blob: 0c0011b5e1b9c1ba0e39fb452861744d9a79b5b6 [file] [log] [blame]
/*
* NVM Express device driver
* Copyright (c) 2011-2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/blkdev.h>
#include <linux/blk-mq.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/hdreg.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/list_sort.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/t10-pi.h>
#include <scsi/sg.h>
#include <asm/unaligned.h>
#include "nvme.h"
#define NVME_MINORS (1U << MINORBITS)
unsigned char admin_timeout = 60;
module_param(admin_timeout, byte, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
unsigned char nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
unsigned char shutdown_timeout = 5;
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
static int nvme_major;
module_param(nvme_major, int, 0);
static int nvme_char_major;
module_param(nvme_char_major, int, 0);
static LIST_HEAD(nvme_ctrl_list);
DEFINE_SPINLOCK(dev_list_lock);
static struct class *nvme_class;
static void nvme_free_ns(struct kref *kref)
{
struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
if (ns->type == NVME_NS_LIGHTNVM)
nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
spin_lock(&dev_list_lock);
ns->disk->private_data = NULL;
spin_unlock(&dev_list_lock);
nvme_put_ctrl(ns->ctrl);
put_disk(ns->disk);
kfree(ns);
}
static void nvme_put_ns(struct nvme_ns *ns)
{
kref_put(&ns->kref, nvme_free_ns);
}
static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
{
struct nvme_ns *ns;
spin_lock(&dev_list_lock);
ns = disk->private_data;
if (ns) {
if (!kref_get_unless_zero(&ns->kref))
goto fail;
if (!try_module_get(ns->ctrl->ops->module))
goto fail_put_ns;
}
spin_unlock(&dev_list_lock);
return ns;
fail_put_ns:
kref_put(&ns->kref, nvme_free_ns);
fail:
spin_unlock(&dev_list_lock);
return NULL;
}
void nvme_requeue_req(struct request *req)
{
unsigned long flags;
blk_mq_requeue_request(req);
spin_lock_irqsave(req->q->queue_lock, flags);
if (!blk_queue_stopped(req->q))
blk_mq_kick_requeue_list(req->q);
spin_unlock_irqrestore(req->q->queue_lock, flags);
}
struct request *nvme_alloc_request(struct request_queue *q,
struct nvme_command *cmd, unsigned int flags)
{
bool write = cmd->common.opcode & 1;
struct request *req;
req = blk_mq_alloc_request(q, write, flags);
if (IS_ERR(req))
return req;
req->cmd_type = REQ_TYPE_DRV_PRIV;
req->cmd_flags |= REQ_FAILFAST_DRIVER;
req->__data_len = 0;
req->__sector = (sector_t) -1;
req->bio = req->biotail = NULL;
req->cmd = (unsigned char *)cmd;
req->cmd_len = sizeof(struct nvme_command);
req->special = (void *)0;
return req;
}
/*
* Returns 0 on success. If the result is negative, it's a Linux error code;
* if the result is positive, it's an NVM Express status code
*/
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buffer, unsigned bufflen, u32 *result, unsigned timeout)
{
struct request *req;
int ret;
req = nvme_alloc_request(q, cmd, 0);
if (IS_ERR(req))
return PTR_ERR(req);
req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
if (buffer && bufflen) {
ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
if (ret)
goto out;
}
blk_execute_rq(req->q, NULL, req, 0);
if (result)
*result = (u32)(uintptr_t)req->special;
ret = req->errors;
out:
blk_mq_free_request(req);
return ret;
}
int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buffer, unsigned bufflen)
{
return __nvme_submit_sync_cmd(q, cmd, buffer, bufflen, NULL, 0);
}
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
void __user *ubuffer, unsigned bufflen,
void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
u32 *result, unsigned timeout)
{
bool write = cmd->common.opcode & 1;
struct nvme_ns *ns = q->queuedata;
struct gendisk *disk = ns ? ns->disk : NULL;
struct request *req;
struct bio *bio = NULL;
void *meta = NULL;
int ret;
req = nvme_alloc_request(q, cmd, 0);
if (IS_ERR(req))
return PTR_ERR(req);
req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
if (ubuffer && bufflen) {
ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
GFP_KERNEL);
if (ret)
goto out;
bio = req->bio;
if (!disk)
goto submit;
bio->bi_bdev = bdget_disk(disk, 0);
if (!bio->bi_bdev) {
ret = -ENODEV;
goto out_unmap;
}
if (meta_buffer) {
struct bio_integrity_payload *bip;
meta = kmalloc(meta_len, GFP_KERNEL);
if (!meta) {
ret = -ENOMEM;
goto out_unmap;
}
if (write) {
if (copy_from_user(meta, meta_buffer,
meta_len)) {
ret = -EFAULT;
goto out_free_meta;
}
}
bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
if (IS_ERR(bip)) {
ret = PTR_ERR(bip);
goto out_free_meta;
}
bip->bip_iter.bi_size = meta_len;
bip->bip_iter.bi_sector = meta_seed;
ret = bio_integrity_add_page(bio, virt_to_page(meta),
meta_len, offset_in_page(meta));
if (ret != meta_len) {
ret = -ENOMEM;
goto out_free_meta;
}
}
}
submit:
blk_execute_rq(req->q, disk, req, 0);
ret = req->errors;
if (result)
*result = (u32)(uintptr_t)req->special;
if (meta && !ret && !write) {
if (copy_to_user(meta_buffer, meta, meta_len))
ret = -EFAULT;
}
out_free_meta:
kfree(meta);
out_unmap:
if (bio) {
if (disk && bio->bi_bdev)
bdput(bio->bi_bdev);
blk_rq_unmap_user(bio);
}
out:
blk_mq_free_request(req);
return ret;
}
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
void __user *ubuffer, unsigned bufflen, u32 *result,
unsigned timeout)
{
return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
result, timeout);
}
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
{
struct nvme_command c = { };
int error;
/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
c.identify.opcode = nvme_admin_identify;
c.identify.cns = cpu_to_le32(1);
*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
if (!*id)
return -ENOMEM;
error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
sizeof(struct nvme_id_ctrl));
if (error)
kfree(*id);
return error;
}
static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
{
struct nvme_command c = { };
c.identify.opcode = nvme_admin_identify;
c.identify.cns = cpu_to_le32(2);
c.identify.nsid = cpu_to_le32(nsid);
return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
}
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
struct nvme_id_ns **id)
{
struct nvme_command c = { };
int error;
/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
c.identify.opcode = nvme_admin_identify,
c.identify.nsid = cpu_to_le32(nsid),
*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
if (!*id)
return -ENOMEM;
error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
sizeof(struct nvme_id_ns));
if (error)
kfree(*id);
return error;
}
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
dma_addr_t dma_addr, u32 *result)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.features.opcode = nvme_admin_get_features;
c.features.nsid = cpu_to_le32(nsid);
c.features.prp1 = cpu_to_le64(dma_addr);
c.features.fid = cpu_to_le32(fid);
return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
}
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
dma_addr_t dma_addr, u32 *result)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.features.opcode = nvme_admin_set_features;
c.features.prp1 = cpu_to_le64(dma_addr);
c.features.fid = cpu_to_le32(fid);
c.features.dword11 = cpu_to_le32(dword11);
return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
}
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
{
struct nvme_command c = { };
int error;
c.common.opcode = nvme_admin_get_log_page,
c.common.nsid = cpu_to_le32(0xFFFFFFFF),
c.common.cdw10[0] = cpu_to_le32(
(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
NVME_LOG_SMART),
*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
if (!*log)
return -ENOMEM;
error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
sizeof(struct nvme_smart_log));
if (error)
kfree(*log);
return error;
}
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
{
u32 q_count = (*count - 1) | ((*count - 1) << 16);
u32 result;
int status, nr_io_queues;
status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
&result);
if (status)
return status;
nr_io_queues = min(result & 0xffff, result >> 16) + 1;
*count = min(*count, nr_io_queues);
return 0;
}
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
struct nvme_user_io io;
struct nvme_command c;
unsigned length, meta_len;
void __user *metadata;
if (copy_from_user(&io, uio, sizeof(io)))
return -EFAULT;
switch (io.opcode) {
case nvme_cmd_write:
case nvme_cmd_read:
case nvme_cmd_compare:
break;
default:
return -EINVAL;
}
length = (io.nblocks + 1) << ns->lba_shift;
meta_len = (io.nblocks + 1) * ns->ms;
metadata = (void __user *)(uintptr_t)io.metadata;
if (ns->ext) {
length += meta_len;
meta_len = 0;
} else if (meta_len) {
if ((io.metadata & 3) || !io.metadata)
return -EINVAL;
}
memset(&c, 0, sizeof(c));
c.rw.opcode = io.opcode;
c.rw.flags = io.flags;
c.rw.nsid = cpu_to_le32(ns->ns_id);
c.rw.slba = cpu_to_le64(io.slba);
c.rw.length = cpu_to_le16(io.nblocks);
c.rw.control = cpu_to_le16(io.control);
c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
c.rw.reftag = cpu_to_le32(io.reftag);
c.rw.apptag = cpu_to_le16(io.apptag);
c.rw.appmask = cpu_to_le16(io.appmask);
return __nvme_submit_user_cmd(ns->queue, &c,
(void __user *)(uintptr_t)io.addr, length,
metadata, meta_len, io.slba, NULL, 0);
}
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
struct nvme_passthru_cmd __user *ucmd)
{
struct nvme_passthru_cmd cmd;
struct nvme_command c;
unsigned timeout = 0;
int status;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
return -EFAULT;
memset(&c, 0, sizeof(c));
c.common.opcode = cmd.opcode;
c.common.flags = cmd.flags;
c.common.nsid = cpu_to_le32(cmd.nsid);
c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
if (cmd.timeout_ms)
timeout = msecs_to_jiffies(cmd.timeout_ms);
status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
&cmd.result, timeout);
if (status >= 0) {
if (put_user(cmd.result, &ucmd->result))
return -EFAULT;
}
return status;
}
static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
struct nvme_ns *ns = bdev->bd_disk->private_data;
switch (cmd) {
case NVME_IOCTL_ID:
force_successful_syscall_return();
return ns->ns_id;
case NVME_IOCTL_ADMIN_CMD:
return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
case NVME_IOCTL_IO_CMD:
return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
case NVME_IOCTL_SUBMIT_IO:
return nvme_submit_io(ns, (void __user *)arg);
#ifdef CONFIG_BLK_DEV_NVME_SCSI
case SG_GET_VERSION_NUM:
return nvme_sg_get_version_num((void __user *)arg);
case SG_IO:
return nvme_sg_io(ns, (void __user *)arg);
#endif
default:
return -ENOTTY;
}
}
#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case SG_IO:
return -ENOIOCTLCMD;
}
return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl NULL
#endif
static int nvme_open(struct block_device *bdev, fmode_t mode)
{
return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
}
static void nvme_release(struct gendisk *disk, fmode_t mode)
{
struct nvme_ns *ns = disk->private_data;
module_put(ns->ctrl->ops->module);
nvme_put_ns(ns);
}
static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
/* some standard values */
geo->heads = 1 << 6;
geo->sectors = 1 << 5;
geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
return 0;
}
#ifdef CONFIG_BLK_DEV_INTEGRITY
static void nvme_init_integrity(struct nvme_ns *ns)
{
struct blk_integrity integrity;
switch (ns->pi_type) {
case NVME_NS_DPS_PI_TYPE3:
integrity.profile = &t10_pi_type3_crc;
break;
case NVME_NS_DPS_PI_TYPE1:
case NVME_NS_DPS_PI_TYPE2:
integrity.profile = &t10_pi_type1_crc;
break;
default:
integrity.profile = NULL;
break;
}
integrity.tuple_size = ns->ms;
blk_integrity_register(ns->disk, &integrity);
blk_queue_max_integrity_segments(ns->queue, 1);
}
#else
static void nvme_init_integrity(struct nvme_ns *ns)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */
static void nvme_config_discard(struct nvme_ns *ns)
{
u32 logical_block_size = queue_logical_block_size(ns->queue);
ns->queue->limits.discard_zeroes_data = 0;
ns->queue->limits.discard_alignment = logical_block_size;
ns->queue->limits.discard_granularity = logical_block_size;
blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
}
static int nvme_revalidate_disk(struct gendisk *disk)
{
struct nvme_ns *ns = disk->private_data;
struct nvme_id_ns *id;
u8 lbaf, pi_type;
u16 old_ms;
unsigned short bs;
if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
__func__);
return -ENODEV;
}
if (id->ncap == 0) {
kfree(id);
return -ENODEV;
}
if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
if (nvme_nvm_register(ns->queue, disk->disk_name)) {
dev_warn(disk_to_dev(ns->disk),
"%s: LightNVM init failure\n", __func__);
kfree(id);
return -ENODEV;
}
ns->type = NVME_NS_LIGHTNVM;
}
if (ns->ctrl->vs >= NVME_VS(1, 1))
memcpy(ns->eui, id->eui64, sizeof(ns->eui));
if (ns->ctrl->vs >= NVME_VS(1, 2))
memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
old_ms = ns->ms;
lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
ns->lba_shift = id->lbaf[lbaf].ds;
ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
/*
* If identify namespace failed, use default 512 byte block size so
* block layer can use before failing read/write for 0 capacity.
*/
if (ns->lba_shift == 0)
ns->lba_shift = 9;
bs = 1 << ns->lba_shift;
/* XXX: PI implementation requires metadata equal t10 pi tuple size */
pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
id->dps & NVME_NS_DPS_PI_MASK : 0;
blk_mq_freeze_queue(disk->queue);
if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
ns->ms != old_ms ||
bs != queue_logical_block_size(disk->queue) ||
(ns->ms && ns->ext)))
blk_integrity_unregister(disk);
ns->pi_type = pi_type;
blk_queue_logical_block_size(ns->queue, bs);
if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
nvme_init_integrity(ns);
if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
set_capacity(disk, 0);
else
set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
nvme_config_discard(ns);
blk_mq_unfreeze_queue(disk->queue);
kfree(id);
return 0;
}
static char nvme_pr_type(enum pr_type type)
{
switch (type) {
case PR_WRITE_EXCLUSIVE:
return 1;
case PR_EXCLUSIVE_ACCESS:
return 2;
case PR_WRITE_EXCLUSIVE_REG_ONLY:
return 3;
case PR_EXCLUSIVE_ACCESS_REG_ONLY:
return 4;
case PR_WRITE_EXCLUSIVE_ALL_REGS:
return 5;
case PR_EXCLUSIVE_ACCESS_ALL_REGS:
return 6;
default:
return 0;
}
};
static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
u64 key, u64 sa_key, u8 op)
{
struct nvme_ns *ns = bdev->bd_disk->private_data;
struct nvme_command c;
u8 data[16] = { 0, };
put_unaligned_le64(key, &data[0]);
put_unaligned_le64(sa_key, &data[8]);
memset(&c, 0, sizeof(c));
c.common.opcode = op;
c.common.nsid = cpu_to_le32(ns->ns_id);
c.common.cdw10[0] = cpu_to_le32(cdw10);
return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
}
static int nvme_pr_register(struct block_device *bdev, u64 old,
u64 new, unsigned flags)
{
u32 cdw10;
if (flags & ~PR_FL_IGNORE_KEY)
return -EOPNOTSUPP;
cdw10 = old ? 2 : 0;
cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}
static int nvme_pr_reserve(struct block_device *bdev, u64 key,
enum pr_type type, unsigned flags)
{
u32 cdw10;
if (flags & ~PR_FL_IGNORE_KEY)
return -EOPNOTSUPP;
cdw10 = nvme_pr_type(type) << 8;
cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}
static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
enum pr_type type, bool abort)
{
u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}
static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
u32 cdw10 = 1 | (key ? 1 << 3 : 0);
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}
static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}
static const struct pr_ops nvme_pr_ops = {
.pr_register = nvme_pr_register,
.pr_reserve = nvme_pr_reserve,
.pr_release = nvme_pr_release,
.pr_preempt = nvme_pr_preempt,
.pr_clear = nvme_pr_clear,
};
static const struct block_device_operations nvme_fops = {
.owner = THIS_MODULE,
.ioctl = nvme_ioctl,
.compat_ioctl = nvme_compat_ioctl,
.open = nvme_open,
.release = nvme_release,
.getgeo = nvme_getgeo,
.revalidate_disk= nvme_revalidate_disk,
.pr_ops = &nvme_pr_ops,
};
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
unsigned long timeout =
((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
int ret;
while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
if ((csts & NVME_CSTS_RDY) == bit)
break;
msleep(100);
if (fatal_signal_pending(current))
return -EINTR;
if (time_after(jiffies, timeout)) {
dev_err(ctrl->device,
"Device not ready; aborting %s\n", enabled ?
"initialisation" : "reset");
return -ENODEV;
}
}
return ret;
}
/*
* If the device has been passed off to us in an enabled state, just clear
* the enabled bit. The spec says we should set the 'shutdown notification
* bits', but doing so may cause the device to complete commands to the
* admin queue ... and we don't know what memory that might be pointing at!
*/
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
int ret;
ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
ctrl->ctrl_config &= ~NVME_CC_ENABLE;
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
if (ret)
return ret;
return nvme_wait_ready(ctrl, cap, false);
}
int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
/*
* Default to a 4K page size, with the intention to update this
* path in the future to accomodate architectures with differing
* kernel and IO page sizes.
*/
unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
int ret;
if (page_shift < dev_page_min) {
dev_err(ctrl->device,
"Minimum device page size %u too large for host (%u)\n",
1 << dev_page_min, 1 << page_shift);
return -ENODEV;
}
ctrl->page_size = 1 << page_shift;
ctrl->ctrl_config = NVME_CC_CSS_NVM;
ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
ctrl->ctrl_config |= NVME_CC_ENABLE;
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
if (ret)
return ret;
return nvme_wait_ready(ctrl, cap, true);
}
int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
u32 csts;
int ret;
ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
if (ret)
return ret;
while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
break;
msleep(100);
if (fatal_signal_pending(current))
return -EINTR;
if (time_after(jiffies, timeout)) {
dev_err(ctrl->device,
"Device shutdown incomplete; abort shutdown\n");
return -ENODEV;
}
}
return ret;
}
/*
* Initialize the cached copies of the Identify data and various controller
* register in our nvme_ctrl structure. This should be called as soon as
* the admin queue is fully up and running.
*/
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
struct nvme_id_ctrl *id;
u64 cap;
int ret, page_shift;
ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
if (ret) {
dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
return ret;
}
ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
if (ret) {
dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
return ret;
}
page_shift = NVME_CAP_MPSMIN(cap) + 12;
if (ctrl->vs >= NVME_VS(1, 1))
ctrl->subsystem = NVME_CAP_NSSRC(cap);
ret = nvme_identify_ctrl(ctrl, &id);
if (ret) {
dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
return -EIO;
}
ctrl->oncs = le16_to_cpup(&id->oncs);
atomic_set(&ctrl->abort_limit, id->acl + 1);
ctrl->vwc = id->vwc;
memcpy(ctrl->serial, id->sn, sizeof(id->sn));
memcpy(ctrl->model, id->mn, sizeof(id->mn));
memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
if (id->mdts)
ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
else
ctrl->max_hw_sectors = UINT_MAX;
if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
unsigned int max_hw_sectors;
ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
if (ctrl->max_hw_sectors) {
ctrl->max_hw_sectors = min(max_hw_sectors,
ctrl->max_hw_sectors);
} else {
ctrl->max_hw_sectors = max_hw_sectors;
}
}
kfree(id);
return 0;
}
static int nvme_dev_open(struct inode *inode, struct file *file)
{
struct nvme_ctrl *ctrl;
int instance = iminor(inode);
int ret = -ENODEV;
spin_lock(&dev_list_lock);
list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
if (ctrl->instance != instance)
continue;
if (!ctrl->admin_q) {
ret = -EWOULDBLOCK;
break;
}
if (!kref_get_unless_zero(&ctrl->kref))
break;
file->private_data = ctrl;
ret = 0;
break;
}
spin_unlock(&dev_list_lock);
return ret;
}
static int nvme_dev_release(struct inode *inode, struct file *file)
{
nvme_put_ctrl(file->private_data);
return 0;
}
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
{
struct nvme_ns *ns;
int ret;
mutex_lock(&ctrl->namespaces_mutex);
if (list_empty(&ctrl->namespaces)) {
ret = -ENOTTY;
goto out_unlock;
}
ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
dev_warn(ctrl->device,
"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
ret = -EINVAL;
goto out_unlock;
}
dev_warn(ctrl->device,
"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
kref_get(&ns->kref);
mutex_unlock(&ctrl->namespaces_mutex);
ret = nvme_user_cmd(ctrl, ns, argp);
nvme_put_ns(ns);
return ret;
out_unlock:
mutex_unlock(&ctrl->namespaces_mutex);
return ret;
}
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
struct nvme_ctrl *ctrl = file->private_data;
void __user *argp = (void __user *)arg;
switch (cmd) {
case NVME_IOCTL_ADMIN_CMD:
return nvme_user_cmd(ctrl, NULL, argp);
case NVME_IOCTL_IO_CMD:
return nvme_dev_user_cmd(ctrl, argp);
case NVME_IOCTL_RESET:
dev_warn(ctrl->device, "resetting controller\n");
return ctrl->ops->reset_ctrl(ctrl);
case NVME_IOCTL_SUBSYS_RESET:
return nvme_reset_subsystem(ctrl);
default:
return -ENOTTY;
}
}
static const struct file_operations nvme_dev_fops = {
.owner = THIS_MODULE,
.open = nvme_dev_open,
.release = nvme_dev_release,
.unlocked_ioctl = nvme_dev_ioctl,
.compat_ioctl = nvme_dev_ioctl,
};
static ssize_t nvme_sysfs_reset(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
int ret;
ret = ctrl->ops->reset_ctrl(ctrl);
if (ret < 0)
return ret;
return count;
}
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct nvme_ns *ns = dev_to_disk(dev)->private_data;
return sprintf(buf, "%pU\n", ns->uuid);
}
static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct nvme_ns *ns = dev_to_disk(dev)->private_data;
return sprintf(buf, "%8phd\n", ns->eui);
}
static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct nvme_ns *ns = dev_to_disk(dev)->private_data;
return sprintf(buf, "%d\n", ns->ns_id);
}
static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
static struct attribute *nvme_ns_attrs[] = {
&dev_attr_uuid.attr,
&dev_attr_eui.attr,
&dev_attr_nsid.attr,
NULL,
};
static umode_t nvme_attrs_are_visible(struct kobject *kobj,
struct attribute *a, int n)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct nvme_ns *ns = dev_to_disk(dev)->private_data;
if (a == &dev_attr_uuid.attr) {
if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
return 0;
}
if (a == &dev_attr_eui.attr) {
if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
return 0;
}
return a->mode;
}
static const struct attribute_group nvme_ns_attr_group = {
.attrs = nvme_ns_attrs,
.is_visible = nvme_attrs_are_visible,
};
#define nvme_show_function(field) \
static ssize_t field##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
} \
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
nvme_show_function(model);
nvme_show_function(serial);
nvme_show_function(firmware_rev);
static struct attribute *nvme_dev_attrs[] = {
&dev_attr_reset_controller.attr,
&dev_attr_model.attr,
&dev_attr_serial.attr,
&dev_attr_firmware_rev.attr,
NULL
};
static struct attribute_group nvme_dev_attrs_group = {
.attrs = nvme_dev_attrs,
};
static const struct attribute_group *nvme_dev_attr_groups[] = {
&nvme_dev_attrs_group,
NULL,
};
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
{
struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
return nsa->ns_id - nsb->ns_id;
}
static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
struct nvme_ns *ns;
lockdep_assert_held(&ctrl->namespaces_mutex);
list_for_each_entry(ns, &ctrl->namespaces, list) {
if (ns->ns_id == nsid)
return ns;
if (ns->ns_id > nsid)
break;
}
return NULL;
}
static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
struct nvme_ns *ns;
struct gendisk *disk;
int node = dev_to_node(ctrl->dev);
lockdep_assert_held(&ctrl->namespaces_mutex);
ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
if (!ns)
return;
ns->queue = blk_mq_init_queue(ctrl->tagset);
if (IS_ERR(ns->queue))
goto out_free_ns;
queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
ns->queue->queuedata = ns;
ns->ctrl = ctrl;
disk = alloc_disk_node(0, node);
if (!disk)
goto out_free_queue;
kref_init(&ns->kref);
ns->ns_id = nsid;
ns->disk = disk;
ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
if (ctrl->max_hw_sectors) {
blk_queue_max_hw_sectors(ns->queue, ctrl->max_hw_sectors);
blk_queue_max_segments(ns->queue,
(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1);
}
if (ctrl->stripe_size)
blk_queue_chunk_sectors(ns->queue, ctrl->stripe_size >> 9);
if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
blk_queue_virt_boundary(ns->queue, ctrl->page_size - 1);
disk->major = nvme_major;
disk->first_minor = 0;
disk->fops = &nvme_fops;
disk->private_data = ns;
disk->queue = ns->queue;
disk->driverfs_dev = ctrl->device;
disk->flags = GENHD_FL_EXT_DEVT;
sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, nsid);
if (nvme_revalidate_disk(ns->disk))
goto out_free_disk;
list_add_tail(&ns->list, &ctrl->namespaces);
kref_get(&ctrl->kref);
if (ns->type == NVME_NS_LIGHTNVM)
return;
add_disk(ns->disk);
if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
&nvme_ns_attr_group))
pr_warn("%s: failed to create sysfs group for identification\n",
ns->disk->disk_name);
return;
out_free_disk:
kfree(disk);
out_free_queue:
blk_cleanup_queue(ns->queue);
out_free_ns:
kfree(ns);
}
static void nvme_ns_remove(struct nvme_ns *ns)
{
bool kill = nvme_io_incapable(ns->ctrl) &&
!blk_queue_dying(ns->queue);
lockdep_assert_held(&ns->ctrl->namespaces_mutex);
if (kill) {
blk_set_queue_dying(ns->queue);
/*
* The controller was shutdown first if we got here through
* device removal. The shutdown may requeue outstanding
* requests. These need to be aborted immediately so
* del_gendisk doesn't block indefinitely for their completion.
*/
blk_mq_abort_requeue_list(ns->queue);
}
if (ns->disk->flags & GENHD_FL_UP) {
if (blk_get_integrity(ns->disk))
blk_integrity_unregister(ns->disk);
sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
&nvme_ns_attr_group);
del_gendisk(ns->disk);
}
if (kill || !blk_queue_dying(ns->queue)) {
blk_mq_abort_requeue_list(ns->queue);
blk_cleanup_queue(ns->queue);
}
list_del_init(&ns->list);
nvme_put_ns(ns);
}
static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
struct nvme_ns *ns;
ns = nvme_find_ns(ctrl, nsid);
if (ns) {
if (revalidate_disk(ns->disk))
nvme_ns_remove(ns);
} else
nvme_alloc_ns(ctrl, nsid);
}
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
{
struct nvme_ns *ns;
__le32 *ns_list;
unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
int ret = 0;
ns_list = kzalloc(0x1000, GFP_KERNEL);
if (!ns_list)
return -ENOMEM;
for (i = 0; i < num_lists; i++) {
ret = nvme_identify_ns_list(ctrl, prev, ns_list);
if (ret)
goto out;
for (j = 0; j < min(nn, 1024U); j++) {
nsid = le32_to_cpu(ns_list[j]);
if (!nsid)
goto out;
nvme_validate_ns(ctrl, nsid);
while (++prev < nsid) {
ns = nvme_find_ns(ctrl, prev);
if (ns)
nvme_ns_remove(ns);
}
}
nn -= j;
}
out:
kfree(ns_list);
return ret;
}
static void __nvme_scan_namespaces(struct nvme_ctrl *ctrl, unsigned nn)
{
struct nvme_ns *ns, *next;
unsigned i;
lockdep_assert_held(&ctrl->namespaces_mutex);
for (i = 1; i <= nn; i++)
nvme_validate_ns(ctrl, i);
list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
if (ns->ns_id > nn)
nvme_ns_remove(ns);
}
}
void nvme_scan_namespaces(struct nvme_ctrl *ctrl)
{
struct nvme_id_ctrl *id;
unsigned nn;
if (nvme_identify_ctrl(ctrl, &id))
return;
mutex_lock(&ctrl->namespaces_mutex);
nn = le32_to_cpu(id->nn);
if (ctrl->vs >= NVME_VS(1, 1) &&
!(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
if (!nvme_scan_ns_list(ctrl, nn))
goto done;
}
__nvme_scan_namespaces(ctrl, le32_to_cpup(&id->nn));
done:
list_sort(NULL, &ctrl->namespaces, ns_cmp);
mutex_unlock(&ctrl->namespaces_mutex);
kfree(id);
}
void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
{
struct nvme_ns *ns, *next;
mutex_lock(&ctrl->namespaces_mutex);
list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
nvme_ns_remove(ns);
mutex_unlock(&ctrl->namespaces_mutex);
}
static DEFINE_IDA(nvme_instance_ida);
static int nvme_set_instance(struct nvme_ctrl *ctrl)
{
int instance, error;
do {
if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
return -ENODEV;
spin_lock(&dev_list_lock);
error = ida_get_new(&nvme_instance_ida, &instance);
spin_unlock(&dev_list_lock);
} while (error == -EAGAIN);
if (error)
return -ENODEV;
ctrl->instance = instance;
return 0;
}
static void nvme_release_instance(struct nvme_ctrl *ctrl)
{
spin_lock(&dev_list_lock);
ida_remove(&nvme_instance_ida, ctrl->instance);
spin_unlock(&dev_list_lock);
}
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
{
device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
spin_lock(&dev_list_lock);
list_del(&ctrl->node);
spin_unlock(&dev_list_lock);
}
static void nvme_free_ctrl(struct kref *kref)
{
struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
put_device(ctrl->device);
nvme_release_instance(ctrl);
ctrl->ops->free_ctrl(ctrl);
}
void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
kref_put(&ctrl->kref, nvme_free_ctrl);
}
/*
* Initialize a NVMe controller structures. This needs to be called during
* earliest initialization so that we have the initialized structured around
* during probing.
*/
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
const struct nvme_ctrl_ops *ops, unsigned long quirks)
{
int ret;
INIT_LIST_HEAD(&ctrl->namespaces);
mutex_init(&ctrl->namespaces_mutex);
kref_init(&ctrl->kref);
ctrl->dev = dev;
ctrl->ops = ops;
ctrl->quirks = quirks;
ret = nvme_set_instance(ctrl);
if (ret)
goto out;
ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
MKDEV(nvme_char_major, ctrl->instance),
ctrl, nvme_dev_attr_groups,
"nvme%d", ctrl->instance);
if (IS_ERR(ctrl->device)) {
ret = PTR_ERR(ctrl->device);
goto out_release_instance;
}
get_device(ctrl->device);
spin_lock(&dev_list_lock);
list_add_tail(&ctrl->node, &nvme_ctrl_list);
spin_unlock(&dev_list_lock);
return 0;
out_release_instance:
nvme_release_instance(ctrl);
out:
return ret;
}
void nvme_stop_queues(struct nvme_ctrl *ctrl)
{
struct nvme_ns *ns;
mutex_lock(&ctrl->namespaces_mutex);
list_for_each_entry(ns, &ctrl->namespaces, list) {
spin_lock_irq(ns->queue->queue_lock);
queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
spin_unlock_irq(ns->queue->queue_lock);
blk_mq_cancel_requeue_work(ns->queue);
blk_mq_stop_hw_queues(ns->queue);
}
mutex_unlock(&ctrl->namespaces_mutex);
}
void nvme_start_queues(struct nvme_ctrl *ctrl)
{
struct nvme_ns *ns;
mutex_lock(&ctrl->namespaces_mutex);
list_for_each_entry(ns, &ctrl->namespaces, list) {
queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
blk_mq_start_stopped_hw_queues(ns->queue, true);
blk_mq_kick_requeue_list(ns->queue);
}
mutex_unlock(&ctrl->namespaces_mutex);
}
int __init nvme_core_init(void)
{
int result;
result = register_blkdev(nvme_major, "nvme");
if (result < 0)
return result;
else if (result > 0)
nvme_major = result;
result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
&nvme_dev_fops);
if (result < 0)
goto unregister_blkdev;
else if (result > 0)
nvme_char_major = result;
nvme_class = class_create(THIS_MODULE, "nvme");
if (IS_ERR(nvme_class)) {
result = PTR_ERR(nvme_class);
goto unregister_chrdev;
}
return 0;
unregister_chrdev:
__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
unregister_blkdev:
unregister_blkdev(nvme_major, "nvme");
return result;
}
void nvme_core_exit(void)
{
unregister_blkdev(nvme_major, "nvme");
class_destroy(nvme_class);
__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
}