| /* |
| * NVM Express device driver |
| * Copyright (c) 2011, Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| */ |
| |
| #include <linux/nvme.h> |
| #include <linux/bio.h> |
| #include <linux/bitops.h> |
| #include <linux/blkdev.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/fs.h> |
| #include <linux/genhd.h> |
| #include <linux/idr.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kdev_t.h> |
| #include <linux/kthread.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/pci.h> |
| #include <linux/poison.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| |
| #include <asm-generic/io-64-nonatomic-lo-hi.h> |
| |
| #define NVME_Q_DEPTH 1024 |
| #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) |
| #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) |
| #define NVME_MINORS 64 |
| #define NVME_IO_TIMEOUT (5 * HZ) |
| #define ADMIN_TIMEOUT (60 * HZ) |
| |
| static int nvme_major; |
| module_param(nvme_major, int, 0); |
| |
| static int use_threaded_interrupts; |
| module_param(use_threaded_interrupts, int, 0); |
| |
| static DEFINE_SPINLOCK(dev_list_lock); |
| static LIST_HEAD(dev_list); |
| static struct task_struct *nvme_thread; |
| |
| /* |
| * Represents an NVM Express device. Each nvme_dev is a PCI function. |
| */ |
| struct nvme_dev { |
| struct list_head node; |
| struct nvme_queue **queues; |
| u32 __iomem *dbs; |
| struct pci_dev *pci_dev; |
| struct dma_pool *prp_page_pool; |
| struct dma_pool *prp_small_pool; |
| int instance; |
| int queue_count; |
| int db_stride; |
| u32 ctrl_config; |
| struct msix_entry *entry; |
| struct nvme_bar __iomem *bar; |
| struct list_head namespaces; |
| char serial[20]; |
| char model[40]; |
| char firmware_rev[8]; |
| u32 max_hw_sectors; |
| }; |
| |
| /* |
| * An NVM Express namespace is equivalent to a SCSI LUN |
| */ |
| struct nvme_ns { |
| struct list_head list; |
| |
| struct nvme_dev *dev; |
| struct request_queue *queue; |
| struct gendisk *disk; |
| |
| int ns_id; |
| int lba_shift; |
| }; |
| |
| /* |
| * An NVM Express queue. Each device has at least two (one for admin |
| * commands and one for I/O commands). |
| */ |
| struct nvme_queue { |
| struct device *q_dmadev; |
| struct nvme_dev *dev; |
| spinlock_t q_lock; |
| struct nvme_command *sq_cmds; |
| volatile struct nvme_completion *cqes; |
| dma_addr_t sq_dma_addr; |
| dma_addr_t cq_dma_addr; |
| wait_queue_head_t sq_full; |
| wait_queue_t sq_cong_wait; |
| struct bio_list sq_cong; |
| u32 __iomem *q_db; |
| u16 q_depth; |
| u16 cq_vector; |
| u16 sq_head; |
| u16 sq_tail; |
| u16 cq_head; |
| u16 cq_phase; |
| unsigned long cmdid_data[]; |
| }; |
| |
| /* |
| * Check we didin't inadvertently grow the command struct |
| */ |
| static inline void _nvme_check_size(void) |
| { |
| BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_features) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_command) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); |
| BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); |
| BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); |
| } |
| |
| typedef void (*nvme_completion_fn)(struct nvme_dev *, void *, |
| struct nvme_completion *); |
| |
| struct nvme_cmd_info { |
| nvme_completion_fn fn; |
| void *ctx; |
| unsigned long timeout; |
| }; |
| |
| static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq) |
| { |
| return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)]; |
| } |
| |
| /** |
| * alloc_cmdid() - Allocate a Command ID |
| * @nvmeq: The queue that will be used for this command |
| * @ctx: A pointer that will be passed to the handler |
| * @handler: The function to call on completion |
| * |
| * Allocate a Command ID for a queue. The data passed in will |
| * be passed to the completion handler. This is implemented by using |
| * the bottom two bits of the ctx pointer to store the handler ID. |
| * Passing in a pointer that's not 4-byte aligned will cause a BUG. |
| * We can change this if it becomes a problem. |
| * |
| * May be called with local interrupts disabled and the q_lock held, |
| * or with interrupts enabled and no locks held. |
| */ |
| static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, |
| nvme_completion_fn handler, unsigned timeout) |
| { |
| int depth = nvmeq->q_depth - 1; |
| struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); |
| int cmdid; |
| |
| do { |
| cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth); |
| if (cmdid >= depth) |
| return -EBUSY; |
| } while (test_and_set_bit(cmdid, nvmeq->cmdid_data)); |
| |
| info[cmdid].fn = handler; |
| info[cmdid].ctx = ctx; |
| info[cmdid].timeout = jiffies + timeout; |
| return cmdid; |
| } |
| |
| static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx, |
| nvme_completion_fn handler, unsigned timeout) |
| { |
| int cmdid; |
| wait_event_killable(nvmeq->sq_full, |
| (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0); |
| return (cmdid < 0) ? -EINTR : cmdid; |
| } |
| |
| /* Special values must be less than 0x1000 */ |
| #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA) |
| #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE) |
| #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE) |
| #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE) |
| #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE) |
| |
| static void special_completion(struct nvme_dev *dev, void *ctx, |
| struct nvme_completion *cqe) |
| { |
| if (ctx == CMD_CTX_CANCELLED) |
| return; |
| if (ctx == CMD_CTX_FLUSH) |
| return; |
| if (ctx == CMD_CTX_COMPLETED) { |
| dev_warn(&dev->pci_dev->dev, |
| "completed id %d twice on queue %d\n", |
| cqe->command_id, le16_to_cpup(&cqe->sq_id)); |
| return; |
| } |
| if (ctx == CMD_CTX_INVALID) { |
| dev_warn(&dev->pci_dev->dev, |
| "invalid id %d completed on queue %d\n", |
| cqe->command_id, le16_to_cpup(&cqe->sq_id)); |
| return; |
| } |
| |
| dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx); |
| } |
| |
| /* |
| * Called with local interrupts disabled and the q_lock held. May not sleep. |
| */ |
| static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid, |
| nvme_completion_fn *fn) |
| { |
| void *ctx; |
| struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); |
| |
| if (cmdid >= nvmeq->q_depth) { |
| *fn = special_completion; |
| return CMD_CTX_INVALID; |
| } |
| if (fn) |
| *fn = info[cmdid].fn; |
| ctx = info[cmdid].ctx; |
| info[cmdid].fn = special_completion; |
| info[cmdid].ctx = CMD_CTX_COMPLETED; |
| clear_bit(cmdid, nvmeq->cmdid_data); |
| wake_up(&nvmeq->sq_full); |
| return ctx; |
| } |
| |
| static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid, |
| nvme_completion_fn *fn) |
| { |
| void *ctx; |
| struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); |
| if (fn) |
| *fn = info[cmdid].fn; |
| ctx = info[cmdid].ctx; |
| info[cmdid].fn = special_completion; |
| info[cmdid].ctx = CMD_CTX_CANCELLED; |
| return ctx; |
| } |
| |
| static struct nvme_queue *get_nvmeq(struct nvme_dev *dev) |
| { |
| return dev->queues[get_cpu() + 1]; |
| } |
| |
| static void put_nvmeq(struct nvme_queue *nvmeq) |
| { |
| put_cpu(); |
| } |
| |
| /** |
| * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell |
| * @nvmeq: The queue to use |
| * @cmd: The command to send |
| * |
| * Safe to use from interrupt context |
| */ |
| static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) |
| { |
| unsigned long flags; |
| u16 tail; |
| spin_lock_irqsave(&nvmeq->q_lock, flags); |
| tail = nvmeq->sq_tail; |
| memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); |
| if (++tail == nvmeq->q_depth) |
| tail = 0; |
| writel(tail, nvmeq->q_db); |
| nvmeq->sq_tail = tail; |
| spin_unlock_irqrestore(&nvmeq->q_lock, flags); |
| |
| return 0; |
| } |
| |
| /* |
| * The nvme_iod describes the data in an I/O, including the list of PRP |
| * entries. You can't see it in this data structure because C doesn't let |
| * me express that. Use nvme_alloc_iod to ensure there's enough space |
| * allocated to store the PRP list. |
| */ |
| struct nvme_iod { |
| void *private; /* For the use of the submitter of the I/O */ |
| int npages; /* In the PRP list. 0 means small pool in use */ |
| int offset; /* Of PRP list */ |
| int nents; /* Used in scatterlist */ |
| int length; /* Of data, in bytes */ |
| dma_addr_t first_dma; |
| struct scatterlist sg[0]; |
| }; |
| |
| static __le64 **iod_list(struct nvme_iod *iod) |
| { |
| return ((void *)iod) + iod->offset; |
| } |
| |
| /* |
| * Will slightly overestimate the number of pages needed. This is OK |
| * as it only leads to a small amount of wasted memory for the lifetime of |
| * the I/O. |
| */ |
| static int nvme_npages(unsigned size) |
| { |
| unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE); |
| return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); |
| } |
| |
| static struct nvme_iod * |
| nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp) |
| { |
| struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) + |
| sizeof(__le64 *) * nvme_npages(nbytes) + |
| sizeof(struct scatterlist) * nseg, gfp); |
| |
| if (iod) { |
| iod->offset = offsetof(struct nvme_iod, sg[nseg]); |
| iod->npages = -1; |
| iod->length = nbytes; |
| iod->nents = 0; |
| } |
| |
| return iod; |
| } |
| |
| static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod) |
| { |
| const int last_prp = PAGE_SIZE / 8 - 1; |
| int i; |
| __le64 **list = iod_list(iod); |
| dma_addr_t prp_dma = iod->first_dma; |
| |
| if (iod->npages == 0) |
| dma_pool_free(dev->prp_small_pool, list[0], prp_dma); |
| for (i = 0; i < iod->npages; i++) { |
| __le64 *prp_list = list[i]; |
| dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); |
| dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); |
| prp_dma = next_prp_dma; |
| } |
| kfree(iod); |
| } |
| |
| static void requeue_bio(struct nvme_dev *dev, struct bio *bio) |
| { |
| struct nvme_queue *nvmeq = get_nvmeq(dev); |
| if (bio_list_empty(&nvmeq->sq_cong)) |
| add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait); |
| bio_list_add(&nvmeq->sq_cong, bio); |
| put_nvmeq(nvmeq); |
| wake_up_process(nvme_thread); |
| } |
| |
| static void bio_completion(struct nvme_dev *dev, void *ctx, |
| struct nvme_completion *cqe) |
| { |
| struct nvme_iod *iod = ctx; |
| struct bio *bio = iod->private; |
| u16 status = le16_to_cpup(&cqe->status) >> 1; |
| |
| if (iod->nents) |
| dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents, |
| bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); |
| nvme_free_iod(dev, iod); |
| if (status) { |
| bio_endio(bio, -EIO); |
| } else if (bio->bi_vcnt > bio->bi_idx) { |
| requeue_bio(dev, bio); |
| } else { |
| bio_endio(bio, 0); |
| } |
| } |
| |
| /* length is in bytes. gfp flags indicates whether we may sleep. */ |
| static int nvme_setup_prps(struct nvme_dev *dev, |
| struct nvme_common_command *cmd, struct nvme_iod *iod, |
| int total_len, gfp_t gfp) |
| { |
| struct dma_pool *pool; |
| int length = total_len; |
| struct scatterlist *sg = iod->sg; |
| int dma_len = sg_dma_len(sg); |
| u64 dma_addr = sg_dma_address(sg); |
| int offset = offset_in_page(dma_addr); |
| __le64 *prp_list; |
| __le64 **list = iod_list(iod); |
| dma_addr_t prp_dma; |
| int nprps, i; |
| |
| cmd->prp1 = cpu_to_le64(dma_addr); |
| length -= (PAGE_SIZE - offset); |
| if (length <= 0) |
| return total_len; |
| |
| dma_len -= (PAGE_SIZE - offset); |
| if (dma_len) { |
| dma_addr += (PAGE_SIZE - offset); |
| } else { |
| sg = sg_next(sg); |
| dma_addr = sg_dma_address(sg); |
| dma_len = sg_dma_len(sg); |
| } |
| |
| if (length <= PAGE_SIZE) { |
| cmd->prp2 = cpu_to_le64(dma_addr); |
| return total_len; |
| } |
| |
| nprps = DIV_ROUND_UP(length, PAGE_SIZE); |
| if (nprps <= (256 / 8)) { |
| pool = dev->prp_small_pool; |
| iod->npages = 0; |
| } else { |
| pool = dev->prp_page_pool; |
| iod->npages = 1; |
| } |
| |
| prp_list = dma_pool_alloc(pool, gfp, &prp_dma); |
| if (!prp_list) { |
| cmd->prp2 = cpu_to_le64(dma_addr); |
| iod->npages = -1; |
| return (total_len - length) + PAGE_SIZE; |
| } |
| list[0] = prp_list; |
| iod->first_dma = prp_dma; |
| cmd->prp2 = cpu_to_le64(prp_dma); |
| i = 0; |
| for (;;) { |
| if (i == PAGE_SIZE / 8) { |
| __le64 *old_prp_list = prp_list; |
| prp_list = dma_pool_alloc(pool, gfp, &prp_dma); |
| if (!prp_list) |
| return total_len - length; |
| list[iod->npages++] = prp_list; |
| prp_list[0] = old_prp_list[i - 1]; |
| old_prp_list[i - 1] = cpu_to_le64(prp_dma); |
| i = 1; |
| } |
| prp_list[i++] = cpu_to_le64(dma_addr); |
| dma_len -= PAGE_SIZE; |
| dma_addr += PAGE_SIZE; |
| length -= PAGE_SIZE; |
| if (length <= 0) |
| break; |
| if (dma_len > 0) |
| continue; |
| BUG_ON(dma_len < 0); |
| sg = sg_next(sg); |
| dma_addr = sg_dma_address(sg); |
| dma_len = sg_dma_len(sg); |
| } |
| |
| return total_len; |
| } |
| |
| /* NVMe scatterlists require no holes in the virtual address */ |
| #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \ |
| (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE)) |
| |
| static int nvme_map_bio(struct device *dev, struct nvme_iod *iod, |
| struct bio *bio, enum dma_data_direction dma_dir, int psegs) |
| { |
| struct bio_vec *bvec, *bvprv = NULL; |
| struct scatterlist *sg = NULL; |
| int i, old_idx, length = 0, nsegs = 0; |
| |
| sg_init_table(iod->sg, psegs); |
| old_idx = bio->bi_idx; |
| bio_for_each_segment(bvec, bio, i) { |
| if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) { |
| sg->length += bvec->bv_len; |
| } else { |
| if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec)) |
| break; |
| sg = sg ? sg + 1 : iod->sg; |
| sg_set_page(sg, bvec->bv_page, bvec->bv_len, |
| bvec->bv_offset); |
| nsegs++; |
| } |
| length += bvec->bv_len; |
| bvprv = bvec; |
| } |
| bio->bi_idx = i; |
| iod->nents = nsegs; |
| sg_mark_end(sg); |
| if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) { |
| bio->bi_idx = old_idx; |
| return -ENOMEM; |
| } |
| return length; |
| } |
| |
| static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns, |
| int cmdid) |
| { |
| struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail]; |
| |
| memset(cmnd, 0, sizeof(*cmnd)); |
| cmnd->common.opcode = nvme_cmd_flush; |
| cmnd->common.command_id = cmdid; |
| cmnd->common.nsid = cpu_to_le32(ns->ns_id); |
| |
| if (++nvmeq->sq_tail == nvmeq->q_depth) |
| nvmeq->sq_tail = 0; |
| writel(nvmeq->sq_tail, nvmeq->q_db); |
| |
| return 0; |
| } |
| |
| static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns) |
| { |
| int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH, |
| special_completion, NVME_IO_TIMEOUT); |
| if (unlikely(cmdid < 0)) |
| return cmdid; |
| |
| return nvme_submit_flush(nvmeq, ns, cmdid); |
| } |
| |
| /* |
| * Called with local interrupts disabled and the q_lock held. May not sleep. |
| */ |
| static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns, |
| struct bio *bio) |
| { |
| struct nvme_command *cmnd; |
| struct nvme_iod *iod; |
| enum dma_data_direction dma_dir; |
| int cmdid, length, result = -ENOMEM; |
| u16 control; |
| u32 dsmgmt; |
| int psegs = bio_phys_segments(ns->queue, bio); |
| |
| if ((bio->bi_rw & REQ_FLUSH) && psegs) { |
| result = nvme_submit_flush_data(nvmeq, ns); |
| if (result) |
| return result; |
| } |
| |
| iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC); |
| if (!iod) |
| goto nomem; |
| iod->private = bio; |
| |
| result = -EBUSY; |
| cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT); |
| if (unlikely(cmdid < 0)) |
| goto free_iod; |
| |
| if ((bio->bi_rw & REQ_FLUSH) && !psegs) |
| return nvme_submit_flush(nvmeq, ns, cmdid); |
| |
| control = 0; |
| if (bio->bi_rw & REQ_FUA) |
| control |= NVME_RW_FUA; |
| if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD)) |
| control |= NVME_RW_LR; |
| |
| dsmgmt = 0; |
| if (bio->bi_rw & REQ_RAHEAD) |
| dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; |
| |
| cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail]; |
| |
| memset(cmnd, 0, sizeof(*cmnd)); |
| if (bio_data_dir(bio)) { |
| cmnd->rw.opcode = nvme_cmd_write; |
| dma_dir = DMA_TO_DEVICE; |
| } else { |
| cmnd->rw.opcode = nvme_cmd_read; |
| dma_dir = DMA_FROM_DEVICE; |
| } |
| |
| result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs); |
| if (result < 0) |
| goto free_cmdid; |
| length = result; |
| |
| cmnd->rw.command_id = cmdid; |
| cmnd->rw.nsid = cpu_to_le32(ns->ns_id); |
| length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length, |
| GFP_ATOMIC); |
| cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9)); |
| cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1); |
| cmnd->rw.control = cpu_to_le16(control); |
| cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); |
| |
| bio->bi_sector += length >> 9; |
| |
| if (++nvmeq->sq_tail == nvmeq->q_depth) |
| nvmeq->sq_tail = 0; |
| writel(nvmeq->sq_tail, nvmeq->q_db); |
| |
| return 0; |
| |
| free_cmdid: |
| free_cmdid(nvmeq, cmdid, NULL); |
| free_iod: |
| nvme_free_iod(nvmeq->dev, iod); |
| nomem: |
| return result; |
| } |
| |
| static void nvme_make_request(struct request_queue *q, struct bio *bio) |
| { |
| struct nvme_ns *ns = q->queuedata; |
| struct nvme_queue *nvmeq = get_nvmeq(ns->dev); |
| int result = -EBUSY; |
| |
| spin_lock_irq(&nvmeq->q_lock); |
| if (bio_list_empty(&nvmeq->sq_cong)) |
| result = nvme_submit_bio_queue(nvmeq, ns, bio); |
| if (unlikely(result)) { |
| if (bio_list_empty(&nvmeq->sq_cong)) |
| add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait); |
| bio_list_add(&nvmeq->sq_cong, bio); |
| } |
| |
| spin_unlock_irq(&nvmeq->q_lock); |
| put_nvmeq(nvmeq); |
| } |
| |
| static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq) |
| { |
| u16 head, phase; |
| |
| head = nvmeq->cq_head; |
| phase = nvmeq->cq_phase; |
| |
| for (;;) { |
| void *ctx; |
| nvme_completion_fn fn; |
| struct nvme_completion cqe = nvmeq->cqes[head]; |
| if ((le16_to_cpu(cqe.status) & 1) != phase) |
| break; |
| nvmeq->sq_head = le16_to_cpu(cqe.sq_head); |
| if (++head == nvmeq->q_depth) { |
| head = 0; |
| phase = !phase; |
| } |
| |
| ctx = free_cmdid(nvmeq, cqe.command_id, &fn); |
| fn(nvmeq->dev, ctx, &cqe); |
| } |
| |
| /* If the controller ignores the cq head doorbell and continuously |
| * writes to the queue, it is theoretically possible to wrap around |
| * the queue twice and mistakenly return IRQ_NONE. Linux only |
| * requires that 0.1% of your interrupts are handled, so this isn't |
| * a big problem. |
| */ |
| if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) |
| return IRQ_NONE; |
| |
| writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride)); |
| nvmeq->cq_head = head; |
| nvmeq->cq_phase = phase; |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t nvme_irq(int irq, void *data) |
| { |
| irqreturn_t result; |
| struct nvme_queue *nvmeq = data; |
| spin_lock(&nvmeq->q_lock); |
| result = nvme_process_cq(nvmeq); |
| spin_unlock(&nvmeq->q_lock); |
| return result; |
| } |
| |
| static irqreturn_t nvme_irq_check(int irq, void *data) |
| { |
| struct nvme_queue *nvmeq = data; |
| struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head]; |
| if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase) |
| return IRQ_NONE; |
| return IRQ_WAKE_THREAD; |
| } |
| |
| static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid) |
| { |
| spin_lock_irq(&nvmeq->q_lock); |
| cancel_cmdid(nvmeq, cmdid, NULL); |
| spin_unlock_irq(&nvmeq->q_lock); |
| } |
| |
| struct sync_cmd_info { |
| struct task_struct *task; |
| u32 result; |
| int status; |
| }; |
| |
| static void sync_completion(struct nvme_dev *dev, void *ctx, |
| struct nvme_completion *cqe) |
| { |
| struct sync_cmd_info *cmdinfo = ctx; |
| cmdinfo->result = le32_to_cpup(&cqe->result); |
| cmdinfo->status = le16_to_cpup(&cqe->status) >> 1; |
| wake_up_process(cmdinfo->task); |
| } |
| |
| /* |
| * Returns 0 on success. If the result is negative, it's a Linux error code; |
| * if the result is positive, it's an NVM Express status code |
| */ |
| static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, |
| struct nvme_command *cmd, u32 *result, unsigned timeout) |
| { |
| int cmdid; |
| struct sync_cmd_info cmdinfo; |
| |
| cmdinfo.task = current; |
| cmdinfo.status = -EINTR; |
| |
| cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion, |
| timeout); |
| if (cmdid < 0) |
| return cmdid; |
| cmd->common.command_id = cmdid; |
| |
| set_current_state(TASK_KILLABLE); |
| nvme_submit_cmd(nvmeq, cmd); |
| schedule(); |
| |
| if (cmdinfo.status == -EINTR) { |
| nvme_abort_command(nvmeq, cmdid); |
| return -EINTR; |
| } |
| |
| if (result) |
| *result = cmdinfo.result; |
| |
| return cmdinfo.status; |
| } |
| |
| static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd, |
| u32 *result) |
| { |
| return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT); |
| } |
| |
| static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) |
| { |
| int status; |
| struct nvme_command c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.delete_queue.opcode = opcode; |
| c.delete_queue.qid = cpu_to_le16(id); |
| |
| status = nvme_submit_admin_cmd(dev, &c, NULL); |
| if (status) |
| return -EIO; |
| return 0; |
| } |
| |
| static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, |
| struct nvme_queue *nvmeq) |
| { |
| int status; |
| struct nvme_command c; |
| int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; |
| |
| memset(&c, 0, sizeof(c)); |
| c.create_cq.opcode = nvme_admin_create_cq; |
| c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); |
| c.create_cq.cqid = cpu_to_le16(qid); |
| c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); |
| c.create_cq.cq_flags = cpu_to_le16(flags); |
| c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); |
| |
| status = nvme_submit_admin_cmd(dev, &c, NULL); |
| if (status) |
| return -EIO; |
| return 0; |
| } |
| |
| static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, |
| struct nvme_queue *nvmeq) |
| { |
| int status; |
| struct nvme_command c; |
| int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; |
| |
| memset(&c, 0, sizeof(c)); |
| c.create_sq.opcode = nvme_admin_create_sq; |
| c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); |
| c.create_sq.sqid = cpu_to_le16(qid); |
| c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); |
| c.create_sq.sq_flags = cpu_to_le16(flags); |
| c.create_sq.cqid = cpu_to_le16(qid); |
| |
| status = nvme_submit_admin_cmd(dev, &c, NULL); |
| if (status) |
| return -EIO; |
| return 0; |
| } |
| |
| static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) |
| { |
| return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); |
| } |
| |
| static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) |
| { |
| return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); |
| } |
| |
| static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns, |
| dma_addr_t dma_addr) |
| { |
| struct nvme_command c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.identify.opcode = nvme_admin_identify; |
| c.identify.nsid = cpu_to_le32(nsid); |
| c.identify.prp1 = cpu_to_le64(dma_addr); |
| c.identify.cns = cpu_to_le32(cns); |
| |
| return nvme_submit_admin_cmd(dev, &c, NULL); |
| } |
| |
| static int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid, |
| dma_addr_t dma_addr, u32 *result) |
| { |
| struct nvme_command c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.features.opcode = nvme_admin_get_features; |
| c.features.nsid = cpu_to_le32(nsid); |
| c.features.prp1 = cpu_to_le64(dma_addr); |
| c.features.fid = cpu_to_le32(fid); |
| |
| return nvme_submit_admin_cmd(dev, &c, result); |
| } |
| |
| static int nvme_set_features(struct nvme_dev *dev, unsigned fid, |
| unsigned dword11, dma_addr_t dma_addr, u32 *result) |
| { |
| struct nvme_command c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.features.opcode = nvme_admin_set_features; |
| c.features.prp1 = cpu_to_le64(dma_addr); |
| c.features.fid = cpu_to_le32(fid); |
| c.features.dword11 = cpu_to_le32(dword11); |
| |
| return nvme_submit_admin_cmd(dev, &c, result); |
| } |
| |
| /** |
| * nvme_cancel_ios - Cancel outstanding I/Os |
| * @queue: The queue to cancel I/Os on |
| * @timeout: True to only cancel I/Os which have timed out |
| */ |
| static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout) |
| { |
| int depth = nvmeq->q_depth - 1; |
| struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); |
| unsigned long now = jiffies; |
| int cmdid; |
| |
| for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) { |
| void *ctx; |
| nvme_completion_fn fn; |
| static struct nvme_completion cqe = { |
| .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, |
| }; |
| |
| if (timeout && !time_after(now, info[cmdid].timeout)) |
| continue; |
| dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid); |
| ctx = cancel_cmdid(nvmeq, cmdid, &fn); |
| fn(nvmeq->dev, ctx, &cqe); |
| } |
| } |
| |
| static void nvme_free_queue_mem(struct nvme_queue *nvmeq) |
| { |
| dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), |
| (void *)nvmeq->cqes, nvmeq->cq_dma_addr); |
| dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), |
| nvmeq->sq_cmds, nvmeq->sq_dma_addr); |
| kfree(nvmeq); |
| } |
| |
| static void nvme_free_queue(struct nvme_dev *dev, int qid) |
| { |
| struct nvme_queue *nvmeq = dev->queues[qid]; |
| int vector = dev->entry[nvmeq->cq_vector].vector; |
| |
| spin_lock_irq(&nvmeq->q_lock); |
| nvme_cancel_ios(nvmeq, false); |
| while (bio_list_peek(&nvmeq->sq_cong)) { |
| struct bio *bio = bio_list_pop(&nvmeq->sq_cong); |
| bio_endio(bio, -EIO); |
| } |
| spin_unlock_irq(&nvmeq->q_lock); |
| |
| irq_set_affinity_hint(vector, NULL); |
| free_irq(vector, nvmeq); |
| |
| /* Don't tell the adapter to delete the admin queue */ |
| if (qid) { |
| adapter_delete_sq(dev, qid); |
| adapter_delete_cq(dev, qid); |
| } |
| |
| nvme_free_queue_mem(nvmeq); |
| } |
| |
| static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, |
| int depth, int vector) |
| { |
| struct device *dmadev = &dev->pci_dev->dev; |
| unsigned extra = DIV_ROUND_UP(depth, 8) + (depth * |
| sizeof(struct nvme_cmd_info)); |
| struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL); |
| if (!nvmeq) |
| return NULL; |
| |
| nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth), |
| &nvmeq->cq_dma_addr, GFP_KERNEL); |
| if (!nvmeq->cqes) |
| goto free_nvmeq; |
| memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth)); |
| |
| nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth), |
| &nvmeq->sq_dma_addr, GFP_KERNEL); |
| if (!nvmeq->sq_cmds) |
| goto free_cqdma; |
| |
| nvmeq->q_dmadev = dmadev; |
| nvmeq->dev = dev; |
| spin_lock_init(&nvmeq->q_lock); |
| nvmeq->cq_head = 0; |
| nvmeq->cq_phase = 1; |
| init_waitqueue_head(&nvmeq->sq_full); |
| init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread); |
| bio_list_init(&nvmeq->sq_cong); |
| nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)]; |
| nvmeq->q_depth = depth; |
| nvmeq->cq_vector = vector; |
| |
| return nvmeq; |
| |
| free_cqdma: |
| dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes, |
| nvmeq->cq_dma_addr); |
| free_nvmeq: |
| kfree(nvmeq); |
| return NULL; |
| } |
| |
| static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq, |
| const char *name) |
| { |
| if (use_threaded_interrupts) |
| return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector, |
| nvme_irq_check, nvme_irq, |
| IRQF_DISABLED | IRQF_SHARED, |
| name, nvmeq); |
| return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq, |
| IRQF_DISABLED | IRQF_SHARED, name, nvmeq); |
| } |
| |
| static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid, |
| int cq_size, int vector) |
| { |
| int result; |
| struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector); |
| |
| if (!nvmeq) |
| return ERR_PTR(-ENOMEM); |
| |
| result = adapter_alloc_cq(dev, qid, nvmeq); |
| if (result < 0) |
| goto free_nvmeq; |
| |
| result = adapter_alloc_sq(dev, qid, nvmeq); |
| if (result < 0) |
| goto release_cq; |
| |
| result = queue_request_irq(dev, nvmeq, "nvme"); |
| if (result < 0) |
| goto release_sq; |
| |
| return nvmeq; |
| |
| release_sq: |
| adapter_delete_sq(dev, qid); |
| release_cq: |
| adapter_delete_cq(dev, qid); |
| free_nvmeq: |
| dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), |
| (void *)nvmeq->cqes, nvmeq->cq_dma_addr); |
| dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), |
| nvmeq->sq_cmds, nvmeq->sq_dma_addr); |
| kfree(nvmeq); |
| return ERR_PTR(result); |
| } |
| |
| static int nvme_configure_admin_queue(struct nvme_dev *dev) |
| { |
| int result = 0; |
| u32 aqa; |
| u64 cap; |
| unsigned long timeout; |
| struct nvme_queue *nvmeq; |
| |
| dev->dbs = ((void __iomem *)dev->bar) + 4096; |
| |
| nvmeq = nvme_alloc_queue(dev, 0, 64, 0); |
| if (!nvmeq) |
| return -ENOMEM; |
| |
| aqa = nvmeq->q_depth - 1; |
| aqa |= aqa << 16; |
| |
| dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM; |
| dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; |
| dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; |
| dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; |
| |
| writel(0, &dev->bar->cc); |
| writel(aqa, &dev->bar->aqa); |
| writeq(nvmeq->sq_dma_addr, &dev->bar->asq); |
| writeq(nvmeq->cq_dma_addr, &dev->bar->acq); |
| writel(dev->ctrl_config, &dev->bar->cc); |
| |
| cap = readq(&dev->bar->cap); |
| timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; |
| dev->db_stride = NVME_CAP_STRIDE(cap); |
| |
| while (!result && !(readl(&dev->bar->csts) & NVME_CSTS_RDY)) { |
| msleep(100); |
| if (fatal_signal_pending(current)) |
| result = -EINTR; |
| if (time_after(jiffies, timeout)) { |
| dev_err(&dev->pci_dev->dev, |
| "Device not ready; aborting initialisation\n"); |
| result = -ENODEV; |
| } |
| } |
| |
| if (result) { |
| nvme_free_queue_mem(nvmeq); |
| return result; |
| } |
| |
| result = queue_request_irq(dev, nvmeq, "nvme admin"); |
| dev->queues[0] = nvmeq; |
| return result; |
| } |
| |
| static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write, |
| unsigned long addr, unsigned length) |
| { |
| int i, err, count, nents, offset; |
| struct scatterlist *sg; |
| struct page **pages; |
| struct nvme_iod *iod; |
| |
| if (addr & 3) |
| return ERR_PTR(-EINVAL); |
| if (!length) |
| return ERR_PTR(-EINVAL); |
| |
| offset = offset_in_page(addr); |
| count = DIV_ROUND_UP(offset + length, PAGE_SIZE); |
| pages = kcalloc(count, sizeof(*pages), GFP_KERNEL); |
| if (!pages) |
| return ERR_PTR(-ENOMEM); |
| |
| err = get_user_pages_fast(addr, count, 1, pages); |
| if (err < count) { |
| count = err; |
| err = -EFAULT; |
| goto put_pages; |
| } |
| |
| iod = nvme_alloc_iod(count, length, GFP_KERNEL); |
| sg = iod->sg; |
| sg_init_table(sg, count); |
| for (i = 0; i < count; i++) { |
| sg_set_page(&sg[i], pages[i], |
| min_t(int, length, PAGE_SIZE - offset), offset); |
| length -= (PAGE_SIZE - offset); |
| offset = 0; |
| } |
| sg_mark_end(&sg[i - 1]); |
| iod->nents = count; |
| |
| err = -ENOMEM; |
| nents = dma_map_sg(&dev->pci_dev->dev, sg, count, |
| write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); |
| if (!nents) |
| goto free_iod; |
| |
| kfree(pages); |
| return iod; |
| |
| free_iod: |
| kfree(iod); |
| put_pages: |
| for (i = 0; i < count; i++) |
| put_page(pages[i]); |
| kfree(pages); |
| return ERR_PTR(err); |
| } |
| |
| static void nvme_unmap_user_pages(struct nvme_dev *dev, int write, |
| struct nvme_iod *iod) |
| { |
| int i; |
| |
| dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents, |
| write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); |
| |
| for (i = 0; i < iod->nents; i++) |
| put_page(sg_page(&iod->sg[i])); |
| } |
| |
| static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) |
| { |
| struct nvme_dev *dev = ns->dev; |
| struct nvme_queue *nvmeq; |
| struct nvme_user_io io; |
| struct nvme_command c; |
| unsigned length; |
| int status; |
| struct nvme_iod *iod; |
| |
| if (copy_from_user(&io, uio, sizeof(io))) |
| return -EFAULT; |
| length = (io.nblocks + 1) << ns->lba_shift; |
| |
| switch (io.opcode) { |
| case nvme_cmd_write: |
| case nvme_cmd_read: |
| case nvme_cmd_compare: |
| iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (IS_ERR(iod)) |
| return PTR_ERR(iod); |
| |
| memset(&c, 0, sizeof(c)); |
| c.rw.opcode = io.opcode; |
| c.rw.flags = io.flags; |
| c.rw.nsid = cpu_to_le32(ns->ns_id); |
| c.rw.slba = cpu_to_le64(io.slba); |
| c.rw.length = cpu_to_le16(io.nblocks); |
| c.rw.control = cpu_to_le16(io.control); |
| c.rw.dsmgmt = cpu_to_le16(io.dsmgmt); |
| c.rw.reftag = io.reftag; |
| c.rw.apptag = io.apptag; |
| c.rw.appmask = io.appmask; |
| /* XXX: metadata */ |
| length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL); |
| |
| nvmeq = get_nvmeq(dev); |
| /* |
| * Since nvme_submit_sync_cmd sleeps, we can't keep preemption |
| * disabled. We may be preempted at any point, and be rescheduled |
| * to a different CPU. That will cause cacheline bouncing, but no |
| * additional races since q_lock already protects against other CPUs. |
| */ |
| put_nvmeq(nvmeq); |
| if (length != (io.nblocks + 1) << ns->lba_shift) |
| status = -ENOMEM; |
| else |
| status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT); |
| |
| nvme_unmap_user_pages(dev, io.opcode & 1, iod); |
| nvme_free_iod(dev, iod); |
| return status; |
| } |
| |
| static int nvme_user_admin_cmd(struct nvme_dev *dev, |
| struct nvme_admin_cmd __user *ucmd) |
| { |
| struct nvme_admin_cmd cmd; |
| struct nvme_command c; |
| int status, length; |
| struct nvme_iod *uninitialized_var(iod); |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| if (copy_from_user(&cmd, ucmd, sizeof(cmd))) |
| return -EFAULT; |
| |
| memset(&c, 0, sizeof(c)); |
| c.common.opcode = cmd.opcode; |
| c.common.flags = cmd.flags; |
| c.common.nsid = cpu_to_le32(cmd.nsid); |
| c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); |
| c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); |
| c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); |
| c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); |
| c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); |
| c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); |
| c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); |
| c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); |
| |
| length = cmd.data_len; |
| if (cmd.data_len) { |
| iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr, |
| length); |
| if (IS_ERR(iod)) |
| return PTR_ERR(iod); |
| length = nvme_setup_prps(dev, &c.common, iod, length, |
| GFP_KERNEL); |
| } |
| |
| if (length != cmd.data_len) |
| status = -ENOMEM; |
| else |
| status = nvme_submit_admin_cmd(dev, &c, &cmd.result); |
| |
| if (cmd.data_len) { |
| nvme_unmap_user_pages(dev, cmd.opcode & 1, iod); |
| nvme_free_iod(dev, iod); |
| } |
| |
| if (!status && copy_to_user(&ucmd->result, &cmd.result, |
| sizeof(cmd.result))) |
| status = -EFAULT; |
| |
| return status; |
| } |
| |
| static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, |
| unsigned long arg) |
| { |
| struct nvme_ns *ns = bdev->bd_disk->private_data; |
| |
| switch (cmd) { |
| case NVME_IOCTL_ID: |
| return ns->ns_id; |
| case NVME_IOCTL_ADMIN_CMD: |
| return nvme_user_admin_cmd(ns->dev, (void __user *)arg); |
| case NVME_IOCTL_SUBMIT_IO: |
| return nvme_submit_io(ns, (void __user *)arg); |
| default: |
| return -ENOTTY; |
| } |
| } |
| |
| static const struct block_device_operations nvme_fops = { |
| .owner = THIS_MODULE, |
| .ioctl = nvme_ioctl, |
| .compat_ioctl = nvme_ioctl, |
| }; |
| |
| static void nvme_resubmit_bios(struct nvme_queue *nvmeq) |
| { |
| while (bio_list_peek(&nvmeq->sq_cong)) { |
| struct bio *bio = bio_list_pop(&nvmeq->sq_cong); |
| struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data; |
| if (nvme_submit_bio_queue(nvmeq, ns, bio)) { |
| bio_list_add_head(&nvmeq->sq_cong, bio); |
| break; |
| } |
| if (bio_list_empty(&nvmeq->sq_cong)) |
| remove_wait_queue(&nvmeq->sq_full, |
| &nvmeq->sq_cong_wait); |
| } |
| } |
| |
| static int nvme_kthread(void *data) |
| { |
| struct nvme_dev *dev; |
| |
| while (!kthread_should_stop()) { |
| __set_current_state(TASK_RUNNING); |
| spin_lock(&dev_list_lock); |
| list_for_each_entry(dev, &dev_list, node) { |
| int i; |
| for (i = 0; i < dev->queue_count; i++) { |
| struct nvme_queue *nvmeq = dev->queues[i]; |
| if (!nvmeq) |
| continue; |
| spin_lock_irq(&nvmeq->q_lock); |
| if (nvme_process_cq(nvmeq)) |
| printk("process_cq did something\n"); |
| nvme_cancel_ios(nvmeq, true); |
| nvme_resubmit_bios(nvmeq); |
| spin_unlock_irq(&nvmeq->q_lock); |
| } |
| } |
| spin_unlock(&dev_list_lock); |
| set_current_state(TASK_INTERRUPTIBLE); |
| schedule_timeout(HZ); |
| } |
| return 0; |
| } |
| |
| static DEFINE_IDA(nvme_index_ida); |
| |
| static int nvme_get_ns_idx(void) |
| { |
| int index, error; |
| |
| do { |
| if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL)) |
| return -1; |
| |
| spin_lock(&dev_list_lock); |
| error = ida_get_new(&nvme_index_ida, &index); |
| spin_unlock(&dev_list_lock); |
| } while (error == -EAGAIN); |
| |
| if (error) |
| index = -1; |
| return index; |
| } |
| |
| static void nvme_put_ns_idx(int index) |
| { |
| spin_lock(&dev_list_lock); |
| ida_remove(&nvme_index_ida, index); |
| spin_unlock(&dev_list_lock); |
| } |
| |
| static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid, |
| struct nvme_id_ns *id, struct nvme_lba_range_type *rt) |
| { |
| struct nvme_ns *ns; |
| struct gendisk *disk; |
| int lbaf; |
| |
| if (rt->attributes & NVME_LBART_ATTRIB_HIDE) |
| return NULL; |
| |
| ns = kzalloc(sizeof(*ns), GFP_KERNEL); |
| if (!ns) |
| return NULL; |
| ns->queue = blk_alloc_queue(GFP_KERNEL); |
| if (!ns->queue) |
| goto out_free_ns; |
| ns->queue->queue_flags = QUEUE_FLAG_DEFAULT; |
| queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue); |
| queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); |
| /* queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */ |
| blk_queue_make_request(ns->queue, nvme_make_request); |
| ns->dev = dev; |
| ns->queue->queuedata = ns; |
| |
| disk = alloc_disk(NVME_MINORS); |
| if (!disk) |
| goto out_free_queue; |
| ns->ns_id = nsid; |
| ns->disk = disk; |
| lbaf = id->flbas & 0xf; |
| ns->lba_shift = id->lbaf[lbaf].ds; |
| blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); |
| if (dev->max_hw_sectors) |
| blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors); |
| |
| disk->major = nvme_major; |
| disk->minors = NVME_MINORS; |
| disk->first_minor = NVME_MINORS * nvme_get_ns_idx(); |
| disk->fops = &nvme_fops; |
| disk->private_data = ns; |
| disk->queue = ns->queue; |
| disk->driverfs_dev = &dev->pci_dev->dev; |
| sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid); |
| set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); |
| |
| return ns; |
| |
| out_free_queue: |
| blk_cleanup_queue(ns->queue); |
| out_free_ns: |
| kfree(ns); |
| return NULL; |
| } |
| |
| static void nvme_ns_free(struct nvme_ns *ns) |
| { |
| int index = ns->disk->first_minor / NVME_MINORS; |
| put_disk(ns->disk); |
| nvme_put_ns_idx(index); |
| blk_cleanup_queue(ns->queue); |
| kfree(ns); |
| } |
| |
| static int set_queue_count(struct nvme_dev *dev, int count) |
| { |
| int status; |
| u32 result; |
| u32 q_count = (count - 1) | ((count - 1) << 16); |
| |
| status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0, |
| &result); |
| if (status) |
| return -EIO; |
| return min(result & 0xffff, result >> 16) + 1; |
| } |
| |
| static int nvme_setup_io_queues(struct nvme_dev *dev) |
| { |
| int result, cpu, i, nr_io_queues, db_bar_size, q_depth; |
| |
| nr_io_queues = num_online_cpus(); |
| result = set_queue_count(dev, nr_io_queues); |
| if (result < 0) |
| return result; |
| if (result < nr_io_queues) |
| nr_io_queues = result; |
| |
| /* Deregister the admin queue's interrupt */ |
| free_irq(dev->entry[0].vector, dev->queues[0]); |
| |
| db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3)); |
| if (db_bar_size > 8192) { |
| iounmap(dev->bar); |
| dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0), |
| db_bar_size); |
| dev->dbs = ((void __iomem *)dev->bar) + 4096; |
| dev->queues[0]->q_db = dev->dbs; |
| } |
| |
| for (i = 0; i < nr_io_queues; i++) |
| dev->entry[i].entry = i; |
| for (;;) { |
| result = pci_enable_msix(dev->pci_dev, dev->entry, |
| nr_io_queues); |
| if (result == 0) { |
| break; |
| } else if (result > 0) { |
| nr_io_queues = result; |
| continue; |
| } else { |
| nr_io_queues = 1; |
| break; |
| } |
| } |
| |
| result = queue_request_irq(dev, dev->queues[0], "nvme admin"); |
| /* XXX: handle failure here */ |
| |
| cpu = cpumask_first(cpu_online_mask); |
| for (i = 0; i < nr_io_queues; i++) { |
| irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu)); |
| cpu = cpumask_next(cpu, cpu_online_mask); |
| } |
| |
| q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1, |
| NVME_Q_DEPTH); |
| for (i = 0; i < nr_io_queues; i++) { |
| dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i); |
| if (IS_ERR(dev->queues[i + 1])) |
| return PTR_ERR(dev->queues[i + 1]); |
| dev->queue_count++; |
| } |
| |
| for (; i < num_possible_cpus(); i++) { |
| int target = i % rounddown_pow_of_two(dev->queue_count - 1); |
| dev->queues[i + 1] = dev->queues[target + 1]; |
| } |
| |
| return 0; |
| } |
| |
| static void nvme_free_queues(struct nvme_dev *dev) |
| { |
| int i; |
| |
| for (i = dev->queue_count - 1; i >= 0; i--) |
| nvme_free_queue(dev, i); |
| } |
| |
| static int nvme_dev_add(struct nvme_dev *dev) |
| { |
| int res, nn, i; |
| struct nvme_ns *ns, *next; |
| struct nvme_id_ctrl *ctrl; |
| struct nvme_id_ns *id_ns; |
| void *mem; |
| dma_addr_t dma_addr; |
| |
| res = nvme_setup_io_queues(dev); |
| if (res) |
| return res; |
| |
| mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr, |
| GFP_KERNEL); |
| |
| res = nvme_identify(dev, 0, 1, dma_addr); |
| if (res) { |
| res = -EIO; |
| goto out_free; |
| } |
| |
| ctrl = mem; |
| nn = le32_to_cpup(&ctrl->nn); |
| memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn)); |
| memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn)); |
| memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr)); |
| if (ctrl->mdts) { |
| int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12; |
| dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9); |
| } |
| |
| id_ns = mem; |
| for (i = 1; i <= nn; i++) { |
| res = nvme_identify(dev, i, 0, dma_addr); |
| if (res) |
| continue; |
| |
| if (id_ns->ncap == 0) |
| continue; |
| |
| res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i, |
| dma_addr + 4096, NULL); |
| if (res) |
| memset(mem + 4096, 0, 4096); |
| |
| ns = nvme_alloc_ns(dev, i, mem, mem + 4096); |
| if (ns) |
| list_add_tail(&ns->list, &dev->namespaces); |
| } |
| list_for_each_entry(ns, &dev->namespaces, list) |
| add_disk(ns->disk); |
| |
| goto out; |
| |
| out_free: |
| list_for_each_entry_safe(ns, next, &dev->namespaces, list) { |
| list_del(&ns->list); |
| nvme_ns_free(ns); |
| } |
| |
| out: |
| dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr); |
| return res; |
| } |
| |
| static int nvme_dev_remove(struct nvme_dev *dev) |
| { |
| struct nvme_ns *ns, *next; |
| |
| spin_lock(&dev_list_lock); |
| list_del(&dev->node); |
| spin_unlock(&dev_list_lock); |
| |
| list_for_each_entry_safe(ns, next, &dev->namespaces, list) { |
| list_del(&ns->list); |
| del_gendisk(ns->disk); |
| nvme_ns_free(ns); |
| } |
| |
| nvme_free_queues(dev); |
| |
| return 0; |
| } |
| |
| static int nvme_setup_prp_pools(struct nvme_dev *dev) |
| { |
| struct device *dmadev = &dev->pci_dev->dev; |
| dev->prp_page_pool = dma_pool_create("prp list page", dmadev, |
| PAGE_SIZE, PAGE_SIZE, 0); |
| if (!dev->prp_page_pool) |
| return -ENOMEM; |
| |
| /* Optimisation for I/Os between 4k and 128k */ |
| dev->prp_small_pool = dma_pool_create("prp list 256", dmadev, |
| 256, 256, 0); |
| if (!dev->prp_small_pool) { |
| dma_pool_destroy(dev->prp_page_pool); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static void nvme_release_prp_pools(struct nvme_dev *dev) |
| { |
| dma_pool_destroy(dev->prp_page_pool); |
| dma_pool_destroy(dev->prp_small_pool); |
| } |
| |
| static DEFINE_IDA(nvme_instance_ida); |
| |
| static int nvme_set_instance(struct nvme_dev *dev) |
| { |
| int instance, error; |
| |
| do { |
| if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL)) |
| return -ENODEV; |
| |
| spin_lock(&dev_list_lock); |
| error = ida_get_new(&nvme_instance_ida, &instance); |
| spin_unlock(&dev_list_lock); |
| } while (error == -EAGAIN); |
| |
| if (error) |
| return -ENODEV; |
| |
| dev->instance = instance; |
| return 0; |
| } |
| |
| static void nvme_release_instance(struct nvme_dev *dev) |
| { |
| spin_lock(&dev_list_lock); |
| ida_remove(&nvme_instance_ida, dev->instance); |
| spin_unlock(&dev_list_lock); |
| } |
| |
| static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) |
| { |
| int bars, result = -ENOMEM; |
| struct nvme_dev *dev; |
| |
| dev = kzalloc(sizeof(*dev), GFP_KERNEL); |
| if (!dev) |
| return -ENOMEM; |
| dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry), |
| GFP_KERNEL); |
| if (!dev->entry) |
| goto free; |
| dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *), |
| GFP_KERNEL); |
| if (!dev->queues) |
| goto free; |
| |
| if (pci_enable_device_mem(pdev)) |
| goto free; |
| pci_set_master(pdev); |
| bars = pci_select_bars(pdev, IORESOURCE_MEM); |
| if (pci_request_selected_regions(pdev, bars, "nvme")) |
| goto disable; |
| |
| INIT_LIST_HEAD(&dev->namespaces); |
| dev->pci_dev = pdev; |
| pci_set_drvdata(pdev, dev); |
| dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); |
| dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); |
| result = nvme_set_instance(dev); |
| if (result) |
| goto disable; |
| |
| dev->entry[0].vector = pdev->irq; |
| |
| result = nvme_setup_prp_pools(dev); |
| if (result) |
| goto disable_msix; |
| |
| dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); |
| if (!dev->bar) { |
| result = -ENOMEM; |
| goto disable_msix; |
| } |
| |
| result = nvme_configure_admin_queue(dev); |
| if (result) |
| goto unmap; |
| dev->queue_count++; |
| |
| spin_lock(&dev_list_lock); |
| list_add(&dev->node, &dev_list); |
| spin_unlock(&dev_list_lock); |
| |
| result = nvme_dev_add(dev); |
| if (result) |
| goto delete; |
| |
| return 0; |
| |
| delete: |
| spin_lock(&dev_list_lock); |
| list_del(&dev->node); |
| spin_unlock(&dev_list_lock); |
| |
| nvme_free_queues(dev); |
| unmap: |
| iounmap(dev->bar); |
| disable_msix: |
| pci_disable_msix(pdev); |
| nvme_release_instance(dev); |
| nvme_release_prp_pools(dev); |
| disable: |
| pci_disable_device(pdev); |
| pci_release_regions(pdev); |
| free: |
| kfree(dev->queues); |
| kfree(dev->entry); |
| kfree(dev); |
| return result; |
| } |
| |
| static void nvme_remove(struct pci_dev *pdev) |
| { |
| struct nvme_dev *dev = pci_get_drvdata(pdev); |
| nvme_dev_remove(dev); |
| pci_disable_msix(pdev); |
| iounmap(dev->bar); |
| nvme_release_instance(dev); |
| nvme_release_prp_pools(dev); |
| pci_disable_device(pdev); |
| pci_release_regions(pdev); |
| kfree(dev->queues); |
| kfree(dev->entry); |
| kfree(dev); |
| } |
| |
| /* These functions are yet to be implemented */ |
| #define nvme_error_detected NULL |
| #define nvme_dump_registers NULL |
| #define nvme_link_reset NULL |
| #define nvme_slot_reset NULL |
| #define nvme_error_resume NULL |
| #define nvme_suspend NULL |
| #define nvme_resume NULL |
| |
| static const struct pci_error_handlers nvme_err_handler = { |
| .error_detected = nvme_error_detected, |
| .mmio_enabled = nvme_dump_registers, |
| .link_reset = nvme_link_reset, |
| .slot_reset = nvme_slot_reset, |
| .resume = nvme_error_resume, |
| }; |
| |
| /* Move to pci_ids.h later */ |
| #define PCI_CLASS_STORAGE_EXPRESS 0x010802 |
| |
| static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = { |
| { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, |
| { 0, } |
| }; |
| MODULE_DEVICE_TABLE(pci, nvme_id_table); |
| |
| static struct pci_driver nvme_driver = { |
| .name = "nvme", |
| .id_table = nvme_id_table, |
| .probe = nvme_probe, |
| .remove = nvme_remove, |
| .suspend = nvme_suspend, |
| .resume = nvme_resume, |
| .err_handler = &nvme_err_handler, |
| }; |
| |
| static int __init nvme_init(void) |
| { |
| int result; |
| |
| nvme_thread = kthread_run(nvme_kthread, NULL, "nvme"); |
| if (IS_ERR(nvme_thread)) |
| return PTR_ERR(nvme_thread); |
| |
| result = register_blkdev(nvme_major, "nvme"); |
| if (result < 0) |
| goto kill_kthread; |
| else if (result > 0) |
| nvme_major = result; |
| |
| result = pci_register_driver(&nvme_driver); |
| if (result) |
| goto unregister_blkdev; |
| return 0; |
| |
| unregister_blkdev: |
| unregister_blkdev(nvme_major, "nvme"); |
| kill_kthread: |
| kthread_stop(nvme_thread); |
| return result; |
| } |
| |
| static void __exit nvme_exit(void) |
| { |
| pci_unregister_driver(&nvme_driver); |
| unregister_blkdev(nvme_major, "nvme"); |
| kthread_stop(nvme_thread); |
| } |
| |
| MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION("0.8"); |
| module_init(nvme_init); |
| module_exit(nvme_exit); |