| /* |
| * linux/fs/mbcache.c |
| * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org> |
| */ |
| |
| /* |
| * Filesystem Meta Information Block Cache (mbcache) |
| * |
| * The mbcache caches blocks of block devices that need to be located |
| * by their device/block number, as well as by other criteria (such |
| * as the block's contents). |
| * |
| * There can only be one cache entry in a cache per device and block number. |
| * Additional indexes need not be unique in this sense. The number of |
| * additional indexes (=other criteria) can be hardwired at compile time |
| * or specified at cache create time. |
| * |
| * Each cache entry is of fixed size. An entry may be `valid' or `invalid' |
| * in the cache. A valid entry is in the main hash tables of the cache, |
| * and may also be in the lru list. An invalid entry is not in any hashes |
| * or lists. |
| * |
| * A valid cache entry is only in the lru list if no handles refer to it. |
| * Invalid cache entries will be freed when the last handle to the cache |
| * entry is released. Entries that cannot be freed immediately are put |
| * back on the lru list. |
| */ |
| |
| /* |
| * Lock descriptions and usage: |
| * |
| * Each hash chain of both the block and index hash tables now contains |
| * a built-in lock used to serialize accesses to the hash chain. |
| * |
| * Accesses to global data structures mb_cache_list and mb_cache_lru_list |
| * are serialized via the global spinlock mb_cache_spinlock. |
| * |
| * Each mb_cache_entry contains a spinlock, e_entry_lock, to serialize |
| * accesses to its local data, such as e_used and e_queued. |
| * |
| * Lock ordering: |
| * |
| * Each block hash chain's lock has the highest lock order, followed by an |
| * index hash chain's lock, mb_cache_bg_lock (used to implement mb_cache_entry's |
| * lock), and mb_cach_spinlock, with the lowest order. While holding |
| * either a block or index hash chain lock, a thread can acquire an |
| * mc_cache_bg_lock, which in turn can also acquire mb_cache_spinlock. |
| * |
| * Synchronization: |
| * |
| * Since both mb_cache_entry_get and mb_cache_entry_find scan the block and |
| * index hash chian, it needs to lock the corresponding hash chain. For each |
| * mb_cache_entry within the chain, it needs to lock the mb_cache_entry to |
| * prevent either any simultaneous release or free on the entry and also |
| * to serialize accesses to either the e_used or e_queued member of the entry. |
| * |
| * To avoid having a dangling reference to an already freed |
| * mb_cache_entry, an mb_cache_entry is only freed when it is not on a |
| * block hash chain and also no longer being referenced, both e_used, |
| * and e_queued are 0's. When an mb_cache_entry is explicitly freed it is |
| * first removed from a block hash chain. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| |
| #include <linux/hash.h> |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/list_bl.h> |
| #include <linux/mbcache.h> |
| #include <linux/init.h> |
| #include <linux/blockgroup_lock.h> |
| #include <linux/log2.h> |
| |
| #ifdef MB_CACHE_DEBUG |
| # define mb_debug(f...) do { \ |
| printk(KERN_DEBUG f); \ |
| printk("\n"); \ |
| } while (0) |
| #define mb_assert(c) do { if (!(c)) \ |
| printk(KERN_ERR "assertion " #c " failed\n"); \ |
| } while(0) |
| #else |
| # define mb_debug(f...) do { } while(0) |
| # define mb_assert(c) do { } while(0) |
| #endif |
| #define mb_error(f...) do { \ |
| printk(KERN_ERR f); \ |
| printk("\n"); \ |
| } while(0) |
| |
| #define MB_CACHE_WRITER ((unsigned short)~0U >> 1) |
| |
| #define MB_CACHE_ENTRY_LOCK_BITS ilog2(NR_BG_LOCKS) |
| #define MB_CACHE_ENTRY_LOCK_INDEX(ce) \ |
| (hash_long((unsigned long)ce, MB_CACHE_ENTRY_LOCK_BITS)) |
| |
| static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue); |
| static struct blockgroup_lock *mb_cache_bg_lock; |
| static struct kmem_cache *mb_cache_kmem_cache; |
| |
| MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>"); |
| MODULE_DESCRIPTION("Meta block cache (for extended attributes)"); |
| MODULE_LICENSE("GPL"); |
| |
| EXPORT_SYMBOL(mb_cache_create); |
| EXPORT_SYMBOL(mb_cache_shrink); |
| EXPORT_SYMBOL(mb_cache_destroy); |
| EXPORT_SYMBOL(mb_cache_entry_alloc); |
| EXPORT_SYMBOL(mb_cache_entry_insert); |
| EXPORT_SYMBOL(mb_cache_entry_release); |
| EXPORT_SYMBOL(mb_cache_entry_free); |
| EXPORT_SYMBOL(mb_cache_entry_get); |
| #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) |
| EXPORT_SYMBOL(mb_cache_entry_find_first); |
| EXPORT_SYMBOL(mb_cache_entry_find_next); |
| #endif |
| |
| /* |
| * Global data: list of all mbcache's, lru list, and a spinlock for |
| * accessing cache data structures on SMP machines. The lru list is |
| * global across all mbcaches. |
| */ |
| |
| static LIST_HEAD(mb_cache_list); |
| static LIST_HEAD(mb_cache_lru_list); |
| static DEFINE_SPINLOCK(mb_cache_spinlock); |
| |
| static inline void |
| __spin_lock_mb_cache_entry(struct mb_cache_entry *ce) |
| { |
| spin_lock(bgl_lock_ptr(mb_cache_bg_lock, |
| MB_CACHE_ENTRY_LOCK_INDEX(ce))); |
| } |
| |
| static inline void |
| __spin_unlock_mb_cache_entry(struct mb_cache_entry *ce) |
| { |
| spin_unlock(bgl_lock_ptr(mb_cache_bg_lock, |
| MB_CACHE_ENTRY_LOCK_INDEX(ce))); |
| } |
| |
| static inline int |
| __mb_cache_entry_is_block_hashed(struct mb_cache_entry *ce) |
| { |
| return !hlist_bl_unhashed(&ce->e_block_list); |
| } |
| |
| |
| static inline void |
| __mb_cache_entry_unhash_block(struct mb_cache_entry *ce) |
| { |
| if (__mb_cache_entry_is_block_hashed(ce)) |
| hlist_bl_del_init(&ce->e_block_list); |
| } |
| |
| static inline int |
| __mb_cache_entry_is_index_hashed(struct mb_cache_entry *ce) |
| { |
| return !hlist_bl_unhashed(&ce->e_index.o_list); |
| } |
| |
| static inline void |
| __mb_cache_entry_unhash_index(struct mb_cache_entry *ce) |
| { |
| if (__mb_cache_entry_is_index_hashed(ce)) |
| hlist_bl_del_init(&ce->e_index.o_list); |
| } |
| |
| /* |
| * __mb_cache_entry_unhash_unlock() |
| * |
| * This function is called to unhash both the block and index hash |
| * chain. |
| * It assumes both the block and index hash chain is locked upon entry. |
| * It also unlock both hash chains both exit |
| */ |
| static inline void |
| __mb_cache_entry_unhash_unlock(struct mb_cache_entry *ce) |
| { |
| __mb_cache_entry_unhash_index(ce); |
| hlist_bl_unlock(ce->e_index_hash_p); |
| __mb_cache_entry_unhash_block(ce); |
| hlist_bl_unlock(ce->e_block_hash_p); |
| } |
| |
| static void |
| __mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask) |
| { |
| struct mb_cache *cache = ce->e_cache; |
| |
| mb_assert(!(ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt))); |
| kmem_cache_free(cache->c_entry_cache, ce); |
| atomic_dec(&cache->c_entry_count); |
| } |
| |
| static void |
| __mb_cache_entry_release(struct mb_cache_entry *ce) |
| { |
| /* First lock the entry to serialize access to its local data. */ |
| __spin_lock_mb_cache_entry(ce); |
| /* Wake up all processes queuing for this cache entry. */ |
| if (ce->e_queued) |
| wake_up_all(&mb_cache_queue); |
| if (ce->e_used >= MB_CACHE_WRITER) |
| ce->e_used -= MB_CACHE_WRITER; |
| /* |
| * Make sure that all cache entries on lru_list have |
| * both e_used and e_qued of 0s. |
| */ |
| ce->e_used--; |
| if (!(ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt))) { |
| if (!__mb_cache_entry_is_block_hashed(ce)) { |
| __spin_unlock_mb_cache_entry(ce); |
| goto forget; |
| } |
| /* |
| * Need access to lru list, first drop entry lock, |
| * then reacquire the lock in the proper order. |
| */ |
| spin_lock(&mb_cache_spinlock); |
| if (list_empty(&ce->e_lru_list)) |
| list_add_tail(&ce->e_lru_list, &mb_cache_lru_list); |
| spin_unlock(&mb_cache_spinlock); |
| } |
| __spin_unlock_mb_cache_entry(ce); |
| return; |
| forget: |
| mb_assert(list_empty(&ce->e_lru_list)); |
| __mb_cache_entry_forget(ce, GFP_KERNEL); |
| } |
| |
| /* |
| * mb_cache_shrink_scan() memory pressure callback |
| * |
| * This function is called by the kernel memory management when memory |
| * gets low. |
| * |
| * @shrink: (ignored) |
| * @sc: shrink_control passed from reclaim |
| * |
| * Returns the number of objects freed. |
| */ |
| static unsigned long |
| mb_cache_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) |
| { |
| LIST_HEAD(free_list); |
| struct mb_cache_entry *entry, *tmp; |
| int nr_to_scan = sc->nr_to_scan; |
| gfp_t gfp_mask = sc->gfp_mask; |
| unsigned long freed = 0; |
| |
| mb_debug("trying to free %d entries", nr_to_scan); |
| spin_lock(&mb_cache_spinlock); |
| while ((nr_to_scan-- > 0) && !list_empty(&mb_cache_lru_list)) { |
| struct mb_cache_entry *ce = |
| list_entry(mb_cache_lru_list.next, |
| struct mb_cache_entry, e_lru_list); |
| list_del_init(&ce->e_lru_list); |
| if (ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt)) |
| continue; |
| spin_unlock(&mb_cache_spinlock); |
| /* Prevent any find or get operation on the entry */ |
| hlist_bl_lock(ce->e_block_hash_p); |
| hlist_bl_lock(ce->e_index_hash_p); |
| /* Ignore if it is touched by a find/get */ |
| if (ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt) || |
| !list_empty(&ce->e_lru_list)) { |
| hlist_bl_unlock(ce->e_index_hash_p); |
| hlist_bl_unlock(ce->e_block_hash_p); |
| spin_lock(&mb_cache_spinlock); |
| continue; |
| } |
| __mb_cache_entry_unhash_unlock(ce); |
| list_add_tail(&ce->e_lru_list, &free_list); |
| spin_lock(&mb_cache_spinlock); |
| } |
| spin_unlock(&mb_cache_spinlock); |
| |
| list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) { |
| __mb_cache_entry_forget(entry, gfp_mask); |
| freed++; |
| } |
| return freed; |
| } |
| |
| static unsigned long |
| mb_cache_shrink_count(struct shrinker *shrink, struct shrink_control *sc) |
| { |
| struct mb_cache *cache; |
| unsigned long count = 0; |
| |
| spin_lock(&mb_cache_spinlock); |
| list_for_each_entry(cache, &mb_cache_list, c_cache_list) { |
| mb_debug("cache %s (%d)", cache->c_name, |
| atomic_read(&cache->c_entry_count)); |
| count += atomic_read(&cache->c_entry_count); |
| } |
| spin_unlock(&mb_cache_spinlock); |
| |
| return vfs_pressure_ratio(count); |
| } |
| |
| static struct shrinker mb_cache_shrinker = { |
| .count_objects = mb_cache_shrink_count, |
| .scan_objects = mb_cache_shrink_scan, |
| .seeks = DEFAULT_SEEKS, |
| }; |
| |
| /* |
| * mb_cache_create() create a new cache |
| * |
| * All entries in one cache are equal size. Cache entries may be from |
| * multiple devices. If this is the first mbcache created, registers |
| * the cache with kernel memory management. Returns NULL if no more |
| * memory was available. |
| * |
| * @name: name of the cache (informal) |
| * @bucket_bits: log2(number of hash buckets) |
| */ |
| struct mb_cache * |
| mb_cache_create(const char *name, int bucket_bits) |
| { |
| int n, bucket_count = 1 << bucket_bits; |
| struct mb_cache *cache = NULL; |
| |
| if (!mb_cache_bg_lock) { |
| mb_cache_bg_lock = kmalloc(sizeof(struct blockgroup_lock), |
| GFP_KERNEL); |
| if (!mb_cache_bg_lock) |
| return NULL; |
| bgl_lock_init(mb_cache_bg_lock); |
| } |
| |
| cache = kmalloc(sizeof(struct mb_cache), GFP_KERNEL); |
| if (!cache) |
| return NULL; |
| cache->c_name = name; |
| atomic_set(&cache->c_entry_count, 0); |
| cache->c_bucket_bits = bucket_bits; |
| cache->c_block_hash = kmalloc(bucket_count * |
| sizeof(struct hlist_bl_head), GFP_KERNEL); |
| if (!cache->c_block_hash) |
| goto fail; |
| for (n=0; n<bucket_count; n++) |
| INIT_HLIST_BL_HEAD(&cache->c_block_hash[n]); |
| cache->c_index_hash = kmalloc(bucket_count * |
| sizeof(struct hlist_bl_head), GFP_KERNEL); |
| if (!cache->c_index_hash) |
| goto fail; |
| for (n=0; n<bucket_count; n++) |
| INIT_HLIST_BL_HEAD(&cache->c_index_hash[n]); |
| if (!mb_cache_kmem_cache) { |
| mb_cache_kmem_cache = kmem_cache_create(name, |
| sizeof(struct mb_cache_entry), 0, |
| SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); |
| if (!mb_cache_kmem_cache) |
| goto fail2; |
| } |
| cache->c_entry_cache = mb_cache_kmem_cache; |
| |
| /* |
| * Set an upper limit on the number of cache entries so that the hash |
| * chains won't grow too long. |
| */ |
| cache->c_max_entries = bucket_count << 4; |
| |
| spin_lock(&mb_cache_spinlock); |
| list_add(&cache->c_cache_list, &mb_cache_list); |
| spin_unlock(&mb_cache_spinlock); |
| return cache; |
| |
| fail2: |
| kfree(cache->c_index_hash); |
| |
| fail: |
| kfree(cache->c_block_hash); |
| kfree(cache); |
| return NULL; |
| } |
| |
| |
| /* |
| * mb_cache_shrink() |
| * |
| * Removes all cache entries of a device from the cache. All cache entries |
| * currently in use cannot be freed, and thus remain in the cache. All others |
| * are freed. |
| * |
| * @bdev: which device's cache entries to shrink |
| */ |
| void |
| mb_cache_shrink(struct block_device *bdev) |
| { |
| LIST_HEAD(free_list); |
| struct list_head *l; |
| struct mb_cache_entry *ce, *tmp; |
| |
| l = &mb_cache_lru_list; |
| spin_lock(&mb_cache_spinlock); |
| while (!list_is_last(l, &mb_cache_lru_list)) { |
| l = l->next; |
| ce = list_entry(l, struct mb_cache_entry, e_lru_list); |
| if (ce->e_bdev == bdev) { |
| list_del_init(&ce->e_lru_list); |
| if (ce->e_used || ce->e_queued || |
| atomic_read(&ce->e_refcnt)) |
| continue; |
| spin_unlock(&mb_cache_spinlock); |
| /* |
| * Prevent any find or get operation on the entry. |
| */ |
| hlist_bl_lock(ce->e_block_hash_p); |
| hlist_bl_lock(ce->e_index_hash_p); |
| /* Ignore if it is touched by a find/get */ |
| if (ce->e_used || ce->e_queued || |
| atomic_read(&ce->e_refcnt) || |
| !list_empty(&ce->e_lru_list)) { |
| hlist_bl_unlock(ce->e_index_hash_p); |
| hlist_bl_unlock(ce->e_block_hash_p); |
| l = &mb_cache_lru_list; |
| spin_lock(&mb_cache_spinlock); |
| continue; |
| } |
| __mb_cache_entry_unhash_unlock(ce); |
| mb_assert(!(ce->e_used || ce->e_queued || |
| atomic_read(&ce->e_refcnt))); |
| list_add_tail(&ce->e_lru_list, &free_list); |
| l = &mb_cache_lru_list; |
| spin_lock(&mb_cache_spinlock); |
| } |
| } |
| spin_unlock(&mb_cache_spinlock); |
| |
| list_for_each_entry_safe(ce, tmp, &free_list, e_lru_list) { |
| __mb_cache_entry_forget(ce, GFP_KERNEL); |
| } |
| } |
| |
| |
| /* |
| * mb_cache_destroy() |
| * |
| * Shrinks the cache to its minimum possible size (hopefully 0 entries), |
| * and then destroys it. If this was the last mbcache, un-registers the |
| * mbcache from kernel memory management. |
| */ |
| void |
| mb_cache_destroy(struct mb_cache *cache) |
| { |
| LIST_HEAD(free_list); |
| struct mb_cache_entry *ce, *tmp; |
| |
| spin_lock(&mb_cache_spinlock); |
| list_for_each_entry_safe(ce, tmp, &mb_cache_lru_list, e_lru_list) { |
| if (ce->e_cache == cache) |
| list_move_tail(&ce->e_lru_list, &free_list); |
| } |
| list_del(&cache->c_cache_list); |
| spin_unlock(&mb_cache_spinlock); |
| |
| list_for_each_entry_safe(ce, tmp, &free_list, e_lru_list) { |
| list_del_init(&ce->e_lru_list); |
| /* |
| * Prevent any find or get operation on the entry. |
| */ |
| hlist_bl_lock(ce->e_block_hash_p); |
| hlist_bl_lock(ce->e_index_hash_p); |
| mb_assert(!(ce->e_used || ce->e_queued || |
| atomic_read(&ce->e_refcnt))); |
| __mb_cache_entry_unhash_unlock(ce); |
| __mb_cache_entry_forget(ce, GFP_KERNEL); |
| } |
| |
| if (atomic_read(&cache->c_entry_count) > 0) { |
| mb_error("cache %s: %d orphaned entries", |
| cache->c_name, |
| atomic_read(&cache->c_entry_count)); |
| } |
| |
| if (list_empty(&mb_cache_list)) { |
| kmem_cache_destroy(mb_cache_kmem_cache); |
| mb_cache_kmem_cache = NULL; |
| } |
| kfree(cache->c_index_hash); |
| kfree(cache->c_block_hash); |
| kfree(cache); |
| } |
| |
| /* |
| * mb_cache_entry_alloc() |
| * |
| * Allocates a new cache entry. The new entry will not be valid initially, |
| * and thus cannot be looked up yet. It should be filled with data, and |
| * then inserted into the cache using mb_cache_entry_insert(). Returns NULL |
| * if no more memory was available. |
| */ |
| struct mb_cache_entry * |
| mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags) |
| { |
| struct mb_cache_entry *ce; |
| |
| if (atomic_read(&cache->c_entry_count) >= cache->c_max_entries) { |
| struct list_head *l; |
| |
| l = &mb_cache_lru_list; |
| spin_lock(&mb_cache_spinlock); |
| while (!list_is_last(l, &mb_cache_lru_list)) { |
| l = l->next; |
| ce = list_entry(l, struct mb_cache_entry, e_lru_list); |
| if (ce->e_cache == cache) { |
| list_del_init(&ce->e_lru_list); |
| if (ce->e_used || ce->e_queued || |
| atomic_read(&ce->e_refcnt)) |
| continue; |
| spin_unlock(&mb_cache_spinlock); |
| /* |
| * Prevent any find or get operation on the |
| * entry. |
| */ |
| hlist_bl_lock(ce->e_block_hash_p); |
| hlist_bl_lock(ce->e_index_hash_p); |
| /* Ignore if it is touched by a find/get */ |
| if (ce->e_used || ce->e_queued || |
| atomic_read(&ce->e_refcnt) || |
| !list_empty(&ce->e_lru_list)) { |
| hlist_bl_unlock(ce->e_index_hash_p); |
| hlist_bl_unlock(ce->e_block_hash_p); |
| l = &mb_cache_lru_list; |
| spin_lock(&mb_cache_spinlock); |
| continue; |
| } |
| mb_assert(list_empty(&ce->e_lru_list)); |
| mb_assert(!(ce->e_used || ce->e_queued || |
| atomic_read(&ce->e_refcnt))); |
| __mb_cache_entry_unhash_unlock(ce); |
| goto found; |
| } |
| } |
| spin_unlock(&mb_cache_spinlock); |
| } |
| |
| ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags); |
| if (!ce) |
| return NULL; |
| atomic_inc(&cache->c_entry_count); |
| INIT_LIST_HEAD(&ce->e_lru_list); |
| INIT_HLIST_BL_NODE(&ce->e_block_list); |
| INIT_HLIST_BL_NODE(&ce->e_index.o_list); |
| ce->e_cache = cache; |
| ce->e_queued = 0; |
| atomic_set(&ce->e_refcnt, 0); |
| found: |
| ce->e_block_hash_p = &cache->c_block_hash[0]; |
| ce->e_index_hash_p = &cache->c_index_hash[0]; |
| ce->e_used = 1 + MB_CACHE_WRITER; |
| return ce; |
| } |
| |
| |
| /* |
| * mb_cache_entry_insert() |
| * |
| * Inserts an entry that was allocated using mb_cache_entry_alloc() into |
| * the cache. After this, the cache entry can be looked up, but is not yet |
| * in the lru list as the caller still holds a handle to it. Returns 0 on |
| * success, or -EBUSY if a cache entry for that device + inode exists |
| * already (this may happen after a failed lookup, but when another process |
| * has inserted the same cache entry in the meantime). |
| * |
| * @bdev: device the cache entry belongs to |
| * @block: block number |
| * @key: lookup key |
| */ |
| int |
| mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev, |
| sector_t block, unsigned int key) |
| { |
| struct mb_cache *cache = ce->e_cache; |
| unsigned int bucket; |
| struct hlist_bl_node *l; |
| struct hlist_bl_head *block_hash_p; |
| struct hlist_bl_head *index_hash_p; |
| struct mb_cache_entry *lce; |
| |
| mb_assert(ce); |
| bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), |
| cache->c_bucket_bits); |
| block_hash_p = &cache->c_block_hash[bucket]; |
| hlist_bl_lock(block_hash_p); |
| hlist_bl_for_each_entry(lce, l, block_hash_p, e_block_list) { |
| if (lce->e_bdev == bdev && lce->e_block == block) { |
| hlist_bl_unlock(block_hash_p); |
| return -EBUSY; |
| } |
| } |
| mb_assert(!__mb_cache_entry_is_block_hashed(ce)); |
| __mb_cache_entry_unhash_block(ce); |
| __mb_cache_entry_unhash_index(ce); |
| ce->e_bdev = bdev; |
| ce->e_block = block; |
| ce->e_block_hash_p = block_hash_p; |
| ce->e_index.o_key = key; |
| hlist_bl_add_head(&ce->e_block_list, block_hash_p); |
| hlist_bl_unlock(block_hash_p); |
| bucket = hash_long(key, cache->c_bucket_bits); |
| index_hash_p = &cache->c_index_hash[bucket]; |
| hlist_bl_lock(index_hash_p); |
| ce->e_index_hash_p = index_hash_p; |
| hlist_bl_add_head(&ce->e_index.o_list, index_hash_p); |
| hlist_bl_unlock(index_hash_p); |
| return 0; |
| } |
| |
| |
| /* |
| * mb_cache_entry_release() |
| * |
| * Release a handle to a cache entry. When the last handle to a cache entry |
| * is released it is either freed (if it is invalid) or otherwise inserted |
| * in to the lru list. |
| */ |
| void |
| mb_cache_entry_release(struct mb_cache_entry *ce) |
| { |
| __mb_cache_entry_release(ce); |
| } |
| |
| |
| /* |
| * mb_cache_entry_free() |
| * |
| */ |
| void |
| mb_cache_entry_free(struct mb_cache_entry *ce) |
| { |
| mb_assert(ce); |
| mb_assert(list_empty(&ce->e_lru_list)); |
| hlist_bl_lock(ce->e_index_hash_p); |
| __mb_cache_entry_unhash_index(ce); |
| hlist_bl_unlock(ce->e_index_hash_p); |
| hlist_bl_lock(ce->e_block_hash_p); |
| __mb_cache_entry_unhash_block(ce); |
| hlist_bl_unlock(ce->e_block_hash_p); |
| __mb_cache_entry_release(ce); |
| } |
| |
| |
| /* |
| * mb_cache_entry_get() |
| * |
| * Get a cache entry by device / block number. (There can only be one entry |
| * in the cache per device and block.) Returns NULL if no such cache entry |
| * exists. The returned cache entry is locked for exclusive access ("single |
| * writer"). |
| */ |
| struct mb_cache_entry * |
| mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev, |
| sector_t block) |
| { |
| unsigned int bucket; |
| struct hlist_bl_node *l; |
| struct mb_cache_entry *ce; |
| struct hlist_bl_head *block_hash_p; |
| |
| bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), |
| cache->c_bucket_bits); |
| block_hash_p = &cache->c_block_hash[bucket]; |
| /* First serialize access to the block corresponding hash chain. */ |
| hlist_bl_lock(block_hash_p); |
| hlist_bl_for_each_entry(ce, l, block_hash_p, e_block_list) { |
| mb_assert(ce->e_block_hash_p == block_hash_p); |
| if (ce->e_bdev == bdev && ce->e_block == block) { |
| /* |
| * Prevent a free from removing the entry. |
| */ |
| atomic_inc(&ce->e_refcnt); |
| hlist_bl_unlock(block_hash_p); |
| __spin_lock_mb_cache_entry(ce); |
| atomic_dec(&ce->e_refcnt); |
| if (ce->e_used > 0) { |
| DEFINE_WAIT(wait); |
| while (ce->e_used > 0) { |
| ce->e_queued++; |
| prepare_to_wait(&mb_cache_queue, &wait, |
| TASK_UNINTERRUPTIBLE); |
| __spin_unlock_mb_cache_entry(ce); |
| schedule(); |
| __spin_lock_mb_cache_entry(ce); |
| ce->e_queued--; |
| } |
| finish_wait(&mb_cache_queue, &wait); |
| } |
| ce->e_used += 1 + MB_CACHE_WRITER; |
| __spin_unlock_mb_cache_entry(ce); |
| |
| if (!list_empty(&ce->e_lru_list)) { |
| spin_lock(&mb_cache_spinlock); |
| list_del_init(&ce->e_lru_list); |
| spin_unlock(&mb_cache_spinlock); |
| } |
| if (!__mb_cache_entry_is_block_hashed(ce)) { |
| __mb_cache_entry_release(ce); |
| return NULL; |
| } |
| return ce; |
| } |
| } |
| hlist_bl_unlock(block_hash_p); |
| return NULL; |
| } |
| |
| #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) |
| |
| static struct mb_cache_entry * |
| __mb_cache_entry_find(struct hlist_bl_node *l, struct hlist_bl_head *head, |
| struct block_device *bdev, unsigned int key) |
| { |
| |
| /* The index hash chain is alredy acquire by caller. */ |
| while (l != NULL) { |
| struct mb_cache_entry *ce = |
| hlist_bl_entry(l, struct mb_cache_entry, |
| e_index.o_list); |
| mb_assert(ce->e_index_hash_p == head); |
| if (ce->e_bdev == bdev && ce->e_index.o_key == key) { |
| /* |
| * Prevent a free from removing the entry. |
| */ |
| atomic_inc(&ce->e_refcnt); |
| hlist_bl_unlock(head); |
| __spin_lock_mb_cache_entry(ce); |
| atomic_dec(&ce->e_refcnt); |
| ce->e_used++; |
| /* Incrementing before holding the lock gives readers |
| priority over writers. */ |
| if (ce->e_used >= MB_CACHE_WRITER) { |
| DEFINE_WAIT(wait); |
| |
| while (ce->e_used >= MB_CACHE_WRITER) { |
| ce->e_queued++; |
| prepare_to_wait(&mb_cache_queue, &wait, |
| TASK_UNINTERRUPTIBLE); |
| __spin_unlock_mb_cache_entry(ce); |
| schedule(); |
| __spin_lock_mb_cache_entry(ce); |
| ce->e_queued--; |
| } |
| finish_wait(&mb_cache_queue, &wait); |
| } |
| __spin_unlock_mb_cache_entry(ce); |
| if (!list_empty(&ce->e_lru_list)) { |
| spin_lock(&mb_cache_spinlock); |
| list_del_init(&ce->e_lru_list); |
| spin_unlock(&mb_cache_spinlock); |
| } |
| if (!__mb_cache_entry_is_block_hashed(ce)) { |
| __mb_cache_entry_release(ce); |
| return ERR_PTR(-EAGAIN); |
| } |
| return ce; |
| } |
| l = l->next; |
| } |
| hlist_bl_unlock(head); |
| return NULL; |
| } |
| |
| |
| /* |
| * mb_cache_entry_find_first() |
| * |
| * Find the first cache entry on a given device with a certain key in |
| * an additional index. Additional matches can be found with |
| * mb_cache_entry_find_next(). Returns NULL if no match was found. The |
| * returned cache entry is locked for shared access ("multiple readers"). |
| * |
| * @cache: the cache to search |
| * @bdev: the device the cache entry should belong to |
| * @key: the key in the index |
| */ |
| struct mb_cache_entry * |
| mb_cache_entry_find_first(struct mb_cache *cache, struct block_device *bdev, |
| unsigned int key) |
| { |
| unsigned int bucket = hash_long(key, cache->c_bucket_bits); |
| struct hlist_bl_node *l; |
| struct mb_cache_entry *ce = NULL; |
| struct hlist_bl_head *index_hash_p; |
| |
| index_hash_p = &cache->c_index_hash[bucket]; |
| hlist_bl_lock(index_hash_p); |
| if (!hlist_bl_empty(index_hash_p)) { |
| l = hlist_bl_first(index_hash_p); |
| ce = __mb_cache_entry_find(l, index_hash_p, bdev, key); |
| } else |
| hlist_bl_unlock(index_hash_p); |
| return ce; |
| } |
| |
| |
| /* |
| * mb_cache_entry_find_next() |
| * |
| * Find the next cache entry on a given device with a certain key in an |
| * additional index. Returns NULL if no match could be found. The previous |
| * entry is atomatically released, so that mb_cache_entry_find_next() can |
| * be called like this: |
| * |
| * entry = mb_cache_entry_find_first(); |
| * while (entry) { |
| * ... |
| * entry = mb_cache_entry_find_next(entry, ...); |
| * } |
| * |
| * @prev: The previous match |
| * @bdev: the device the cache entry should belong to |
| * @key: the key in the index |
| */ |
| struct mb_cache_entry * |
| mb_cache_entry_find_next(struct mb_cache_entry *prev, |
| struct block_device *bdev, unsigned int key) |
| { |
| struct mb_cache *cache = prev->e_cache; |
| unsigned int bucket = hash_long(key, cache->c_bucket_bits); |
| struct hlist_bl_node *l; |
| struct mb_cache_entry *ce; |
| struct hlist_bl_head *index_hash_p; |
| |
| index_hash_p = &cache->c_index_hash[bucket]; |
| mb_assert(prev->e_index_hash_p == index_hash_p); |
| hlist_bl_lock(index_hash_p); |
| mb_assert(!hlist_bl_empty(index_hash_p)); |
| l = prev->e_index.o_list.next; |
| ce = __mb_cache_entry_find(l, index_hash_p, bdev, key); |
| __mb_cache_entry_release(prev); |
| return ce; |
| } |
| |
| #endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */ |
| |
| static int __init init_mbcache(void) |
| { |
| register_shrinker(&mb_cache_shrinker); |
| return 0; |
| } |
| |
| static void __exit exit_mbcache(void) |
| { |
| unregister_shrinker(&mb_cache_shrinker); |
| } |
| |
| module_init(init_mbcache) |
| module_exit(exit_mbcache) |
| |