| /* |
| * Copyright (c) 2006 Oracle. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| * |
| */ |
| #include <linux/kernel.h> |
| |
| #include "rds.h" |
| #include "rdma.h" |
| #include "iw.h" |
| |
| |
| /* |
| * This is stored as mr->r_trans_private. |
| */ |
| struct rds_iw_mr { |
| struct rds_iw_device *device; |
| struct rds_iw_mr_pool *pool; |
| struct rdma_cm_id *cm_id; |
| |
| struct ib_mr *mr; |
| struct ib_fast_reg_page_list *page_list; |
| |
| struct rds_iw_mapping mapping; |
| unsigned char remap_count; |
| }; |
| |
| /* |
| * Our own little MR pool |
| */ |
| struct rds_iw_mr_pool { |
| struct rds_iw_device *device; /* back ptr to the device that owns us */ |
| |
| struct mutex flush_lock; /* serialize fmr invalidate */ |
| struct work_struct flush_worker; /* flush worker */ |
| |
| spinlock_t list_lock; /* protect variables below */ |
| atomic_t item_count; /* total # of MRs */ |
| atomic_t dirty_count; /* # dirty of MRs */ |
| struct list_head dirty_list; /* dirty mappings */ |
| struct list_head clean_list; /* unused & unamapped MRs */ |
| atomic_t free_pinned; /* memory pinned by free MRs */ |
| unsigned long max_message_size; /* in pages */ |
| unsigned long max_items; |
| unsigned long max_items_soft; |
| unsigned long max_free_pinned; |
| int max_pages; |
| }; |
| |
| static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all); |
| static void rds_iw_mr_pool_flush_worker(struct work_struct *work); |
| static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); |
| static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool, |
| struct rds_iw_mr *ibmr, |
| struct scatterlist *sg, unsigned int nents); |
| static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); |
| static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool, |
| struct list_head *unmap_list, |
| struct list_head *kill_list); |
| static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); |
| |
| static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id) |
| { |
| struct rds_iw_device *iwdev; |
| struct rds_iw_cm_id *i_cm_id; |
| |
| *rds_iwdev = NULL; |
| *cm_id = NULL; |
| |
| list_for_each_entry(iwdev, &rds_iw_devices, list) { |
| spin_lock_irq(&iwdev->spinlock); |
| list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) { |
| struct sockaddr_in *src_addr, *dst_addr; |
| |
| src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr; |
| dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr; |
| |
| rdsdebug("local ipaddr = %x port %d, " |
| "remote ipaddr = %x port %d" |
| "..looking for %x port %d, " |
| "remote ipaddr = %x port %d\n", |
| src_addr->sin_addr.s_addr, |
| src_addr->sin_port, |
| dst_addr->sin_addr.s_addr, |
| dst_addr->sin_port, |
| rs->rs_bound_addr, |
| rs->rs_bound_port, |
| rs->rs_conn_addr, |
| rs->rs_conn_port); |
| #ifdef WORKING_TUPLE_DETECTION |
| if (src_addr->sin_addr.s_addr == rs->rs_bound_addr && |
| src_addr->sin_port == rs->rs_bound_port && |
| dst_addr->sin_addr.s_addr == rs->rs_conn_addr && |
| dst_addr->sin_port == rs->rs_conn_port) { |
| #else |
| /* FIXME - needs to compare the local and remote |
| * ipaddr/port tuple, but the ipaddr is the only |
| * available infomation in the rds_sock (as the rest are |
| * zero'ed. It doesn't appear to be properly populated |
| * during connection setup... |
| */ |
| if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) { |
| #endif |
| spin_unlock_irq(&iwdev->spinlock); |
| *rds_iwdev = iwdev; |
| *cm_id = i_cm_id->cm_id; |
| return 0; |
| } |
| } |
| spin_unlock_irq(&iwdev->spinlock); |
| } |
| |
| return 1; |
| } |
| |
| static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) |
| { |
| struct rds_iw_cm_id *i_cm_id; |
| |
| i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL); |
| if (!i_cm_id) |
| return -ENOMEM; |
| |
| i_cm_id->cm_id = cm_id; |
| |
| spin_lock_irq(&rds_iwdev->spinlock); |
| list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list); |
| spin_unlock_irq(&rds_iwdev->spinlock); |
| |
| return 0; |
| } |
| |
| void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) |
| { |
| struct rds_iw_cm_id *i_cm_id; |
| |
| spin_lock_irq(&rds_iwdev->spinlock); |
| list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) { |
| if (i_cm_id->cm_id == cm_id) { |
| list_del(&i_cm_id->list); |
| kfree(i_cm_id); |
| break; |
| } |
| } |
| spin_unlock_irq(&rds_iwdev->spinlock); |
| } |
| |
| |
| int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) |
| { |
| struct sockaddr_in *src_addr, *dst_addr; |
| struct rds_iw_device *rds_iwdev_old; |
| struct rds_sock rs; |
| struct rdma_cm_id *pcm_id; |
| int rc; |
| |
| src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr; |
| dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr; |
| |
| rs.rs_bound_addr = src_addr->sin_addr.s_addr; |
| rs.rs_bound_port = src_addr->sin_port; |
| rs.rs_conn_addr = dst_addr->sin_addr.s_addr; |
| rs.rs_conn_port = dst_addr->sin_port; |
| |
| rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id); |
| if (rc) |
| rds_iw_remove_cm_id(rds_iwdev, cm_id); |
| |
| return rds_iw_add_cm_id(rds_iwdev, cm_id); |
| } |
| |
| void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn) |
| { |
| struct rds_iw_connection *ic = conn->c_transport_data; |
| |
| /* conn was previously on the nodev_conns_list */ |
| spin_lock_irq(&iw_nodev_conns_lock); |
| BUG_ON(list_empty(&iw_nodev_conns)); |
| BUG_ON(list_empty(&ic->iw_node)); |
| list_del(&ic->iw_node); |
| |
| spin_lock_irq(&rds_iwdev->spinlock); |
| list_add_tail(&ic->iw_node, &rds_iwdev->conn_list); |
| spin_unlock_irq(&rds_iwdev->spinlock); |
| spin_unlock_irq(&iw_nodev_conns_lock); |
| |
| ic->rds_iwdev = rds_iwdev; |
| } |
| |
| void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn) |
| { |
| struct rds_iw_connection *ic = conn->c_transport_data; |
| |
| /* place conn on nodev_conns_list */ |
| spin_lock(&iw_nodev_conns_lock); |
| |
| spin_lock_irq(&rds_iwdev->spinlock); |
| BUG_ON(list_empty(&ic->iw_node)); |
| list_del(&ic->iw_node); |
| spin_unlock_irq(&rds_iwdev->spinlock); |
| |
| list_add_tail(&ic->iw_node, &iw_nodev_conns); |
| |
| spin_unlock(&iw_nodev_conns_lock); |
| |
| rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id); |
| ic->rds_iwdev = NULL; |
| } |
| |
| void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock) |
| { |
| struct rds_iw_connection *ic, *_ic; |
| LIST_HEAD(tmp_list); |
| |
| /* avoid calling conn_destroy with irqs off */ |
| spin_lock_irq(list_lock); |
| list_splice(list, &tmp_list); |
| INIT_LIST_HEAD(list); |
| spin_unlock_irq(list_lock); |
| |
| list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node) { |
| if (ic->conn->c_passive) |
| rds_conn_destroy(ic->conn->c_passive); |
| rds_conn_destroy(ic->conn); |
| } |
| } |
| |
| static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg, |
| struct scatterlist *list, unsigned int sg_len) |
| { |
| sg->list = list; |
| sg->len = sg_len; |
| sg->dma_len = 0; |
| sg->dma_npages = 0; |
| sg->bytes = 0; |
| } |
| |
| static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev, |
| struct rds_iw_scatterlist *sg, |
| unsigned int dma_page_shift) |
| { |
| struct ib_device *dev = rds_iwdev->dev; |
| u64 *dma_pages = NULL; |
| u64 dma_mask; |
| unsigned int dma_page_size; |
| int i, j, ret; |
| |
| dma_page_size = 1 << dma_page_shift; |
| dma_mask = dma_page_size - 1; |
| |
| WARN_ON(sg->dma_len); |
| |
| sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL); |
| if (unlikely(!sg->dma_len)) { |
| printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n"); |
| return ERR_PTR(-EBUSY); |
| } |
| |
| sg->bytes = 0; |
| sg->dma_npages = 0; |
| |
| ret = -EINVAL; |
| for (i = 0; i < sg->dma_len; ++i) { |
| unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]); |
| u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]); |
| u64 end_addr; |
| |
| sg->bytes += dma_len; |
| |
| end_addr = dma_addr + dma_len; |
| if (dma_addr & dma_mask) { |
| if (i > 0) |
| goto out_unmap; |
| dma_addr &= ~dma_mask; |
| } |
| if (end_addr & dma_mask) { |
| if (i < sg->dma_len - 1) |
| goto out_unmap; |
| end_addr = (end_addr + dma_mask) & ~dma_mask; |
| } |
| |
| sg->dma_npages += (end_addr - dma_addr) >> dma_page_shift; |
| } |
| |
| /* Now gather the dma addrs into one list */ |
| if (sg->dma_npages > fastreg_message_size) |
| goto out_unmap; |
| |
| dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC); |
| if (!dma_pages) { |
| ret = -ENOMEM; |
| goto out_unmap; |
| } |
| |
| for (i = j = 0; i < sg->dma_len; ++i) { |
| unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]); |
| u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]); |
| u64 end_addr; |
| |
| end_addr = dma_addr + dma_len; |
| dma_addr &= ~dma_mask; |
| for (; dma_addr < end_addr; dma_addr += dma_page_size) |
| dma_pages[j++] = dma_addr; |
| BUG_ON(j > sg->dma_npages); |
| } |
| |
| return dma_pages; |
| |
| out_unmap: |
| ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL); |
| sg->dma_len = 0; |
| kfree(dma_pages); |
| return ERR_PTR(ret); |
| } |
| |
| |
| struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev) |
| { |
| struct rds_iw_mr_pool *pool; |
| |
| pool = kzalloc(sizeof(*pool), GFP_KERNEL); |
| if (!pool) { |
| printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n"); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| pool->device = rds_iwdev; |
| INIT_LIST_HEAD(&pool->dirty_list); |
| INIT_LIST_HEAD(&pool->clean_list); |
| mutex_init(&pool->flush_lock); |
| spin_lock_init(&pool->list_lock); |
| INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker); |
| |
| pool->max_message_size = fastreg_message_size; |
| pool->max_items = fastreg_pool_size; |
| pool->max_free_pinned = pool->max_items * pool->max_message_size / 4; |
| pool->max_pages = fastreg_message_size; |
| |
| /* We never allow more than max_items MRs to be allocated. |
| * When we exceed more than max_items_soft, we start freeing |
| * items more aggressively. |
| * Make sure that max_items > max_items_soft > max_items / 2 |
| */ |
| pool->max_items_soft = pool->max_items * 3 / 4; |
| |
| return pool; |
| } |
| |
| void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo) |
| { |
| struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; |
| |
| iinfo->rdma_mr_max = pool->max_items; |
| iinfo->rdma_mr_size = pool->max_pages; |
| } |
| |
| void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool) |
| { |
| flush_workqueue(rds_wq); |
| rds_iw_flush_mr_pool(pool, 1); |
| BUG_ON(atomic_read(&pool->item_count)); |
| BUG_ON(atomic_read(&pool->free_pinned)); |
| kfree(pool); |
| } |
| |
| static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool) |
| { |
| struct rds_iw_mr *ibmr = NULL; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pool->list_lock, flags); |
| if (!list_empty(&pool->clean_list)) { |
| ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list); |
| list_del_init(&ibmr->mapping.m_list); |
| } |
| spin_unlock_irqrestore(&pool->list_lock, flags); |
| |
| return ibmr; |
| } |
| |
| static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev) |
| { |
| struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; |
| struct rds_iw_mr *ibmr = NULL; |
| int err = 0, iter = 0; |
| |
| while (1) { |
| ibmr = rds_iw_reuse_fmr(pool); |
| if (ibmr) |
| return ibmr; |
| |
| /* No clean MRs - now we have the choice of either |
| * allocating a fresh MR up to the limit imposed by the |
| * driver, or flush any dirty unused MRs. |
| * We try to avoid stalling in the send path if possible, |
| * so we allocate as long as we're allowed to. |
| * |
| * We're fussy with enforcing the FMR limit, though. If the driver |
| * tells us we can't use more than N fmrs, we shouldn't start |
| * arguing with it */ |
| if (atomic_inc_return(&pool->item_count) <= pool->max_items) |
| break; |
| |
| atomic_dec(&pool->item_count); |
| |
| if (++iter > 2) { |
| rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted); |
| return ERR_PTR(-EAGAIN); |
| } |
| |
| /* We do have some empty MRs. Flush them out. */ |
| rds_iw_stats_inc(s_iw_rdma_mr_pool_wait); |
| rds_iw_flush_mr_pool(pool, 0); |
| } |
| |
| ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL); |
| if (!ibmr) { |
| err = -ENOMEM; |
| goto out_no_cigar; |
| } |
| |
| spin_lock_init(&ibmr->mapping.m_lock); |
| INIT_LIST_HEAD(&ibmr->mapping.m_list); |
| ibmr->mapping.m_mr = ibmr; |
| |
| err = rds_iw_init_fastreg(pool, ibmr); |
| if (err) |
| goto out_no_cigar; |
| |
| rds_iw_stats_inc(s_iw_rdma_mr_alloc); |
| return ibmr; |
| |
| out_no_cigar: |
| if (ibmr) { |
| rds_iw_destroy_fastreg(pool, ibmr); |
| kfree(ibmr); |
| } |
| atomic_dec(&pool->item_count); |
| return ERR_PTR(err); |
| } |
| |
| void rds_iw_sync_mr(void *trans_private, int direction) |
| { |
| struct rds_iw_mr *ibmr = trans_private; |
| struct rds_iw_device *rds_iwdev = ibmr->device; |
| |
| switch (direction) { |
| case DMA_FROM_DEVICE: |
| ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list, |
| ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL); |
| break; |
| case DMA_TO_DEVICE: |
| ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list, |
| ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL); |
| break; |
| } |
| } |
| |
| static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool *pool, int free_all) |
| { |
| unsigned int item_count; |
| |
| item_count = atomic_read(&pool->item_count); |
| if (free_all) |
| return item_count; |
| |
| return 0; |
| } |
| |
| /* |
| * Flush our pool of MRs. |
| * At a minimum, all currently unused MRs are unmapped. |
| * If the number of MRs allocated exceeds the limit, we also try |
| * to free as many MRs as needed to get back to this limit. |
| */ |
| static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all) |
| { |
| struct rds_iw_mr *ibmr, *next; |
| LIST_HEAD(unmap_list); |
| LIST_HEAD(kill_list); |
| unsigned long flags; |
| unsigned int nfreed = 0, ncleaned = 0, free_goal; |
| int ret = 0; |
| |
| rds_iw_stats_inc(s_iw_rdma_mr_pool_flush); |
| |
| mutex_lock(&pool->flush_lock); |
| |
| spin_lock_irqsave(&pool->list_lock, flags); |
| /* Get the list of all mappings to be destroyed */ |
| list_splice_init(&pool->dirty_list, &unmap_list); |
| if (free_all) |
| list_splice_init(&pool->clean_list, &kill_list); |
| spin_unlock_irqrestore(&pool->list_lock, flags); |
| |
| free_goal = rds_iw_flush_goal(pool, free_all); |
| |
| /* Batched invalidate of dirty MRs. |
| * For FMR based MRs, the mappings on the unmap list are |
| * actually members of an ibmr (ibmr->mapping). They either |
| * migrate to the kill_list, or have been cleaned and should be |
| * moved to the clean_list. |
| * For fastregs, they will be dynamically allocated, and |
| * will be destroyed by the unmap function. |
| */ |
| if (!list_empty(&unmap_list)) { |
| ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list, &kill_list); |
| /* If we've been asked to destroy all MRs, move those |
| * that were simply cleaned to the kill list */ |
| if (free_all) |
| list_splice_init(&unmap_list, &kill_list); |
| } |
| |
| /* Destroy any MRs that are past their best before date */ |
| list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) { |
| rds_iw_stats_inc(s_iw_rdma_mr_free); |
| list_del(&ibmr->mapping.m_list); |
| rds_iw_destroy_fastreg(pool, ibmr); |
| kfree(ibmr); |
| nfreed++; |
| } |
| |
| /* Anything that remains are laundered ibmrs, which we can add |
| * back to the clean list. */ |
| if (!list_empty(&unmap_list)) { |
| spin_lock_irqsave(&pool->list_lock, flags); |
| list_splice(&unmap_list, &pool->clean_list); |
| spin_unlock_irqrestore(&pool->list_lock, flags); |
| } |
| |
| atomic_sub(ncleaned, &pool->dirty_count); |
| atomic_sub(nfreed, &pool->item_count); |
| |
| mutex_unlock(&pool->flush_lock); |
| return ret; |
| } |
| |
| static void rds_iw_mr_pool_flush_worker(struct work_struct *work) |
| { |
| struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker); |
| |
| rds_iw_flush_mr_pool(pool, 0); |
| } |
| |
| void rds_iw_free_mr(void *trans_private, int invalidate) |
| { |
| struct rds_iw_mr *ibmr = trans_private; |
| struct rds_iw_mr_pool *pool = ibmr->device->mr_pool; |
| |
| rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len); |
| if (!pool) |
| return; |
| |
| /* Return it to the pool's free list */ |
| rds_iw_free_fastreg(pool, ibmr); |
| |
| /* If we've pinned too many pages, request a flush */ |
| if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned |
| || atomic_read(&pool->dirty_count) >= pool->max_items / 10) |
| queue_work(rds_wq, &pool->flush_worker); |
| |
| if (invalidate) { |
| if (likely(!in_interrupt())) { |
| rds_iw_flush_mr_pool(pool, 0); |
| } else { |
| /* We get here if the user created a MR marked |
| * as use_once and invalidate at the same time. */ |
| queue_work(rds_wq, &pool->flush_worker); |
| } |
| } |
| } |
| |
| void rds_iw_flush_mrs(void) |
| { |
| struct rds_iw_device *rds_iwdev; |
| |
| list_for_each_entry(rds_iwdev, &rds_iw_devices, list) { |
| struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; |
| |
| if (pool) |
| rds_iw_flush_mr_pool(pool, 0); |
| } |
| } |
| |
| void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents, |
| struct rds_sock *rs, u32 *key_ret) |
| { |
| struct rds_iw_device *rds_iwdev; |
| struct rds_iw_mr *ibmr = NULL; |
| struct rdma_cm_id *cm_id; |
| int ret; |
| |
| ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id); |
| if (ret || !cm_id) { |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| if (!rds_iwdev->mr_pool) { |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| ibmr = rds_iw_alloc_mr(rds_iwdev); |
| if (IS_ERR(ibmr)) |
| return ibmr; |
| |
| ibmr->cm_id = cm_id; |
| ibmr->device = rds_iwdev; |
| |
| ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents); |
| if (ret == 0) |
| *key_ret = ibmr->mr->rkey; |
| else |
| printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret); |
| |
| out: |
| if (ret) { |
| if (ibmr) |
| rds_iw_free_mr(ibmr, 0); |
| ibmr = ERR_PTR(ret); |
| } |
| return ibmr; |
| } |
| |
| /* |
| * iWARP fastreg handling |
| * |
| * The life cycle of a fastreg registration is a bit different from |
| * FMRs. |
| * The idea behind fastreg is to have one MR, to which we bind different |
| * mappings over time. To avoid stalling on the expensive map and invalidate |
| * operations, these operations are pipelined on the same send queue on |
| * which we want to send the message containing the r_key. |
| * |
| * This creates a bit of a problem for us, as we do not have the destination |
| * IP in GET_MR, so the connection must be setup prior to the GET_MR call for |
| * RDMA to be correctly setup. If a fastreg request is present, rds_iw_xmit |
| * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request |
| * before queuing the SEND. When completions for these arrive, they are |
| * dispatched to the MR has a bit set showing that RDMa can be performed. |
| * |
| * There is another interesting aspect that's related to invalidation. |
| * The application can request that a mapping is invalidated in FREE_MR. |
| * The expectation there is that this invalidation step includes ALL |
| * PREVIOUSLY FREED MRs. |
| */ |
| static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, |
| struct rds_iw_mr *ibmr) |
| { |
| struct rds_iw_device *rds_iwdev = pool->device; |
| struct ib_fast_reg_page_list *page_list = NULL; |
| struct ib_mr *mr; |
| int err; |
| |
| mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size); |
| if (IS_ERR(mr)) { |
| err = PTR_ERR(mr); |
| |
| printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err); |
| return err; |
| } |
| |
| /* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages |
| * is not filled in. |
| */ |
| page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size); |
| if (IS_ERR(page_list)) { |
| err = PTR_ERR(page_list); |
| |
| printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err); |
| ib_dereg_mr(mr); |
| return err; |
| } |
| |
| ibmr->page_list = page_list; |
| ibmr->mr = mr; |
| return 0; |
| } |
| |
| static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping) |
| { |
| struct rds_iw_mr *ibmr = mapping->m_mr; |
| struct ib_send_wr f_wr, *failed_wr; |
| int ret; |
| |
| /* |
| * Perform a WR for the fast_reg_mr. Each individual page |
| * in the sg list is added to the fast reg page list and placed |
| * inside the fast_reg_mr WR. The key used is a rolling 8bit |
| * counter, which should guarantee uniqueness. |
| */ |
| ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++); |
| mapping->m_rkey = ibmr->mr->rkey; |
| |
| memset(&f_wr, 0, sizeof(f_wr)); |
| f_wr.wr_id = RDS_IW_FAST_REG_WR_ID; |
| f_wr.opcode = IB_WR_FAST_REG_MR; |
| f_wr.wr.fast_reg.length = mapping->m_sg.bytes; |
| f_wr.wr.fast_reg.rkey = mapping->m_rkey; |
| f_wr.wr.fast_reg.page_list = ibmr->page_list; |
| f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len; |
| f_wr.wr.fast_reg.page_shift = ibmr->device->page_shift; |
| f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE | |
| IB_ACCESS_REMOTE_READ | |
| IB_ACCESS_REMOTE_WRITE; |
| f_wr.wr.fast_reg.iova_start = 0; |
| f_wr.send_flags = IB_SEND_SIGNALED; |
| |
| failed_wr = &f_wr; |
| ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr); |
| BUG_ON(failed_wr != &f_wr); |
| if (ret && printk_ratelimit()) |
| printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n", |
| __func__, __LINE__, ret); |
| return ret; |
| } |
| |
| static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr) |
| { |
| struct ib_send_wr s_wr, *failed_wr; |
| int ret = 0; |
| |
| if (!ibmr->cm_id->qp || !ibmr->mr) |
| goto out; |
| |
| memset(&s_wr, 0, sizeof(s_wr)); |
| s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID; |
| s_wr.opcode = IB_WR_LOCAL_INV; |
| s_wr.ex.invalidate_rkey = ibmr->mr->rkey; |
| s_wr.send_flags = IB_SEND_SIGNALED; |
| |
| failed_wr = &s_wr; |
| ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr); |
| if (ret && printk_ratelimit()) { |
| printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n", |
| __func__, __LINE__, ret); |
| goto out; |
| } |
| out: |
| return ret; |
| } |
| |
| static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool, |
| struct rds_iw_mr *ibmr, |
| struct scatterlist *sg, |
| unsigned int sg_len) |
| { |
| struct rds_iw_device *rds_iwdev = pool->device; |
| struct rds_iw_mapping *mapping = &ibmr->mapping; |
| u64 *dma_pages; |
| int i, ret = 0; |
| |
| rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len); |
| |
| dma_pages = rds_iw_map_scatterlist(rds_iwdev, |
| &mapping->m_sg, |
| rds_iwdev->page_shift); |
| if (IS_ERR(dma_pages)) { |
| ret = PTR_ERR(dma_pages); |
| dma_pages = NULL; |
| goto out; |
| } |
| |
| if (mapping->m_sg.dma_len > pool->max_message_size) { |
| ret = -EMSGSIZE; |
| goto out; |
| } |
| |
| for (i = 0; i < mapping->m_sg.dma_npages; ++i) |
| ibmr->page_list->page_list[i] = dma_pages[i]; |
| |
| ret = rds_iw_rdma_build_fastreg(mapping); |
| if (ret) |
| goto out; |
| |
| rds_iw_stats_inc(s_iw_rdma_mr_used); |
| |
| out: |
| kfree(dma_pages); |
| |
| return ret; |
| } |
| |
| /* |
| * "Free" a fastreg MR. |
| */ |
| static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, |
| struct rds_iw_mr *ibmr) |
| { |
| unsigned long flags; |
| int ret; |
| |
| if (!ibmr->mapping.m_sg.dma_len) |
| return; |
| |
| ret = rds_iw_rdma_fastreg_inv(ibmr); |
| if (ret) |
| return; |
| |
| /* Try to post the LOCAL_INV WR to the queue. */ |
| spin_lock_irqsave(&pool->list_lock, flags); |
| |
| list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list); |
| atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned); |
| atomic_inc(&pool->dirty_count); |
| |
| spin_unlock_irqrestore(&pool->list_lock, flags); |
| } |
| |
| static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool, |
| struct list_head *unmap_list, |
| struct list_head *kill_list) |
| { |
| struct rds_iw_mapping *mapping, *next; |
| unsigned int ncleaned = 0; |
| LIST_HEAD(laundered); |
| |
| /* Batched invalidation of fastreg MRs. |
| * Why do we do it this way, even though we could pipeline unmap |
| * and remap? The reason is the application semantics - when the |
| * application requests an invalidation of MRs, it expects all |
| * previously released R_Keys to become invalid. |
| * |
| * If we implement MR reuse naively, we risk memory corruption |
| * (this has actually been observed). So the default behavior |
| * requires that a MR goes through an explicit unmap operation before |
| * we can reuse it again. |
| * |
| * We could probably improve on this a little, by allowing immediate |
| * reuse of a MR on the same socket (eg you could add small |
| * cache of unused MRs to strct rds_socket - GET_MR could grab one |
| * of these without requiring an explicit invalidate). |
| */ |
| while (!list_empty(unmap_list)) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pool->list_lock, flags); |
| list_for_each_entry_safe(mapping, next, unmap_list, m_list) { |
| list_move(&mapping->m_list, &laundered); |
| ncleaned++; |
| } |
| spin_unlock_irqrestore(&pool->list_lock, flags); |
| } |
| |
| /* Move all laundered mappings back to the unmap list. |
| * We do not kill any WRs right now - it doesn't seem the |
| * fastreg API has a max_remap limit. */ |
| list_splice_init(&laundered, unmap_list); |
| |
| return ncleaned; |
| } |
| |
| static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, |
| struct rds_iw_mr *ibmr) |
| { |
| if (ibmr->page_list) |
| ib_free_fast_reg_page_list(ibmr->page_list); |
| if (ibmr->mr) |
| ib_dereg_mr(ibmr->mr); |
| } |