| #ifndef _ASM_POWERPC_DMA_H |
| #define _ASM_POWERPC_DMA_H |
| #ifdef __KERNEL__ |
| |
| /* |
| * Defines for using and allocating dma channels. |
| * Written by Hennus Bergman, 1992. |
| * High DMA channel support & info by Hannu Savolainen |
| * and John Boyd, Nov. 1992. |
| * Changes for ppc sound by Christoph Nadig |
| */ |
| |
| /* |
| * Note: Adapted for PowerPC by Gary Thomas |
| * Modified by Cort Dougan <cort@cs.nmt.edu> |
| * |
| * None of this really applies for Power Macintoshes. There is |
| * basically just enough here to get kernel/dma.c to compile. |
| * |
| * There may be some comments or restrictions made here which are |
| * not valid for the PReP platform. Take what you read |
| * with a grain of salt. |
| */ |
| |
| #include <linux/config.h> |
| #include <asm/io.h> |
| #include <linux/spinlock.h> |
| #include <asm/system.h> |
| |
| #ifndef MAX_DMA_CHANNELS |
| #define MAX_DMA_CHANNELS 8 |
| #endif |
| |
| /* The maximum address that we can perform a DMA transfer to on this platform */ |
| /* Doesn't really apply... */ |
| #define MAX_DMA_ADDRESS (~0UL) |
| |
| #if !defined(CONFIG_PPC_ISERIES) || defined(CONFIG_PCI) |
| |
| #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER |
| #define dma_outb outb_p |
| #else |
| #define dma_outb outb |
| #endif |
| |
| #define dma_inb inb |
| |
| /* |
| * NOTES about DMA transfers: |
| * |
| * controller 1: channels 0-3, byte operations, ports 00-1F |
| * controller 2: channels 4-7, word operations, ports C0-DF |
| * |
| * - ALL registers are 8 bits only, regardless of transfer size |
| * - channel 4 is not used - cascades 1 into 2. |
| * - channels 0-3 are byte - addresses/counts are for physical bytes |
| * - channels 5-7 are word - addresses/counts are for physical words |
| * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries |
| * - transfer count loaded to registers is 1 less than actual count |
| * - controller 2 offsets are all even (2x offsets for controller 1) |
| * - page registers for 5-7 don't use data bit 0, represent 128K pages |
| * - page registers for 0-3 use bit 0, represent 64K pages |
| * |
| * On PReP, DMA transfers are limited to the lower 16MB of _physical_ memory. |
| * On CHRP, the W83C553F (and VLSI Tollgate?) support full 32 bit addressing. |
| * Note that addresses loaded into registers must be _physical_ addresses, |
| * not logical addresses (which may differ if paging is active). |
| * |
| * Address mapping for channels 0-3: |
| * |
| * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses) |
| * | ... | | ... | | ... | |
| * | ... | | ... | | ... | |
| * | ... | | ... | | ... | |
| * P7 ... P0 A7 ... A0 A7 ... A0 |
| * | Page | Addr MSB | Addr LSB | (DMA registers) |
| * |
| * Address mapping for channels 5-7: |
| * |
| * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses) |
| * | ... | \ \ ... \ \ \ ... \ \ |
| * | ... | \ \ ... \ \ \ ... \ (not used) |
| * | ... | \ \ ... \ \ \ ... \ |
| * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0 |
| * | Page | Addr MSB | Addr LSB | (DMA registers) |
| * |
| * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses |
| * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at |
| * the hardware level, so odd-byte transfers aren't possible). |
| * |
| * Transfer count (_not # bytes_) is limited to 64K, represented as actual |
| * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more, |
| * and up to 128K bytes may be transferred on channels 5-7 in one operation. |
| * |
| */ |
| |
| /* see prep_setup_arch() for detailed informations */ |
| #if defined(CONFIG_SOUND_CS4232) && defined(CONFIG_PPC_PREP) |
| extern long ppc_cs4232_dma, ppc_cs4232_dma2; |
| #define SND_DMA1 ppc_cs4232_dma |
| #define SND_DMA2 ppc_cs4232_dma2 |
| #else |
| #define SND_DMA1 -1 |
| #define SND_DMA2 -1 |
| #endif |
| |
| /* 8237 DMA controllers */ |
| #define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */ |
| #define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */ |
| |
| /* DMA controller registers */ |
| #define DMA1_CMD_REG 0x08 /* command register (w) */ |
| #define DMA1_STAT_REG 0x08 /* status register (r) */ |
| #define DMA1_REQ_REG 0x09 /* request register (w) */ |
| #define DMA1_MASK_REG 0x0A /* single-channel mask (w) */ |
| #define DMA1_MODE_REG 0x0B /* mode register (w) */ |
| #define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */ |
| #define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */ |
| #define DMA1_RESET_REG 0x0D /* Master Clear (w) */ |
| #define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */ |
| #define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */ |
| |
| #define DMA2_CMD_REG 0xD0 /* command register (w) */ |
| #define DMA2_STAT_REG 0xD0 /* status register (r) */ |
| #define DMA2_REQ_REG 0xD2 /* request register (w) */ |
| #define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */ |
| #define DMA2_MODE_REG 0xD6 /* mode register (w) */ |
| #define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */ |
| #define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */ |
| #define DMA2_RESET_REG 0xDA /* Master Clear (w) */ |
| #define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */ |
| #define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */ |
| |
| #define DMA_ADDR_0 0x00 /* DMA address registers */ |
| #define DMA_ADDR_1 0x02 |
| #define DMA_ADDR_2 0x04 |
| #define DMA_ADDR_3 0x06 |
| #define DMA_ADDR_4 0xC0 |
| #define DMA_ADDR_5 0xC4 |
| #define DMA_ADDR_6 0xC8 |
| #define DMA_ADDR_7 0xCC |
| |
| #define DMA_CNT_0 0x01 /* DMA count registers */ |
| #define DMA_CNT_1 0x03 |
| #define DMA_CNT_2 0x05 |
| #define DMA_CNT_3 0x07 |
| #define DMA_CNT_4 0xC2 |
| #define DMA_CNT_5 0xC6 |
| #define DMA_CNT_6 0xCA |
| #define DMA_CNT_7 0xCE |
| |
| #define DMA_LO_PAGE_0 0x87 /* DMA page registers */ |
| #define DMA_LO_PAGE_1 0x83 |
| #define DMA_LO_PAGE_2 0x81 |
| #define DMA_LO_PAGE_3 0x82 |
| #define DMA_LO_PAGE_5 0x8B |
| #define DMA_LO_PAGE_6 0x89 |
| #define DMA_LO_PAGE_7 0x8A |
| |
| #define DMA_HI_PAGE_0 0x487 /* DMA page registers */ |
| #define DMA_HI_PAGE_1 0x483 |
| #define DMA_HI_PAGE_2 0x481 |
| #define DMA_HI_PAGE_3 0x482 |
| #define DMA_HI_PAGE_5 0x48B |
| #define DMA_HI_PAGE_6 0x489 |
| #define DMA_HI_PAGE_7 0x48A |
| |
| #define DMA1_EXT_REG 0x40B |
| #define DMA2_EXT_REG 0x4D6 |
| |
| #ifndef __powerpc64__ |
| /* in arch/ppc/kernel/setup.c -- Cort */ |
| extern unsigned int DMA_MODE_WRITE; |
| extern unsigned int DMA_MODE_READ; |
| extern unsigned long ISA_DMA_THRESHOLD; |
| #else |
| #define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */ |
| #define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */ |
| #endif |
| |
| #define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */ |
| |
| #define DMA_AUTOINIT 0x10 |
| |
| extern spinlock_t dma_spin_lock; |
| |
| static __inline__ unsigned long claim_dma_lock(void) |
| { |
| unsigned long flags; |
| spin_lock_irqsave(&dma_spin_lock, flags); |
| return flags; |
| } |
| |
| static __inline__ void release_dma_lock(unsigned long flags) |
| { |
| spin_unlock_irqrestore(&dma_spin_lock, flags); |
| } |
| |
| /* enable/disable a specific DMA channel */ |
| static __inline__ void enable_dma(unsigned int dmanr) |
| { |
| unsigned char ucDmaCmd = 0x00; |
| |
| if (dmanr != 4) { |
| dma_outb(0, DMA2_MASK_REG); /* This may not be enabled */ |
| dma_outb(ucDmaCmd, DMA2_CMD_REG); /* Enable group */ |
| } |
| if (dmanr <= 3) { |
| dma_outb(dmanr, DMA1_MASK_REG); |
| dma_outb(ucDmaCmd, DMA1_CMD_REG); /* Enable group */ |
| } else { |
| dma_outb(dmanr & 3, DMA2_MASK_REG); |
| } |
| } |
| |
| static __inline__ void disable_dma(unsigned int dmanr) |
| { |
| if (dmanr <= 3) |
| dma_outb(dmanr | 4, DMA1_MASK_REG); |
| else |
| dma_outb((dmanr & 3) | 4, DMA2_MASK_REG); |
| } |
| |
| /* Clear the 'DMA Pointer Flip Flop'. |
| * Write 0 for LSB/MSB, 1 for MSB/LSB access. |
| * Use this once to initialize the FF to a known state. |
| * After that, keep track of it. :-) |
| * --- In order to do that, the DMA routines below should --- |
| * --- only be used while interrupts are disabled! --- |
| */ |
| static __inline__ void clear_dma_ff(unsigned int dmanr) |
| { |
| if (dmanr <= 3) |
| dma_outb(0, DMA1_CLEAR_FF_REG); |
| else |
| dma_outb(0, DMA2_CLEAR_FF_REG); |
| } |
| |
| /* set mode (above) for a specific DMA channel */ |
| static __inline__ void set_dma_mode(unsigned int dmanr, char mode) |
| { |
| if (dmanr <= 3) |
| dma_outb(mode | dmanr, DMA1_MODE_REG); |
| else |
| dma_outb(mode | (dmanr & 3), DMA2_MODE_REG); |
| } |
| |
| /* Set only the page register bits of the transfer address. |
| * This is used for successive transfers when we know the contents of |
| * the lower 16 bits of the DMA current address register, but a 64k boundary |
| * may have been crossed. |
| */ |
| static __inline__ void set_dma_page(unsigned int dmanr, int pagenr) |
| { |
| switch (dmanr) { |
| case 0: |
| dma_outb(pagenr, DMA_LO_PAGE_0); |
| dma_outb(pagenr >> 8, DMA_HI_PAGE_0); |
| break; |
| case 1: |
| dma_outb(pagenr, DMA_LO_PAGE_1); |
| dma_outb(pagenr >> 8, DMA_HI_PAGE_1); |
| break; |
| case 2: |
| dma_outb(pagenr, DMA_LO_PAGE_2); |
| dma_outb(pagenr >> 8, DMA_HI_PAGE_2); |
| break; |
| case 3: |
| dma_outb(pagenr, DMA_LO_PAGE_3); |
| dma_outb(pagenr >> 8, DMA_HI_PAGE_3); |
| break; |
| case 5: |
| if (SND_DMA1 == 5 || SND_DMA2 == 5) |
| dma_outb(pagenr, DMA_LO_PAGE_5); |
| else |
| dma_outb(pagenr & 0xfe, DMA_LO_PAGE_5); |
| dma_outb(pagenr >> 8, DMA_HI_PAGE_5); |
| break; |
| case 6: |
| if (SND_DMA1 == 6 || SND_DMA2 == 6) |
| dma_outb(pagenr, DMA_LO_PAGE_6); |
| else |
| dma_outb(pagenr & 0xfe, DMA_LO_PAGE_6); |
| dma_outb(pagenr >> 8, DMA_HI_PAGE_6); |
| break; |
| case 7: |
| if (SND_DMA1 == 7 || SND_DMA2 == 7) |
| dma_outb(pagenr, DMA_LO_PAGE_7); |
| else |
| dma_outb(pagenr & 0xfe, DMA_LO_PAGE_7); |
| dma_outb(pagenr >> 8, DMA_HI_PAGE_7); |
| break; |
| } |
| } |
| |
| /* Set transfer address & page bits for specific DMA channel. |
| * Assumes dma flipflop is clear. |
| */ |
| static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int phys) |
| { |
| if (dmanr <= 3) { |
| dma_outb(phys & 0xff, |
| ((dmanr & 3) << 1) + IO_DMA1_BASE); |
| dma_outb((phys >> 8) & 0xff, |
| ((dmanr & 3) << 1) + IO_DMA1_BASE); |
| } else if (dmanr == SND_DMA1 || dmanr == SND_DMA2) { |
| dma_outb(phys & 0xff, |
| ((dmanr & 3) << 2) + IO_DMA2_BASE); |
| dma_outb((phys >> 8) & 0xff, |
| ((dmanr & 3) << 2) + IO_DMA2_BASE); |
| dma_outb((dmanr & 3), DMA2_EXT_REG); |
| } else { |
| dma_outb((phys >> 1) & 0xff, |
| ((dmanr & 3) << 2) + IO_DMA2_BASE); |
| dma_outb((phys >> 9) & 0xff, |
| ((dmanr & 3) << 2) + IO_DMA2_BASE); |
| } |
| set_dma_page(dmanr, phys >> 16); |
| } |
| |
| |
| /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for |
| * a specific DMA channel. |
| * You must ensure the parameters are valid. |
| * NOTE: from a manual: "the number of transfers is one more |
| * than the initial word count"! This is taken into account. |
| * Assumes dma flip-flop is clear. |
| * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7. |
| */ |
| static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count) |
| { |
| count--; |
| if (dmanr <= 3) { |
| dma_outb(count & 0xff, |
| ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE); |
| dma_outb((count >> 8) & 0xff, |
| ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE); |
| } else if (dmanr == SND_DMA1 || dmanr == SND_DMA2) { |
| dma_outb(count & 0xff, |
| ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE); |
| dma_outb((count >> 8) & 0xff, |
| ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE); |
| } else { |
| dma_outb((count >> 1) & 0xff, |
| ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE); |
| dma_outb((count >> 9) & 0xff, |
| ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE); |
| } |
| } |
| |
| |
| /* Get DMA residue count. After a DMA transfer, this |
| * should return zero. Reading this while a DMA transfer is |
| * still in progress will return unpredictable results. |
| * If called before the channel has been used, it may return 1. |
| * Otherwise, it returns the number of _bytes_ left to transfer. |
| * |
| * Assumes DMA flip-flop is clear. |
| */ |
| static __inline__ int get_dma_residue(unsigned int dmanr) |
| { |
| unsigned int io_port = (dmanr <= 3) |
| ? ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE |
| : ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE; |
| |
| /* using short to get 16-bit wrap around */ |
| unsigned short count; |
| |
| count = 1 + dma_inb(io_port); |
| count += dma_inb(io_port) << 8; |
| |
| return (dmanr <= 3 || dmanr == SND_DMA1 || dmanr == SND_DMA2) |
| ? count : (count << 1); |
| } |
| |
| /* These are in kernel/dma.c: */ |
| |
| /* reserve a DMA channel */ |
| extern int request_dma(unsigned int dmanr, const char *device_id); |
| /* release it again */ |
| extern void free_dma(unsigned int dmanr); |
| |
| #ifdef CONFIG_PCI |
| extern int isa_dma_bridge_buggy; |
| #else |
| #define isa_dma_bridge_buggy (0) |
| #endif |
| |
| #endif /* !defined(CONFIG_PPC_ISERIES) || defined(CONFIG_PCI) */ |
| |
| #endif /* __KERNEL__ */ |
| #endif /* _ASM_POWERPC_DMA_H */ |