}
if (no_wait) {
ret = -EAGAIN;
break;
}
spin_unlock(&ctx->fd_wqh.lock);
schedule();
spin_lock(&ctx->fd_wqh.lock);
}
__remove_wait_queue(&ctx->fd_wqh, &wait);
__set_current_state(TASK_RUNNING);
spin_unlock(&ctx->fd_wqh.lock);
return ret;
}
static ssize_t userfaultfd_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct userfaultfd_ctx *ctx = file->private_data;
ssize_t _ret, ret = 0;
struct uffd_msg msg;
int no_wait = file->f_flags & O_NONBLOCK;
if (ctx->state == UFFD_STATE_WAIT_API)
return -EINVAL;
for (;;) {
if (count < sizeof(msg))
return ret ? ret : -EINVAL;
_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
if (_ret < 0)
return ret ? ret : _ret;
if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
return ret ? ret : -EFAULT;
ret += sizeof(msg);
buf += sizeof(msg);
count -= sizeof(msg);
/*
* Allow to read more than one fault at time but only
* block if waiting for the very first one.
*/
no_wait = O_NONBLOCK;
}
}
static void __wake_userfault(struct userfaultfd_ctx *ctx,
struct userfaultfd_wake_range *range)
{
unsigned long start, end;
start = range->start;
end = range->start + range->len;
spin_lock(&ctx->fault_pending_wqh.lock);
/* wake all in the range and autoremove */
if (waitqueue_active(&ctx->fault_pending_wqh))
__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
range);
if (waitqueue_active(&ctx->fault_wqh))
__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
spin_unlock(&ctx->fault_pending_wqh.lock);
}
static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
struct userfaultfd_wake_range *range)
{
unsigned seq;
bool need_wakeup;
/*
* To be sure waitqueue_active() is not reordered by the CPU
* before the pagetable update, use an explicit SMP memory
* barrier here. PT lock release or up_read(mmap_sem) still
* have release semantics that can allow the
* waitqueue_active() to be reordered before the pte update.
*/
smp_mb();
/*
* Use waitqueue_active because it's very frequent to
* change the address space atomically even if there are no
* userfaults yet. So we take the spinlock only when we're
* sure we've userfaults to wake.
*/
do {
seq = read_seqcount_begin(&ctx->refile_seq);
need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
waitqueue_active(&ctx->fault_wqh);
cond_resched();
} while (read_seqcount_retry(&ctx->refile_seq, seq));
if (need_wakeup)
__wake_userfault(ctx, range);
}
static __always_inline int validate_range(struct mm_struct *mm,
__u64 start, __u64 len)
{
__u64 task_size = mm->task_size;
if (start & ~PAGE_MASK)
return -EINVAL;
if (len & ~PAGE_MASK)
return -EINVAL;
if (!len)
return -EINVAL;
if (start < mmap_min_addr)
return -EINVAL;
if (start >= task_size)
return -EINVAL;
if (len > task_size - start)
return -EINVAL;
return 0;
}
static int userfaultfd_register(struct userfaultfd_ctx *ctx,
unsigned long arg)
{
struct mm_struct *mm = ctx->mm;
struct vm_area_struct *vma, *prev, *cur;
int ret;
struct uffdio_register uffdio_register;
struct uffdio_register __user *user_uffdio_register;
unsigned long vm_flags, new_flags;
bool found;
unsigned long start, end, vma_end;
user_uffdio_register = (struct uffdio_register __user *) arg;
ret = -EFAULT;
if (copy_from_user(&uffdio_register, user_uffdio_register,
sizeof(uffdio_register)-sizeof(__u64)))
goto out;
ret = -EINVAL;
if (!uffdio_register.mode)
goto out;
if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
UFFDIO_REGISTER_MODE_WP))
goto out;
vm_flags = 0;
if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
vm_flags |= VM_UFFD_MISSING;
if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
vm_flags |= VM_UFFD_WP;
/*
* FIXME: remove the below error constraint by
* implementing the wprotect tracking mode.
*/
ret = -EINVAL;
goto out;
}
ret = validate_range(mm, uffdio_register.range.start,
uffdio_register.range.len);
if (ret)
goto out;
start = uffdio_register.range.start;
end = start + uffdio_register.range.len;
ret = -ENOMEM;
if (!mmget_not_zero(mm))
goto out;
down_write(&mm->mmap_sem);
if (!mmget_still_valid(mm))
goto out_unlock;
vma = find_vma_prev(mm, start, &prev);
if (!vma)
goto out_unlock;
/* check that there's at least one vma in the range */
ret = -EINVAL;
if (vma->vm_start >= end)
goto out_unlock;
/*
* Search for not compatible vmas.
*
* FIXME: this shall be relaxed later so that it doesn't fail
* on tmpfs backed vmas (in addition to the current allowance
* on anonymous vmas).
*/
found = false;
for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
cond_resched();
BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
!!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
/* check not compatible vmas */
ret = -EINVAL;
if (cur->vm_ops)
goto out_unlock;
/*
* UFFDIO_COPY will fill file holes even without
* PROT_WRITE. This check enforces that if this is a
* MAP_SHARED, the process has write permission to the backing
* file. If VM_MAYWRITE is set it also enforces that on a
* MAP_SHARED vma: there is no F_WRITE_SEAL and no further
* F_WRITE_SEAL can be taken until the vma is destroyed.
*/
ret = -EPERM;
if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
goto out_unlock;
/*
* Check that this vma isn't already owned by a
* different userfaultfd. We can't allow more than one
* userfaultfd to own a single vma simultaneously or we
* wouldn't know which one to deliver the userfaults to.
*/
ret = -EBUSY;
if (cur->vm_userfaultfd_ctx.ctx &&
cur->vm_userfaultfd_ctx.ctx != ctx)
goto out_unlock;
found = true;
}
BUG_ON(!found);
if (vma->vm_start < start)
prev = vma;
ret = 0;
do {
cond_resched();
BUG_ON(vma->vm_ops);
BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
vma->vm_userfaultfd_ctx.ctx != ctx);
WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
/*
* Nothing to do: this vma is already registered into this
* userfaultfd and with the right tracking mode too.
*/
if (vma->vm_userfaultfd_ctx.ctx == ctx &&
(vma->vm_flags & vm_flags) == vm_flags)
goto skip;
if (vma->vm_start > start)
start = vma->vm_start;
vma_end = min(end, vma->vm_end);
new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
prev = vma_merge(mm, prev, start, vma_end, new_flags,
vma->anon_vma, vma->vm_file, vma->vm_pgoff,
vma_policy(vma),
((struct vm_userfaultfd_ctx){ ctx }),
vma_get_anon_name(vma));
if (prev) {
vma = prev;
goto next;
}
if (vma->vm_start < start) {
ret = split_vma(mm, vma, start, 1);
if (ret)
break;
}
if (vma->vm_end > end) {
ret = split_vma(mm, vma, end, 0);
if (ret)
break;
}
next:
/*
* In the vma_merge() successful mprotect-like case 8:
* the next vma was merged into the current one and
* the current one has not been updated yet.
*/
vm_write_begin(vma);
WRITE_ONCE(vma->vm_flags, new_flags);
vma->vm_userfaultfd_ctx.ctx = ctx;
vm_write_end(vma);
skip:
prev = vma;
start = vma->vm_end;
vma = vma->vm_next;
} while (vma && vma->vm_start < end);
out_unlock:
up_write(&mm->mmap_sem);
mmput(mm);
if (!ret) {
/*
* Now that we scanned all vmas we can already tell
* userland which ioctls methods are guaranteed to
* succeed on this range.
*/
if (put_user(UFFD_API_RANGE_IOCTLS,
&user_uffdio_register->ioctls))
ret = -EFAULT;
}
out:
return ret;
}
static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
unsigned long arg)
{
struct mm_struct *mm = ctx->mm;
struct vm_area_struct *vma, *prev, *cur;
int ret;
struct uffdio_range uffdio_unregister;
unsigned long new_flags;
bool found;
unsigned long start, end, vma_end;
const void __user *buf = (void __user *)arg;
ret = -EFAULT;
if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
goto out;
ret = validate_range(mm, uffdio_unregister.start,
uffdio_unregister.len);
if (ret)
goto out;
start = uffdio_unregister.start;
end = start + uffdio_unregister.len;
ret = -ENOMEM;
if (!mmget_not_zero(mm))
goto out;
down_write(&mm->mmap_sem);
if (!mmget_still_valid(mm))
goto out_unlock;
vma = find_vma_prev(mm, start, &prev);
if (!vma)
goto out_unlock;
/* check that there's at least one vma in the range */
ret = -EINVAL;
if (vma->vm_start >= end)
goto out_unlock;
/*
* Search for not compatible vmas.
*
* FIXME: this shall be relaxed later so that it doesn't fail
* on tmpfs backed vmas (in addition to the current allowance
* on anonymous vmas).
*/
found = false;
ret = -EINVAL;
for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
cond_resched();
BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
!!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
/*
* Check not compatible vmas, not strictly required
* here as not compatible vmas cannot have an
* userfaultfd_ctx registered on them, but this
* provides for more strict behavior to notice
* unregistration errors.
*/
if (cur->vm_ops)
goto out_unlock;
found = true;
}
BUG_ON(!found);
if (vma->vm_start < start)
prev = vma;
ret = 0;
do {
cond_resched();
BUG_ON(vma->vm_ops);
WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
/*
* Nothing to do: this vma is already registered into this
* userfaultfd and with the right tracking mode too.
*/
if (!vma->vm_userfaultfd_ctx.ctx)
goto skip;
if (vma->vm_start > start)
start = vma->vm_start;
vma_end = min(end, vma->vm_end);
new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
prev = vma_merge(mm, prev, start, vma_end, new_flags,
vma->anon_vma, vma->vm_file, vma->vm_pgoff,
vma_policy(vma),
NULL_VM_UFFD_CTX,
vma_get_anon_name(vma));
if (prev) {
vma = prev;
goto next;
}
if (vma->vm_start < start) {
ret = split_vma(mm, vma, start, 1);
if (ret)
break;
}
if (vma->vm_end > end) {
ret = split_vma(mm, vma, end, 0);
if (ret)
break;
}
next:
/*
* In the vma_merge() successful mprotect-like case 8:
* the next vma was merged into the current one and
* the current one has not been updated yet.
*/
vm_write_begin(vma);
WRITE_ONCE(vma->vm_flags, new_flags);
vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
vm_write_end(vma);
skip:
prev = vma;
start = vma->vm_end;
vma = vma->vm_next;
} while (vma && vma->vm_start < end);
out_unlock:
up_write(&mm->mmap_sem);
mmput(mm);
out:
return ret;
}
/*
* userfaultfd_wake may be used in combination with the
* UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
*/
static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
unsigned long arg)
{
int ret;
struct uffdio_range uffdio_wake;
struct userfaultfd_wake_range range;
const void __user *buf = (void __user *)arg;
ret = -EFAULT;
if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
goto out;
ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
if (ret)
goto out;
range.start = uffdio_wake.start;
range.len = uffdio_wake.len;
/*
* len == 0 means wake all and we don't want to wake all here,
* so check it again to be sure.
*/
VM_BUG_ON(!range.len);
wake_userfault(ctx, &range);
ret = 0;
out:
return ret;
}
static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
unsigned long arg)
{
__s64 ret;
struct uffdio_copy uffdio_copy;
struct uffdio_copy __user *user_uffdio_copy;
struct userfaultfd_wake_range range;
user_uffdio_copy = (struct uffdio_copy __user *) arg;
ret = -EFAULT;
if (copy_from_user(&uffdio_copy, user_uffdio_copy,
/* don't copy "copy" last field */
sizeof(uffdio_copy)-sizeof(__s64)))
goto out;
ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
if (ret)
goto out;
/*
* double check for wraparound just in case. copy_from_user()
* will later check uffdio_copy.src + uffdio_copy.len to fit
* in the userland range.
*/
ret = -EINVAL;
if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
goto out;
if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
goto out;
if (mmget_not_zero(ctx->mm)) {
ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
uffdio_copy.len);
mmput(ctx->mm);
}
if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
return -EFAULT;
if (ret < 0)
goto out;
BUG_ON(!ret);
/* len == 0 would wake all */
range.len = ret;
if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
range.start = uffdio_copy.dst;
wake_userfault(ctx, &range);
}
ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
out:
return ret;
}
static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
unsigned long arg)
{
__s64 ret;
struct uffdio_zeropage uffdio_zeropage;
struct uffdio_zeropage __user *user_uffdio_zeropage;
struct userfaultfd_wake_range range;
user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
ret = -EFAULT;
if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
/* don't copy "zeropage" last field */
sizeof(uffdio_zeropage)-sizeof(__s64)))
goto out;
ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
uffdio_zeropage.range.len);
if (ret)
goto out;
ret = -EINVAL;
if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
goto out;
if (mmget_not_zero(ctx->mm)) {
ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
uffdio_zeropage.range.len);
mmput(ctx->mm);
}
if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
return -EFAULT;
if (ret < 0)
goto out;
/* len == 0 would wake all */
BUG_ON(!ret);
range.len = ret;
if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
range.start = uffdio_zeropage.range.start;
wake_userfault(ctx, &range);
}
ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
out:
return ret;
}
/*
* userland asks for a certain API version and we return which bits
* and ioctl commands are implemented in this kernel for such API
* version or -EINVAL if unknown.
*/
static int userfaultfd_api(struct userfaultfd_ctx *ctx,
unsigned long arg)
{
struct uffdio_api uffdio_api;
void __user *buf = (void __user *)arg;
int ret;
ret = -EINVAL;
if (ctx->state != UFFD_STATE_WAIT_API)
goto out;
ret = -EFAULT;
if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
goto out;
if (uffdio_api.api != UFFD_API || uffdio_api.features) {
memset(&uffdio_api, 0, sizeof(uffdio_api));
if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
goto out;
ret = -EINVAL;
goto out;
}
uffdio_api.features = UFFD_API_FEATURES;
uffdio_api.ioctls = UFFD_API_IOCTLS;
ret = -EFAULT;
if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
goto out;
ctx->state = UFFD_STATE_RUNNING;
ret = 0;
out:
return ret;
}
static long userfaultfd_ioctl(struct file *file, unsigned cmd,
unsigned long arg)
{
int ret = -EINVAL;
struct userfaultfd_ctx *ctx = file->private_data;
if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
return -EINVAL;
switch(cmd) {
case UFFDIO_API:
ret = userfaultfd_api(ctx, arg);
break;
case UFFDIO_REGISTER:
ret = userfaultfd_register(ctx, arg);
break;
case UFFDIO_UNREGISTER:
ret = userfaultfd_unregister(ctx, arg);
break;
case UFFDIO_WAKE:
ret = userfaultfd_wake(ctx, arg);
break;
case UFFDIO_COPY:
ret = userfaultfd_copy(ctx, arg);
break;
case UFFDIO_ZEROPAGE:
ret = userfaultfd_zeropage(ctx, arg);
break;
}
return ret;
}
#ifdef CONFIG_PROC_FS
static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
{
struct userfaultfd_ctx *ctx = f->private_data;
wait_queue_t *wq;
struct userfaultfd_wait_queue *uwq;
unsigned long pending = 0, total = 0;
spin_lock(&ctx->fault_pending_wqh.lock);
list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
pending++;
total++;
}
list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
total++;
}
spin_unlock(&ctx->fault_pending_wqh.lock);
/*
* If more protocols will be added, there will be all shown
* separated by a space. Like this:
* protocols: aa:... bb:...
*/
seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
pending, total, UFFD_API, UFFD_API_FEATURES,
UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
}
#endif
static const struct file_operations userfaultfd_fops = {
#ifdef CONFIG_PROC_FS
.show_fdinfo = userfaultfd_show_fdinfo,
#endif
.release = userfaultfd_release,
.poll = userfaultfd_poll,
.read = userfaultfd_read,
.unlocked_ioctl = userfaultfd_ioctl,
.compat_ioctl = userfaultfd_ioctl,
.llseek = noop_llseek,
};
static void init_once_userfaultfd_ctx(void *mem)
{
struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
init_waitqueue_head(&ctx->fault_pending_wqh);
init_waitqueue_head(&ctx->fault_wqh);
init_waitqueue_head(&ctx->fd_wqh);
seqcount_init(&ctx->refile_seq);
}
/**
* userfaultfd_file_create - Creates an userfaultfd file pointer.
* @flags: Flags for the userfaultfd file.
*
* This function creates an userfaultfd file pointer, w/out installing
* it into the fd table. This is useful when the userfaultfd file is
* used during the initialization of data structures that require
* extra setup after the userfaultfd creation. So the userfaultfd
* creation is split into the file pointer creation phase, and the
* file descriptor installation phase. In this way races with
* userspace closing the newly installed file descriptor can be
* avoided. Returns an userfaultfd file pointer, or a proper error
* pointer.
*/
static struct file *userfaultfd_file_create(int flags)
{
struct file *file;
struct userfaultfd_ctx *ctx;
BUG_ON(!current->mm);
/* Check the UFFD_* constants for consistency. */
BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
file = ERR_PTR(-EINVAL);
if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
goto out;
file = ERR_PTR(-ENOMEM);
ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
if (!ctx)
goto out;
atomic_set(&ctx->refcount, 1);
ctx->flags = flags;
ctx->state = UFFD_STATE_WAIT_API;
ctx->released = false;
ctx->mm = current->mm;
/* prevent the mm struct to be freed */
atomic_inc(&ctx->mm->mm_count);
file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
if (IS_ERR(file)) {
mmdrop(ctx->mm);
kmem_cache_free(userfaultfd_ctx_cachep, ctx);
}
out:
return file;
}
SYSCALL_DEFINE1(userfaultfd, int, flags)
{
int fd, error;
struct file *file;
error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
if (error < 0)
return error;
fd = error;
file = userfaultfd_file_create(flags);
if (IS_ERR(file)) {
error = PTR_ERR(file);
goto err_put_unused_fd;
}
fd_install(fd, file);
return fd;
err_put_unused_fd:
put_unused_fd(fd);
return error;
}
static int __init userfaultfd_init(void)
{
userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
sizeof(struct userfaultfd_ctx),
0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC,
init_once_userfaultfd_ctx);
return 0;
}
__initcall(userfaultfd_init);